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A palladium-catalyzed regio-selective acylation of C-H bond 
of azoxybenzenes with alcohols was developed using tert-
butyl hydroperoxide (TBHP) as oxidant. Alcohol 
derivatives can act as effective acyl precursors in situ, which 
were low toxic, inexpensive, stable, and commercially 
available. These transformations proceeded smoothly and 
could tolerate a variety of functional groups. 

General methods for selective transformation of unreactive C-H 
bonds have enjoyed tremendous advances owing to their widespread 
application to the rapid construction of carbon-carbon or carbon-
heteroatom bonds, particularly in the fields of many useful 
polyfunctional compounds.1,2 Directing-group-assisted strategy was 
one of the most efficient methods to realize the regioselectivity of C-
H bond cleavage and its further transformation.3 As well as the 
oxygen-containing groups,4 a variety of nitrogen-containing groups 
have been extensively investigated, such as amides,5 imines,6 
amines,7 oximes,8 pyridine9 and other nitrogen-containing 
heterocycles.10 However, although significant progress in C-H bonds 
functionalization has been achieved with the assistance of diverse 
directing groups, there are rare studies on the regioselectivity control 
of functionalization of compounds with unique functional groups, 
which binds with transition metal to form different rings by making 
use of the two or more possible orthogonal co-ordination modes. 
Hence, it is very necessary to develop knowledge and associated 
strategies for overcoming these hurdles. As far as we know, the 
azoxy compounds with an unique directing group, which could be 
used as anchors to form two different cyclometalated intermediates  
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Scheme 1 Pd-catalyzed ortho-acylation of azoxybenzenes with 
alcohols. 

followed by further transformations, are rarely reported in the C-H 
activation/functionalization process.11 

Azoxy compounds are widely used in electronic devices due to 
their wonderful liquid crystalline properties,12 and are also key 
materials of polymer inhibitors, stabilizers and dyes.13 Although 
numerous methods for the synthesis of azoxy compounds have been 
developed,14 reports on the ortho-selective functionalization of  

Table 1. Optimization of the reaction conditionsa 

oxidant, solvent

1a 3a

catalyst 10 mol%

Entry Catalyst Oxidant Solvent Yield [%]b

N

DCE
DCE

1
2
3
4
5

11

21
22
23

20%

trace

58%e

32%

0

DCE
DCE

24

13
14

trace

14%
13%

TBHP

H2O2

TBHP

TBHP

TBHP

TBHP
TBHP

DCE

+

2a

54%d,f

23%

TBHP

TBHP
Dioxane n.r.TBHP

6

Toluene 20%TBHP

DCE 73%dTBHP

DCE

12

14%

neat 24%

DCE 60%d,g

TBHP

TBHP

15
16

CH2OH
N

O

H

N
N

O

O

Pd(OAc)2
Pd(TFA)2

none

Pd(TFA)2
Pd(TFA)2

Pd(TFA)2

Pd(TFA)2

Pd(TFA)2
Pd(TFA)2
Pd(TFA)2

Pd(PPh3)4
PdCl2(MeCN)2

Pd(TFA)2

Pd(TFA)2

Pd(TFA)2

DCE

DCE
DCE

PdCl2 TBHP

TBHP

7
8
9

10

7%

trace

DTBP

K2S2O8
tracePhI(OAc)2

DCE traceDDQ
Pd(TFA)2
Pd(TFA)2
Pd(TFA)2

Pd(TFA)2

DCE

DCE
DCE

20 56%cTBHPPd(TFA)2 DCE

PhCl
AcOH

17
n.r.

traceTBHP

DMSO n.r.TBHP
18
19

Pd(TFA)2

Pd(TFA)2
Pd(TFA)2 TBHP

DME
DMF

 
a All the reactions were carried out in the presence of 0.2 mmol of 1a, 0.6 
mmol of 2a and 0.6 mmol of TBHP in 1.0 mL DCE at 100 ºC under air 
condition. b Isolated yields. c 6.0 equiv of TBHP was added. d 7.0 equiv of 
TBHP was used. e 8.0 equiv of TBHP was used. f At 80 oC. g At 120 oC. 
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Table 2. Scope of the ortho-acylation of azoxybenzene with different 
alcohols a,b 

TBHP, DCE, 100 oC

1a 3

Pd(TFA)2 10 mol%
N

+

2

R CH2OH
N

O

H

N
N

O

O

R

N
N

O

O

N
N

O

O

R

N
N

O

O

CN

N
N

O

O

N
N

O

O

NO2

N
N

O

O

OMe

N
N

O

O

N
N

O

O

R

3aa, R = H, 73%
3ab, R = 4-Me, 65%
3ac, R = 3-Me, 68%
3ad, R = 2-Me, 70%

3ae, 46%

3al, 40%

3af, 38%
3ag, 29%

3am, 39%

3ah, R = 4-F, 66%
3ai, R = 4-Cl, 75%
3aj, R = 4-Br, 72% 3ak, 46%

MeO OMe

 
a All the reactions were carried out in the presence of 0.2 mmol of 1a, 0.6 
mmol of 2a and 1.4 mmol of TBHP in 1.0 mL DCE at 100 ºC under air. b 
Isolated yields. 
azoxybenzenes are scarce.11 Besides, it is well known that aryl 
ketones are very important structural motifs of natural products and 
pharmaceuticals.15 During the development of preparation of aryl 
ketones, the emergence of direct functionalization of C-H bonds 
provides an atom-economic and highly efficient strategy16 compared 
with the traditional methods of Friedel-Crafts acylation relying on 
Lewis acids or Bronsted acid17 and various oxidants.18 To the best of 
our knowledge, there are only two reports on the acylation of 
azoxybenzenes,11a,11c and this restriction has greatly limited the 
method to preparation of azoxy ketones. Consideration of the 
limitations and extremely challenge in the control of two different 
kinds of C-H bonds, it is necessary to develop a new method to 
realize regio-selective acylation of C-H bond of azoxy compounds. 
Herein, we describe a facile synthesis of azoxy ketones by Pd-
catalyzed ortho-C-H bond acylation employing alcohol derivatives 
as the reliable coupling partners,19 which show obvious advantage of 
high stability, easy to handle and low cost compared with α-
oxocarboxylic acid and aldehydes. 

We initially used azoxybenzenes (1a) and benzoyl alcohol (2a) as  

the model substrates to optimize the reaction conditions. To our 
delight, when the mixture of azoxybenzene (0.20 mmol) and benzoyl 
alcohol (0.6 mmol) was treated with 3.0 equiv. of TBHP in DCE 
(1.0 mL) at 100 oC for 20 h in the presence of 10 mol% Pd(OAc)2, 
the desired product 3a was isolated in 20% yield (Table 1, entry 1). 
Further catalyst screening showed that an obvious increasing yield 
was achieved when Pd(TFA)2 was used in the reaction, and the 
corresponding product was obtained in 32% yield (Table 1, entry 2). 
However, other catalysts such as PdCl2, PdCl2(MeCN)2 and 
Pd(PPh3)4 were less effective (Table 1, entry 3-5). Subsequently, 
different oxidants were investigated in this transformation and TBHP 
was the most suitable oxidant compared with other oxidants 
including DTBP, DDQ, K2S2O8, PhI(OAc)2, H2O2, etc. (Table 1, 
entry 7-11). Notably, no desired product was detected in the absence 
of catalyst even in high temperature (Table 1, entry 6). Additionally, 
the effect of solvents on this transformation was also tested, and 
DCE proved to be crucial, while a slight lower yield was also 
isolated in PhCl and comparative yield was achieved under neat 
condition (Table 1, entry 12-19). It should be noted that increasing 
the stoichiometry of TBHP significantly increased the yield of the 
corresponding azoxy ketones. The best result was observed in 73% 
with 7 equiv of TBHP, while increasing or lowering the amount of 
oxidant suppressed the efficiency (Table 1, entry 20-24). Finally, the 
optimized reaction conditions for the ortho-C-H acylation of azoxy 
compound were obtained as follows: 10 mol% Pd(TFA)2 as catalyst, 
7.0 equiv of TBHP as oxidant, and DCE as solvent, at 100 oC under 
air for 20 h. 

With the optimized reaction conditions in hand, the applicability 
of this protocol was subsequently investigated with regard to 
different alcohols as the in situ generated acyl source. It was found 
that a variety of alcohols with both electron-donating and electron-
withdrawing groups substituted on aromatic ring were tolerated and 
moderate to good yields were obtained for most case. For example, 
the substrates with electron donating methyl group on the aromatic 
ring gave the desired products in good yields (Table 2, 3ab-3ad), 
while para electron-withdrawing group-substituted benzyl alcohols 
afforded comparative results (Table 2, 3ah-3aj). It is worth noting 
that ortho-hindered benzyl alcohol was feasible coupling partner in 
this catalytic system. Moreover, lower yields were obtained when 4-  

Table 3. Scope of azoxy compounds in ortho-acylation reactions a,b 

TBHP, DCE, 100 oC

1 3

Pd(TFA)2 10 mol%
N

+

2a

N

O

H

N
N

O

O

N
N

O

O

CH2OH
R

R

MeO

OMe

3ea, 75%

R
R

3ba, R = 4-Me, 61%
3ca, R = 3-Me, 68%
3da, R = 2-Me, 70%c

N
N

O

R

R

O

3fa, R = 4-F, 40%
3ga, R = 4-Cl, 54%

N
N

O

R

R

O

N
N

O

O
EtO2C

CO2Et

3ha, 0%

 
a All the reactions were carried out in the presence of 0.2 mmol of 1, 0.6 
mmol of 2a and 1.4 mmol of TBHP in 1.0 mL DCE at 100 ºC under air. b 
Isolated yields. c At 120 oC, 36 h. 
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Scheme 2 Control reactions. 

methoxybenzyl alcohol and 3,5-dimethoxybenzyl alcohol were 
involved, and the corresponding azoxy ketones were achieved in 38% 
and 29% yields, respectively, presumably due to the difficult C-H 
bond cleavage of aldehydes generated in situ. In particular, the 
bromo group remained intact during the course of the reaction, 
which could be further transformed into other important structures. 
To our delight, a representative structure of 3ai was confirmed by X-
ray single-crystal analysis (see Supporting Information (SI) for more 
details), which proved the single isomer product. Encouraged by 
these positive results, we also extended the substrate scope to benzyl 
alcohol derivatives with strong electron-withdrawing groups and 
aliphatic alcohols, and obtained the desired acylated azoxy 
compounds in moderate yields (Table 2, 3ak-3am). Unfortunately, 
heterocyclic-substituted alcohols could not participate in this 
procedure, which often showed positive results in acylation reactions. 

Next, the scope of this transformation with regard to a range of 
azoxybenzenes was then explored with benzyl alcohol under our best  
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N
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H
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N
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t-BuOH
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2a

CF3COOH

 
Scheme 3 Proposed reaction mechanism. 

conditions. The results of the reaction with the azoxy derivatives 
bearing electron-donating groups were better than with those bearing 
electron-withdrawing groups (Table 3). For example, 4,4’-dimethyl 
azoxybenzene and 4,4’-azoxydianisole gave the corresponding 
azoxy ketones in good yields, while sharp reducing yields were 
observed with electron-deficiency substituents at the para-positions 
of azoxybenzenes, especially for the CO2Et, no C-H cross-coupling 
reaction occurred at all. 

To further investigate the possible mechanism, some control 
experiments were performed to obtain mechanistic insight (Scheme 
2). It is observed that benzaldehyde was formed under our reaction 
conditions in the absence of azoxy compound. Very recently, we 
have developed a method to realize the ortho-acylation of 
azoxybenzene with benzaldehyde under similar reaction 
conditions.11c Moreover, treatment of azoxybenzene (1a) and benzyl 
alcohol (2a) in the presence of the radical scavenger TEMPO 
suppressed the reaction completely, which indicated that a radical 
process was possibly involved in this procedure.20 

Based on the previous literatures19,21 and above-mentioned control 
experiments, a plausible mechanism pathway for this transformation 
is depicted in Scheme 3. First, the active palladium catalyst reacts 
with azoxybenzene to generate intermediate I22 by chelation-directed 
C-H activation with N atom, which is generally considered to be a 
better coordinating atom than O. At the same time, aldehyde was 
formed via the oxidation of the alcohol by TBHP, followed by 
transferred to an acyl radical according to the literature. Second, the 
Pd(II) intermediate I would react with the acyl radicals to afford the 
Pd(IV) intermediate II.23,24 Finally, the intermediate II underwent 
reductive elimination to afford the ortho-acylated product and the 
active Pd(II) was regenerated. 

In summary, we have developed a novel catalytic system for the 
synthesis of ortho-acetyl functionalization of azoxybenzenes via 
regio-selective directing-group-assisted strategy. Alcohol derivatives 
can be employed as effective acyl precursors in the oxidative 
coupling between two C-H bonds. Further exploration of the 
synthetic utility of this chemistry and other functionalization of 
azoxy compounds are currently underway in our lab. 

We are grateful to the Northwest University (PR13089, 
NF14020) and National Found for Fostering Talents of Basic 
Science (NFFTBS-J1103311, J1210057) for financial support. 
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