Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Total Synthesis of (-)-Cryptocaryol A

Cite this: DOI: 10.1039/xoxxooooox

Received ooth January 2012,
Accepted ooth January 2012

DOI: 10.1039/xoxx00000x
www.rsc.org/

Introduction

(+)-Cryptocaryol A (1) was isolated in 2011 by Gustafson and coworkers from a collection of the plant Cryptocarya sp. in Papua New Guinea (Figure 1). ${ }^{1}$ This natural product exhibits stabilizing activity $\left(\mathrm{EC}_{50}=4.9 \mu \mathrm{M}\right)$ toward Pdcd4 (programmed cell death 4), ${ }^{1}$ a tumor suppressor protein that can inhibit neoplastic transformation ${ }^{2}$ and is downregulated in several cancers. ${ }^{3}$ Thus, the stabilization of this protein is a potential tumor prevention strategy.

The ability of (+)-cryptocaryol A (1) to stabilize Pdcd4 and the potential of this protein for cancer prevention and treatment motivated some research groups to synthesize this natural product. In 2013, the synthesis of a purported cryptocaryol A was published by Reddy and Mohapatra. ${ }^{4}$ Wang and O'Doherty subsequently reported the first total synthesis of the natural product, confirming its relative and absolute stereochemistry. ${ }^{5}$ The authors also synthesized several analogs of this compound to evaluate structure-activity relationships in cancer cell cytotoxicity. ${ }^{6}$

Herein, we report our total synthesis of (-)-cryptocaryol A (1).

Figure 1. (+)- and (-)-cryptocaryol A (1).

Retrosynthetic Analysis of (-)-Cryptocaryol A (1)

Our disconnection approach ${ }^{7}$ began with the formation of the C15C16 bond via an aldol coupling between the boron enolate of methyl ketone 2 and aldehyde 3 (Scheme 1). The Z-olefin 2 could be prepared by a Horner-Wadsworth-Emmons coupling of the Ando phosphonate 4 and aldehyde 5. An aldol reaction between methyl ketone 6 and aldehyde 7 could provide compound 5, and finally,
fragment 6 could be obtained from a boron-mediated aldol addition of methyl ketone $\mathbf{8}$ and aldehyde 7 .

Scheme 1. Retrosynthetic analysis of $(-) \mathbf{- 1}$.

Results and Discussion

Our synthesis began with protection of the commercially available (R)-4-penten-2-ol (9) using p-methoxybenzyl-2,2,2trichloroacetimidate and a catalytic amount of camphorsulfonic acid (CSA) to provide olefin 10, which was converted to methyl ketone $\mathbf{8}$ via Wacker oxidation in 53% yield for the 2-
step sequence (Scheme 2). ${ }^{8}$ The aldol reaction between the boron enolate of methyl ketone $\mathbf{8}$ and freshly prepared aldehyde

Scheme 2. Synthesis of acetonide 13
7^{9} provided the aldol adduct 11 in 85% yield with a diastereoselectivity of 93:07 favoring the 1,5-anti isomer. ${ }^{10}$ Compound 11 was reduced with LiBH_{4} and $\mathrm{Et}_{2} \mathrm{BOMe}$ to furnish the 1,3-syn diol $\mathbf{1 2}$ in 99% yield and high diastereoselectivity ($d r>95: 05$). ${ }^{11}$ Protection of $\mathbf{1 2}$ with 2,2dimethoxypropane (2,2-DMP) provided acetonide $\mathbf{1 3}$ in 89% yield. ${ }^{12}$
${ }^{13} \mathrm{C}$ NMR analysis of compound $\mathbf{1 3}$ revealed chemical shifts of 19.9 and 30.3 ppm for the methyl groups and 98.5 ppm for the quaternary carbon, which correspond to a cis acetonide according to the Rychnovsky method. ${ }^{13}$ Therefore, the relative configuration of the substituents at C 10 and C 12 of diol $\mathbf{1 2}$ is 1,3-syn.

To establish the relative stereochemistry of aldol adduct 11, the diol 12 was derivatized to its PMP acetal 14 (65\%) by treatment with DDQ in the presence of molecular sieves (Scheme 3). NMR coupling constants, along with selective NOE experiments, indicated a trans relationship between the substituents at C12 and C14, demonstrating that the relative stereochemistry of aldol adduct 11 is 1,5-anti.

$J_{\text {H14ax-H13eq }}=2.3 \mathrm{~Hz}$
$J_{\mathrm{H} 14 \mathrm{ax}-\mathrm{H} 13 \mathrm{ax}}=12.1 \mathrm{~Hz}$
$J_{\text {H13ax- } \mathrm{H} 12 \mathrm{eq}}=6.4 \mathrm{~Hz}$
$J_{\text {H13ax- } \mathrm{H} 13 \mathrm{eq}}=13.4 \mathrm{~Hz}$

Scheme 3. Determination of the stereochemistry of aldol adduct 11 .

The next step was a Wacker oxidation of olefin 13 that afforded methyl ketone 6 in 71% yield. The subsequent aldol coupling of the boron enolate of methyl ketone 6 with aldehyde 7 provided aldol adduct 15 in 77% yield with a diastereoselectivity greater than 95:05 favoring the 1,5-anti isomer (Scheme 4). The β-hydroxy ketone $\mathbf{1 5}$ was stereoselectively reduced with $\mathrm{Me}_{4} \mathrm{NHB}(\mathrm{OAc})_{3}$ to afford diol 16 in 99% yield $(d r=90: 10,1,3-a n t i: 1,3-s y n) .{ }^{14}$ Compound 16 was protected with 2,2-DMP and PPTS to provide acetonide $\mathbf{1 7}$ (94\%).

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}$ presented chemical shifts of 24.8 and 24.9 ppm for the methyl groups and 100.2 ppm for the quaternary carbon, consistent with a trans acetonide according to the Rychnovsky method. Thus, the relative stereochemistry of diol 16 is 1,3 -anti. To determine the relative stereochemistry

Scheme 4. Synthesis of acetonide 17
of aldol adduct 15, we applied a methodology described by Kishi and co-workers. ${ }^{15}$ Removal of the acetonide of compound 16 with CSA gave tetraol 18 in 94% yield. ${ }^{13} \mathrm{C}$ NMR analysis of compound $\mathbf{1 8}$ revealed chemical shifts of 68.1 ppm for C 8 and 70.1 ppm for C 10 , which correspond to an anti/syn and syn/syn relationship, respectively, according to Kishi's database.

Removal of the PMB ether of compound 17 with DDQ provided alcohol 19 in 91% yield (Scheme 5). Swern oxidation yielded methyl ketone 20 (94\%), and aldehyde 5 was subsequently obtained via dihydroxylation followed by oxidative cleavage. ${ }^{16}$ Then, a Horner-Wadsworth-Emmons reaction using the Ando phosphonate $\mathbf{4}$ furnished ester $\mathbf{2}$ in 87% yield (three steps) with a diastereoselectivity of $88: 12$ favoring the Z isomer. ${ }^{17}$

The next step involved an aldol reaction between the boron enolate generated from methyl ketone 2 and aldehyde 3 (Scheme 6) followed by an Evans reduction to afford diol 21. Finally, removal of the acetonide groups and concomitant lactonization provided synthetic (-)-cryptocaryol A in less than 10% yield for 3 steps. ${ }^{18}$

Spectral data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and HRMS) for the synthetic sample were in complete agreement with those reported in the literature for the natural product (Table 1).

Conclusions

The asymmetric total synthesis of (-)-cryptocaryol A (1) was accomplished in 17 steps (longest linear sequence) from commercially available (R)-4-penten-2-ol (9). This approach is shorter than those previously described by Reddy and Mohapatra ${ }^{4}$ (28 steps) and Wang and O'Doherty ${ }^{5}$ (23 steps), although it is not the most efficient. The difficulties with the last three steps minimizes the efficiency of the approach. All six stereogenic centers were controlled by three boron-mediated aldol reaction-reduction sequences.

Experimental

magnetic stirring. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ and acetonitrile (MeCN) were distilled from CaH_{2}. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium/benzophenone. Acetic acid (AcOH) was fractionally distilled from acetic anhydride and chromium (VI) oxide. Methanol (MeOH) was distilled from $\mathrm{Mg}(\mathrm{OMe})_{2}$ and stored over molecular sieves. Dimethyl sulfoxide (DMSO) was distilled under reduced pressure from CaH_{2} and stored over molecular sieves. Camphorsulfonic acid (CSA) was recrystallized from ethyl acetate. Yields refer to homogeneous materials obtained after purification of reaction products by flash column chromatography using silica gel (200-400 mesh). Analytical thin-layer chromatography was performed on silicagel 60 and GF (5-40 $\mu \mathrm{m}$ thickness) plates, and visualization was accomplished using UV light and phosphomolybdic acid staining followed by heating. Optical rotations were measured with a sodium lamp and are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}{ }^{\left({ }^{\circ} \mathrm{C}\right)}(c$ $(\mathrm{g} / 100 \mathrm{~mL})$, solvent). Melting points are uncorrected. For infrared spectra (IR), wavelengths of maximum absorbance ($v_{\text {max }}$) are quoted in wavenumbers $\left(\mathrm{cm}^{-1}\right) .{ }^{1} \mathrm{H}$ and protondecoupled ${ }^{13} \mathrm{C}$ NMR spectra were acquired in $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CDCl}_{3}$, or $\mathrm{CD}_{3} \mathrm{OD}$ at $250 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $62.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, at $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, or at $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. Chemical shifts (δ) are reported in ppm using residual undeuterated solvent as an internal standard $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ at $7.16 \mathrm{ppm}, \mathrm{CDCl}_{3}$ at 7.25 ppm , $\mathrm{CD}_{3} \mathrm{OD}$ at 3.30 ppm , and TMS at 0.00 ppm for ${ }^{1} \mathrm{H}$ NMR spectra and $\mathrm{C}_{6} \mathrm{D}_{6}$ at $128.0 \mathrm{ppm}, \mathrm{CDCl}_{3}$ at $77.0 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}$ at 49.0 ppm for ${ }^{13} \mathrm{C}$ NMR spectra). Multiplicity data are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, ddd $=$ doublet of doublet of doublets, ddt $=$ doublet of doublet of triplets, dtd = doublet of triplet of doublets, dqd $=$ doublet of quartet of doublets, $\mathrm{m}=$ multiplet, and $\mathrm{br} \mathrm{m}=$ broad multiplet. The multiplicity is followed by the coupling constant(s) in Hz and integration. High-resolution mass spectra (HRMS) were measured using electrospray ionization (ESI). Samples were analyzed using a hybrid 7T Fourier transform ion cyclotron

Materials and methods. Unless noted, all reactions were performed under an atmosphere of argon with dry solvents and

Scheme 6. Completion of the synthesis of (-)-cryptocaryol A (1).
Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Chemical Shifts of Natural ${ }^{1}$ and Synthetic Cryptocaryol A (1)

Position	Natural Product ${ }^{1}$		Synthetic Product			
	$\delta^{13} \mathrm{C}$	$\delta^{1} \mathrm{H}$	multiplicity $(J$ in Hz $)$	$\delta^{13} \mathrm{C}^{a}$	$\delta{ }^{1} \mathrm{H}^{a}$	multiplicity $(J$ in Hz $)$
2	167.0			167.0		
3	121.4	5.97	$\mathrm{dd}(9.8,1.9)$	121.4	5.97	$\mathrm{dd}(9.8,1.9)$
4	148.6	7.04	ddd $(9.8,6.0,2.3)$	148.5	7.05	ddd $(9.4,5.9,2.4)$
5 a	31.0	2.45	m	30.9	2.45	m
5 b		2.36	$\mathrm{ddt}(18.5,11.8,2.6)$		2.36	$\mathrm{ddt}(18.5,11.7,2.5)$
6	76.6	4.71	m	76.6	4.71	m
7 a	43.9	1.94	ddd $(14.5,9.7,2.3)$	43.9	1.94	$\mathrm{ddd}(14.4,9.9,2.5)$
7 b		1.67	m		1.67	m
8	66.6	4.08	m	66.6	4.09	m
9	46.0	1.68	m	46.0	1.67	m
10	69.9	3.97	m	69.9	4.00	m
11	45.3	1.64	m	45.2	1.64	m
12	70.2	4.00	m	70.1	4.00	m
13	45.9	1.59	m	45.9	1.60	m
14	68.3	4.02	m	68.2	4.03	m
15	45.8	1.50	m	45.7	1.52	m
16	69.1	3.79	m	69.1	3.80	m
17	39.3	1.43	m	39.2	1.44	m
18	26.8	1.32	m	26.8	1.34	m
$19-28$	$30.5-31.0$	$1.27-1.29$	br s	$30.5-30.9$	$1.27-1.29$	br s
29	33.2	1.29	m	33.1	1.29	m
30	23.8	1.27	m	23.7	1.29	m
31	14.5	0.89	$\mathrm{t}(6.9)$	14.4	0.89	$\mathrm{t}(7.0)$

${ }^{a}$ Assignment based on COSY, HSQC, and HMBC experiments.
nanoelectrospray ionization source. The nanoelectrospray conditions were a flow rate of $200 \mathrm{~nL} \mathrm{~min}{ }^{-1}$, back pressure of approximately 0.4 psi , and electrospray voltages of $1.5-2.0 \mathrm{kV}$ over 60 s and were controlled by ChipSoft software. Mass resolution was fixed at 100,000 at m / z 400. Data were obtained as transient files (scans recorded in the time domain). All samples were evaluated in positive $\operatorname{ESI}(+)$ ion mode, and spectra were acquired in the $m / z 150-1500$ range. Samples were analyzed directly in a $10 \mu \mathrm{~g} \mathrm{~mL}$ - methanol solution without any sample treatment or dilution.

Synthesis

(\boldsymbol{R})-4-((4-Methoxybenzyl)oxy)pentan-2-one (8). To a solution of alcohol 9 ($1.2 \mathrm{~mL}, 11.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at room temperature was added p-methoxybenzyl-2,2,2-trichloroacetimidate $(4.8 \mathrm{~mL}, 23.3 \mathrm{mmol})$ and CSA ($269 \mathrm{mg}, 1.16 \mathrm{mmol}$). The reaction mixture was stirred under the same conditions for 15 h before being quenched by the addition of saturated aqueous solution of NaHCO_{3}. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Compound $\mathbf{1 0}$ was
partially purified by flash column chromatography using a solution of hexane/ethyl acetate (20:80) as the eluent.
A mixture of $\mathrm{PdCl}_{2}(206 \mathrm{mg}, 1.16 \mathrm{mmol})$ and $\mathrm{CuCl}(1.15 \mathrm{~g}, 11.6$ $\mathrm{mmol})$ in DMF $(75 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ was purged with O_{2} with vigorous stirring to activate the reaction medium. The reaction mixture was stirred for 30 min , yielding a deep-green mixture. After this period, a solution of olefin $\mathbf{1 0}(11.6 \mathrm{mmol})$ in DMF $(6 \mathrm{~mL})$ was added, and the reaction medium was stirred vigorously for 12 h under an O_{2} atmosphere. The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$, brine $(2 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using a solution of hexane/ethyl acetate $(80: 20)$ as the eluent to provide methyl ketone $8(1.36 \mathrm{~g}, 6.12$ mmol, 53%) (2 steps) as a yellow oil. $\mathrm{R}_{f} 0.31$ ($80: 20$ hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}-28\left(c 1.3\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $1.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{dd}, J=5.2$ and 15.8 Hz , $1 \mathrm{H}), 2.44(\mathrm{dd}, J=7.3$ and $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.97(\mathrm{~m}$,
$1 \mathrm{H}), 4.25(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.82$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 19.9$ $\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{3}\right), 50.6\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{3}\right), 70.5\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{CH})$, $114.0(\mathrm{CH}), 129.3(\mathrm{CH}), 131.4\left(\mathrm{C}_{0}\right), 159.6\left(\mathrm{C}_{0}\right), 205.2\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 2970,2934,2905,2871,2838,1712,1613,1513,1464$, 1372, 1245, 1173, 1087, 1032, 820.
(2R,6R)-6-Hydroxy-2-((4-methoxybenzyl)oxy)non-8-en-4one (11). To a solution of methyl ketone $\mathbf{8}(1.06 \mathrm{~g}, 4.77 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ at $-30{ }^{\circ} \mathrm{C}$ was added $(c-\mathrm{Hex})_{2} \mathrm{BCl}(2.1 \mathrm{~mL}$, $9.54 \mathrm{mmol})$ dropwise, followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}$ (1.4 $\mathrm{mL}, 10.0 \mathrm{mmol}$) dropwise, which resulted in the formation of a white cloud. The mixture was stirred under the same conditions for 30 min . The reaction medium was then cooled to $-78^{\circ} \mathrm{C}$, and a solution of aldehyde 7Erro! Indicador não definido. ($\sim 14.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$ was added over 15 min using a syringe pump. The resulting mixture was stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$, followed by quenching via the addition of pH 7 phosphate buffer (10 mL). The mixture was warmed to $0^{\circ} \mathrm{C}$, and MeOH $(29 \mathrm{~mL})$ and a solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(10 \mathrm{~mL})$ in MeOH (19 mL) were added dropwise. The reaction medium was stirred for 1 h under the same conditions. The volatiles were removed under reduced pressure, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(1 \times)$, brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using a solution of hexane/ethyl acetate (70:30) as the eluent to provide the aldol adduct 11 (1.18 g , $4.04 \mathrm{mmol}, d r=93: 07,85 \%)$ as a colorless oil. The diastereoisomers were not separated at this stage. $\mathrm{R}_{f} 0.30$ (70:30 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}-43$ (c 2.7 in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{dd}, J=4.9$ and $15.6,1 \mathrm{H}), 2.03-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.25$ $(\mathrm{m}, 2 \mathrm{H}), 2.45(\mathrm{dd}, J=7.9$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-5.02(\mathrm{~m}, 2 \mathrm{H})$, 5.77 (ddt, $J=7.0,9.5$ and $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.81(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.21 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 19.7\left(\mathrm{CH}_{3}\right)$, $41.4\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{3}\right), 70.6\left(\mathrm{CH}_{2}\right)$, $71.4(\mathrm{CH}), 114.0(\mathrm{CH}), 117.3\left(\mathrm{CH}_{2}\right), 129.5(\mathrm{CH}), 131.1\left(\mathrm{C}_{0}\right)$, $135.1(\mathrm{CH}), 159.7\left(\mathrm{C}_{0}\right), 209.4\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3436$, 3076, 2972, 2932, 2839, 1710, 1642, 1613, 1514, 1376, 1302, 1248, 1174, 1034, 918, 823. HRMS (ESI FT-ICR-MS) m/z: [M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na} 315.15723$, Found 315.15638.
(4R,6R,8R)-8-(4-Methoxybenzyloxy)non-1-ene-4,6-diol (12). To a solution of aldol adduct $\mathbf{1 1}(1.18 \mathrm{~g}, 4.04 \mathrm{mmol})$ in THF: MeOH (4:1) (20 mL) at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{2} \mathrm{BOMe}(0.64$ $\mathrm{mL}, 4.85 \mathrm{mmol})$. The solution was stirred for 15 min under these conditions, and $\mathrm{LiBH}_{4}(2.4 \mathrm{~mL}, 4.85 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) was added. The reaction was stirred for 1.5 h and then warmed to $-40^{\circ} \mathrm{C}$. The reaction was quenched by the addition of pH 7 phosphate buffer (55 mL) and $\mathrm{MeOH}(100 \mathrm{~mL})$. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(40 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 1 h , and the volatiles were removed under reduced pressure. The aqueous layer was extracted with EtOAc ($4 \times$). The combined organic
layers were washed with saturated aqueous solution of NaHCO_{3} $(1 \times)$, brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was dissolved in MeOH , and the solvent was removed under reduced pressure in a $60^{\circ} \mathrm{C}$ bath to remove chelated boron species. This procedure was repeated 4 times to provide the diol $\mathbf{1 2}(1.18 \mathrm{~g}, 4.01 \mathrm{mmol}, d r>$ $95: 05,99 \%$) as a yellow oil. $\mathrm{R}_{f} 0.52$ (50:50 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}-35$ (c 2.3 in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.53(\mathrm{~m}, 2 \mathrm{H})$, 1.63 (ddd, $J=2.9,7.6$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (ddd, $J=3.5,8.4$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.28(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.94(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.38$ $(\mathrm{d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.12(\mathrm{~m}$, $2 \mathrm{H}), 5.74-5.90$ (ddt, $J=7.1,10.2$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.90$ $(\mathrm{m}, 2 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $19.2\left(\mathrm{CH}_{3}\right), 42.2\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 43.1\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right)$, $70.0(\mathrm{CH}), 70.2\left(\mathrm{CH}_{2}\right), 71.7(\mathrm{CH}), 72.2(\mathrm{CH}), 113.9(\mathrm{CH})$, $117.5\left(\mathrm{CH}_{2}\right), 129.5(\mathrm{CH}), 130.2\left(\mathrm{C}_{0}\right), 134.7(\mathrm{CH}), 159.3\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3401,3075,2967,2936,2911,2870,2839$, $1641,1613,1587,1514,1441,1302,1249,1175,1110,1077$, 1035, 917, 821. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na} 317.17288$, Found 317.17204.
(4R,6S)-4-Allyl-6-((R)-2-((4-methoxybenzyl)oxy)propyl)-2,2-dimethyl-1,3-dioxane (13). To a solution of diol 12 (2.56 g , 8.69 mmol) in 2,2-DMP (122 mL) was added CSA (202 mg , 0.869 mmol). The reaction medium was stirred for 13 h . The solution was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous solution of NaHCO_{3}. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using a solution of hexane/ethyl acetate $(90: 10)$ as the eluent to provide acetonide $13(2.59 \mathrm{~g}, 7.76 \mathrm{mmol}, 89 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.51$ (90:10 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}-41$ (c 2.7 in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 1.08-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{dt}, J=2.5$ and 13.0 $\mathrm{Hz}, 1 \mathrm{H}), 1.49-1.62(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.32(\mathrm{~m}$, $1 \mathrm{H}), 3.72-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{dtd}, J=2.3,6.3$ and $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{ddt}, J=2.8,8.8$ and $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.10(\mathrm{~m}, 2 \mathrm{H})$, $5.79(\mathrm{ddt}, J=7.0,10.0$ and $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.88(\mathrm{~m}, 2 \mathrm{H})$, 7.24-7.26 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.9\left(\mathrm{CH}_{3}\right)$, $20.1\left(\mathrm{CH}_{3}\right), 30.3\left(\mathrm{CH}_{3}\right), 36.9\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right)$, $55.3(\mathrm{CH}), 65.5(\mathrm{CH}), 68.7(\mathrm{CH}), 70.5\left(\mathrm{CH}_{2}\right), 70.7(\mathrm{CH}), 98.5$ $\left(\mathrm{C}_{0}\right), 113.7(\mathrm{CH}), 117.0\left(\mathrm{CH}_{2}\right), 129.4(\mathrm{CH}), 131.0\left(\mathrm{C}_{0}\right), 134.2$ $\left(\mathrm{CH}_{2}\right), 159.1\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3075,2993,2966,2941$, 2912, 2867, 2837, 1642, 1614, 1587, 1514, 1465, 1435, 1379, 1302, 1248, 1200, 1172, 1154, 1111, 1038, 948, 821, 753. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na} 357.20418$, Found 357.20343.
(R)-1-((2R,4R,6R)-2-(4-Methoxyphenyl)-6-methyl-1,3-
dioxan-4-yl)pent-4-en-2-ol (14). To a solution of diol 12 (20 $\mathrm{mg}, 68 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added activated $4 \AA$ molecular sieves (21 mg). After 15 min , the mixture was cooled to $-10^{\circ} \mathrm{C}$, and DDQ ($19 \mathrm{mg}, 85 \mu \mathrm{~mol}$) was added. The reaction
medium was stirred for 5 min at $-10^{\circ} \mathrm{C}$ and 2 h at $0^{\circ} \mathrm{C}$. The crude product was then purified by flash column chromatography using a solution of hexane/ethyl acetate (60:40) as the eluent to provide the acetal 14 ($13 \mathrm{mg}, 44 \mu \mathrm{~mol}$, 65%) as a yellow oil. $\mathrm{R}_{f} 0.59$ (60:40 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}+4\left(c 1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 1.28(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{dt}, J=3.5$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01 (ddd, $J=6.4,11.6$ and $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.31(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{ddd}, J=9.0,11.0$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (br s, 1 H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.92-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dqd}, J=2.4$, 6.1 and $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.48(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.16(\mathrm{~m}, 2 \mathrm{H})$, 5.85 (ddt, $J=7.2,10.2$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.85-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9\left(\mathrm{CH}_{3}\right), 36.1\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right)$, $68.8(\mathrm{CH}), 70.8(\mathrm{CH}), 73.0(\mathrm{CH}), 94.6(\mathrm{CH}), 113.8(\mathrm{CH}), 117.8$ $\left(\mathrm{CH}_{2}\right), 127.5(\mathrm{CH}), 131.0\left(\mathrm{C}_{0}\right), 134.6(\mathrm{CH}), 160.0\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3460,3075,2973,2936,2919,2868,1641$, $1615,1590,1518,1442,1398,1377,1304,1249,1172,1118$, 1034, 995, 920, 826, 777. HRMS (ESI FT-ICR-MS) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na} 315.15723$, Found 315.15641.
1-((4S,6S)-6-((R)-2-(4-Methoxybenzyloxy)propyl)-2,2-
dimethyl-1,3-dioxan-4-yl)propan-2-one (6). A mixture of $\mathrm{PdCl}_{2}(157 \mathrm{mg}, 0.886 \mathrm{mmol})$ and $\mathrm{CuCl}(877 \mathrm{mg}, 8.86 \mathrm{mmol})$ in DMF (55 mL) and $\mathrm{H}_{2} \mathrm{O}(9 \mathrm{~mL})$ was purged with O_{2} under vigorous stirring to activate the reaction medium. The reaction mixture was stirred for 30 min to obtain a deep-green mixture. A solution of olefin $13(2.96 \mathrm{~g}, 8.86 \mathrm{mmol})$ in DMF (7 mL) was then added, and the reaction medium was stirred vigorously for 12 h under an O_{2} atmosphere. The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$, brine (2 \times), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using a solution of hexane/ethyl acetate (70:30) as the eluent to provide methyl ketone $6(2.20 \mathrm{~g}, 6.28$ $\mathrm{mmol}, 71 \%$) as a colorless oil. $\mathrm{R}_{f} 0.45$ (70:30 hexane/ethyl acetate). $[\alpha]_{D}{ }^{20}-47\left(c 1.4\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.06-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.64(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.40$ $(\mathrm{dd}, J=5.1$ and $16.0 \mathrm{HZ}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=7.3$ and 16.0 Hz , $1 \mathrm{H}), 3.68-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.07-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.26-$ $4.33(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.85-6.90 (m, 2H), 7.23-7.27 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (62.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.8\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 30.1\left(\mathrm{CH}_{3}\right), 31.0$ $\left(\mathrm{CH}_{3}\right), 37.1\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 65.4$ $(\mathrm{CH}), 65.7(\mathrm{CH}), 70.5\left(\mathrm{CH}_{2}\right), 70.6(\mathrm{CH}), 98.6\left(\mathrm{C}_{0}\right), 113.7(\mathrm{CH})$, $129.3(\mathrm{CH}), 131.0\left(\mathrm{C}_{0}\right), 159.1\left(\mathrm{C}_{0}\right), 206.9\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 2993,2965,2940,2912,2838,1716,1613,1595$, 1587, 1514, 1465, 1423, 1380, 1356, 1302, 1249, 1200, 1172, 1036, 842, 823, 753. HRMS (ESI FT-ICR-MS) m/z: [M + Na] ${ }^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na} 373.19909$, Found 373.19834.
(S)-4-Hydroxy-1-((4S,6S)-6-((R)-2-((4-
methoxybenzyl)oxy)propyl)-2,2-dimethyl-1,3-dioxan-4-
yl)hept-6-en-2-one (15). To a solution of methyl ketone 6 (600 $\mathrm{mg}, 1.71 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL})$ at $-30{ }^{\circ} \mathrm{C}$ was added (c -

Hex) ${ }_{2} \mathrm{BCl}(0.75 \mathrm{~mL}, 3.42 \mathrm{mmol})$ dropwise, followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.50 \mathrm{~mL}, 3.59 \mathrm{mmol})$ dropwise, which resulted in the formation of a white cloud. The mixture was stirred under the same conditions for 30 min . After this period, the reaction medium was cooled to $-78^{\circ} \mathrm{C}$, and a solution of freshly prepared aldehyde 7Erro! Indicador não definido. ($\sim 5.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 2 \mathrm{~mL})$ was added over 15 min using a syringe pump. The resulting mixture was stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$ and then quenched by the addition of pH 7 phosphate buffer (3.3 mL). The mixture was warmed to $0^{\circ} \mathrm{C}$, and MeOH (10 $\mathrm{mL})$ and a solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(3.3 \mathrm{~mL})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ were added dropwise. The reaction medium was stirred for 1 h under the same conditions. The volatiles were removed under reduced pressure, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(1 \times)$, brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using a solution of hexane/ethyl acetate (70:30) as the eluent to provide aldol adduct $15(551 \mathrm{mg}, 1.31 \mathrm{mmol}, d r>95: 05,77 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.24$ (70:30 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}$ -24 (c 2.3 in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.99-1.08$ $(\mathrm{m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=6.1,3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.48-$ $1.57(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{dd}, J=4.2$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.10(\mathrm{~m}$, $1 \mathrm{H}), 2.13-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{dd}, J=8.1$ and $15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.82(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.10(\mathrm{~m}$, $1 \mathrm{H}), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.82(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.87$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.29(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 19.9$ $\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 30.4\left(\mathrm{CH}_{3}\right), 37.4\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 45.0$ $\left(\mathrm{CH}_{2}\right), 49.7\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{3}\right), 65.7(\mathrm{CH}), 66.1$ $(\mathrm{CH}), 67.2(\mathrm{CH}), 70.6\left(\mathrm{CH}_{2}\right), 70.8(\mathrm{CH}), 98.8\left(\mathrm{C}_{0}\right), 114.0(\mathrm{CH})$, $117.3\left(\mathrm{CH}_{2}\right), 129.5(\mathrm{CH}), 131.8\left(\mathrm{C}_{0}\right), 135.1(\mathrm{CH}), 159.7\left(\mathrm{C}_{0}\right)$, $208.6\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3349,3076,2993,2966,2939$, 2913, 2838, 1711, 1641, 1613, 1587, 1514, 1465, 1380, 1302, 1249, 1201, 1171, 1112, 1058, 1036, 944, 875, 822, 753. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na} 443.24096$, Found 443.24006 .
(2R,4S)-1-((4R,6S)-6-((R)-2-(4-Methoxybenzyloxy)propyl)-2,2-dimethyl-1,3-dioxan-4-yl)hept-6-ene-2,4-diol (16). To a slurry of $\mathrm{Me}_{4} \mathrm{NHB}(\mathrm{OAc})_{3}(1.65 \mathrm{~g}, 6.28 \mathrm{mmol})$ in $\mathrm{MeCN}(4.5$ mL) was added $\mathrm{AcOH}(4.5 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min and then cooled to $-30^{\circ} \mathrm{C}$. Then, a solution of aldol adduct 15 ($662 \mathrm{mg}, 1.57 \mathrm{mmol}$) in MeCN (4.5 mL) was added dropwise, followed by the addition of a solution of CSA ($184 \mathrm{mg}, 0.79 \mathrm{mmol}$) in $\mathrm{MeCN}(4.5 \mathrm{~mL})$ and $\mathrm{AcOH}(4.5 \mathrm{~mL})$. The reaction medium was warmed to $-20^{\circ} \mathrm{C}$ and stirred for 18 h . The mixture was poured into an Erlenmeyer flask containing saturated aqueous solution of NaHCO_{3} (134 mL). After gas liberation ceased, saturated aqueous solution of sodium potassium tartrate (134 mL) and $\mathrm{Et}_{2} \mathrm{O}(190 \mathrm{~mL})$ were added. The mixture was stirred vigorously for 3 h . Then, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure to provide diol 16 (660
$\mathrm{mg}, 1.56 \mathrm{mmol}, d r=90: 10,99 \%)$ as a colorless oil. The diastereoisomers were not separated at this stage. $\mathrm{R}_{f} 0.24$ (60:40 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}-24$ (c 1.9 in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.25(\mathrm{~m}$, $1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.59$ $(\mathrm{m}, 5 \mathrm{H}), 1.72(\mathrm{dt}, J=9.9$ and $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.26(\mathrm{~m}, 2 \mathrm{H})$, 3.71-3.77 (m, 1H), 3.78 ($\mathrm{s}, 3 \mathrm{H}), 3.93-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.18$ $(\mathrm{m}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.07-5.12 (m, 2H), $5.82(\mathrm{ddt}, J=7.0,10.2$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.84-6.87 (m, 2H), 7.22-7.24 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 20.0\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 30.2\left(\mathrm{CH}_{3}\right), 37.6\left(\mathrm{CH}_{2}\right), 42.1$ $\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 42.7\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 65.4$ $(\mathrm{CH}), 67.9(\mathrm{CH}), 69.6(\mathrm{CH}), 70.5\left(\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right), 70.7(\mathrm{CH})$, $98.7\left(\mathrm{C}_{0}\right), 113.8(\mathrm{CH}), 117.6\left(\mathrm{CH}_{2}\right), 129.4(\mathrm{CH}), 130.9\left(\mathrm{C}_{0}\right)$, $134.9(\mathrm{CH}), 159.1\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3436,3075,2993$, 2941, 2915, 1641, 1614, 1587, 1514, 1464, 1434, 1380, 1302, 1249, 1201, 1168, 1110, 1060, 1036, 941, 872, 824, 753, 737. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na} 445.25661$, Found 445.25562.
(4S,6R)-4-Allyl-6-(($(4 S, 6 S)-6-((R)-2-((4-$
methoxybenzyl)oxy)propyl)-2,2-dimethyl-1,3-dioxan-4-
yl)methyl)-2,2-dimethyl-1,3-dioxane (17). To a solution of diol 16 ($794 \mathrm{mg}, 1.88 \mathrm{mmol}$) in 2,2-DMP (30 mL) was added PPTS ($236 \mathrm{mg}, 0.940 \mathrm{mmol}$). The reaction medium was stirred for 13 h . The mixture was filtered through silica and Celite, and the residue was washed with EtOAc $(5 \times$) and concentrated under reduced pressure. The residue was purified by flash column chromatography using a solution of hexane/ethyl acetate (80:20) as the eluent to provide acetonide $17(818 \mathrm{mg}$, $1.77 \mathrm{mmol}, 94 \%$) as a colorless oil. $\mathrm{R}_{f} 0.69$ ($80: 20$ hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}-15$ (c 1.9 in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.12-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.62$ $(\mathrm{m}, 6 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.33$ $(\mathrm{m}, 1 \mathrm{H}), 3.74-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.88(\mathrm{~m}, 1 \mathrm{H})$, 3.92-4.01 (m, 1H), 4.08-4.12 (m, 1H), $4.34(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{ddt}, J=6.9$, 10.2 and $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.9\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 24.8$ $\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 30.3\left(\mathrm{CH}_{3}\right), 37.1\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 40.1$ $\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 62.8(\mathrm{CH}), 65.3$ $(\mathrm{CH}), 65.7(\mathrm{CH}), 66.1(\mathrm{CH}), 70.6\left(\mathrm{CH}_{2}\right.$ and CH$), 98.4\left(\mathrm{C}_{0}\right)$, $100.2\left(\mathrm{C}_{0}\right), 113.8(\mathrm{CH}), 116.8\left(\mathrm{CH}_{2}\right), 129.4(\mathrm{CH}), 131.0\left(\mathrm{C}_{0}\right)$, $134.4(\mathrm{CH}), 159.1\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3075,2990,2941$, 2917, 1643, 1614, 1587, 1515, 1464, 1379, 1302, 1248, 1225, 1201, 1172, 1111, 1058, 1038, 996, 968, 960, 946, 915, 975, 822, 738. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Na} 485.28791$, Found 485.28718.
(4S,6R,8R,10R,12R)-12-((4-Methoxybenzyl)oxy)tridec-1-ene-4,6,8,10-tetraol (18). To a solution of compound 16 (21 $\mathrm{mg}, 50 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1.3 \mathrm{~mL})$ was added a catalytic amount of CSA. The reaction medium was stirred for 1.5 h . The reaction medium was concentrated under reduced pressure, and the residue was purified by flash column chromatography using a gradient of ethyl acetate/hexane $(80: 20)$ in ethyl acetate as the eluent to provide tetraol $18(18 \mathrm{mg}, 47 \mu \mathrm{~mol}, 94 \%)$ as an
amorphous white solid. $\mathrm{R}_{f} 0.36$ (80:20 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}-15\left(c 0.9\right.$ in MeOH). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $1.21(\mathrm{~d}, J=6.26 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.69(\mathrm{~m}, 8 \mathrm{H}), 2.20-2.24(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.93-4.03(\mathrm{~m}, 3 \mathrm{H}), 4.39$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.08(\mathrm{~m}$, $2 \mathrm{H}), 5.85(\mathrm{ddt}, J=7.1,10.2$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.89(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 20.5$ $\left(\mathrm{CH}_{3}\right), 43.8\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{CH}_{2}\right), 45.9\left(\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2}\right), 46.0$ $\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right), 68.1(\mathrm{CH}$ and CH$), 68.7(\mathrm{CH}), 70.1(\mathrm{CH})$, $71.6\left(\mathrm{CH}_{2}\right), 73.3(\mathrm{CH}), 114.7(\mathrm{CH}), 117.3\left(\mathrm{CH}_{2}\right), 130.6(\mathrm{CH})$, $132.1\left(\mathrm{C}_{0}\right), 136.4(\mathrm{CH}), 160.8\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3374$, 2938, 2911, 2838, 1641, 1613, 1587, 1514, 1441, 1375, 1338, 1302, 1265, 1247, 1174, 1147, 1108, 1068, 1034, 917, 846, 821, 734, 703. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na} 405.22531$, Found 405.22465.
(R)-1-((4S,6S)-6-(((4R,6S)-6-Allyl-2,2-dimethyl-1,3-dioxan-

4-yl)methyl)-2,2-dimethyl-1,3-dioxan-4-yl)propan-2-ol (19). To a solution of PMB ether 17 ($765 \mathrm{mg}, 1.65 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:phosphate buffer $\mathrm{pH} 7(9: 1)(33 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DDQ ($563 \mathrm{mg}, 2.48 \mathrm{mmol}$). The mixture was stirred for 1 h under the same conditions, followed by quenching via the addition of a solution of $\mathrm{H}_{2} \mathrm{O}$:saturated aqueous solution of $\mathrm{NaHCO}_{3}(1: 1)(7 \mathrm{~mL})$. The resulting mixture was filtered over Celite washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times)$ and concentrated under reduced pressure. The residue was purified by flash column chromatography using hexane/ethyl acetate (70:30) as the eluent to provide alcohol $19(514 \mathrm{mg}, 1.50 \mathrm{mmol}, 91 \%)$ as a yellow oil. $\mathrm{R}_{f} 0.33$ (70:30 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}+4$ (c 1.9 in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.49(\mathrm{~m}, 5 \mathrm{H})$, $1.59-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.31(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.81-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.91-4.06(\mathrm{~m}$, $3 \mathrm{H}), 4.16-4.17(\mathrm{~m}, 1 \mathrm{H}), 5.01-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{ddt}, J=6.9$, 10.1 and $17.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.6$ $\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 30.2\left(\mathrm{CH}_{3}\right), 36.0$ $\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 43.7\left(\mathrm{CH}_{2}\right), 62.8$ $(\mathrm{CH}), 64.6(\mathrm{CH}), 65.7(\mathrm{CH}), 66.1(\mathrm{CH}), 67.1(\mathrm{CH}), 98.6\left(\mathrm{C}_{0}\right)$, $100.2\left(\mathrm{C}_{0}\right), 116.9\left(\mathrm{CH}_{2}\right), 134.4(\mathrm{CH})$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3470$, 3077, 2990, 2941, 1820, 1743, 1693, 1603, 1461, 1444, 1380, $1266,1225,1201,1170,1113,1018,998,970,948,916,875$, 814, 738, 703. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na} 365.23039$, Found 365.22978.
1-((4R,6R)-6-(((4R,6S)-6-Allyl-2,2-dimethyl-1,3-dioxan-4-
yl)methyl)-2,2-dimethyl-1,3-dioxan-4-yl)propan-2-one (20). To a solution of oxalyl chloride ($0.11 \mathrm{~mL}, 1.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DMSO $(0.19 \mathrm{~mL}, 2.71$ $\mathrm{mmol})$ dropwise. The reaction medium was stirred for 30 min , followed by the dropwise addition of a solution of alcohol 19 ($309 \mathrm{mg}, 0.902 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$. The solution was stirred for 30 min at $-78{ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(0.63 \mathrm{~mL}, 4.51 \mathrm{mmol})$ was added dropwise, and the resulting slurry was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$, brine $(2 \times)$, dried over MgSO_{4}, filtered, and concentrated under
reduced pressure. The residue was purified by flash column chromatography using hexane/ethyl acetate $(70: 30)$ as the eluent to provide methyl ketone 20 ($291 \mathrm{mg}, 0.85 \mathrm{mmol}, 94 \%$) as a colorless oil. $\mathrm{R}_{f} 0.43$ (70:30 hexane/ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}$ +2.1 (c 2.4 in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.14(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.47(\mathrm{~m}, 1 \mathrm{H})$, 1.54-1.60 (m, 3H), 1.76-1.81 (m, 1H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.25-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=5.5$ and $16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{dd}, J=7.0$ and $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.90-$ $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.31(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.08$ $(\mathrm{m}, 2 \mathrm{H}), 5.77(\mathrm{ddt}, J=7.0,10.4$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.7\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 30.1$ $\left(\mathrm{CH}_{3}\right), 31.1\left(\mathrm{CH}_{3}\right), 36.4\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 42.0$ $\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 65.4(\mathrm{CH}), 65.7(\mathrm{CH}), 66.1$ $(\mathrm{CH}), 98.6\left(\mathrm{C}_{0}\right), 100.2\left(\mathrm{C}_{0}\right), 116.9\left(\mathrm{CH}_{2}\right), 134.4(\mathrm{CH}), 207.0$ (C_{0}). IR (film) $v_{\max } / \mathrm{cm}^{-1} 3077,2990,2941,2920,1716,1643$, 1430, 1379, 1223, 1199, 1169, 1125, 1101, 1047, 997, 935, 916, 878, 834, 700, 658, 628, 596. HRMS (ESI FT-ICR-MS) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na} 363.21474$, Found 363.21400 .
(Z)-Ethyl 4-((4S,6R)-6-(($4 R, 6 R)$-2,2-dimethyl-6-(2-oxopropyl)-1,3-dioxan-4-yl)methyl)-2,2-dimethyl-1,3-
dioxan-4-yl)but-2-enoate (2). To a solution of olefin 20 (0.16 $\mathrm{g}, 0.47 \mathrm{mmol})$ in a mixture of $t-\mathrm{BuOH}:$ THF: $\mathrm{H}_{2} \mathrm{O}(10: 2: 1)(2.34$ $\mathrm{mL})$ was added $\mathrm{NMO}(0.11 \mathrm{~g}, 0.94 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(0.06 \mathrm{~mL}$, $9.4 \mu \mathrm{~mol}, 4 \% \mathrm{wt}$. in $\mathrm{H}_{2} \mathrm{O}$). The reaction medium was stirred for 3 h . The reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (250 mg) and then diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc $(6 \times)$. The combined organic layers were washed with brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure to provide the corresponding diol, which was used in the next step without further purification.
To a solution of the previously prepared diol in a mixture of THF:phosphate buffer pH 7 (2:1) (4.8 mL) was added NaIO_{4} $(0.20 \mathrm{~g}, 0.94 \mathrm{mmol})$. The reaction medium was stirred for 15 min . The layers were separated, and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure, providing aldehyde $\mathbf{5}$, which was used in the next step without further purification.
To a slurry of $\mathrm{NaH}(44 \mathrm{mg}, 1.1 \mathrm{mmol}, 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil) in THF (6 mL) at $0^{\circ} \mathrm{C}$ was added a solution of phosphonate 4 $(0,49 \mathrm{~g}, 1.4 \mathrm{mmol})$ in THF (4.3 mL). The mixture was stirred for 10 min under the same conditions, and the temperature was cooled to $-78{ }^{\circ} \mathrm{C}$. Then, a solution of aldehyde 5 in THF (4.0 mL) was added dropwise, and the reaction medium was stirred for 30 min . The mixture was warmed to $0^{\circ} \mathrm{C}$, and the reaction was quenched by the addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(21 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic layers were washed with brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using hexane/dichloromethane/ethyl acetate ($6: 2: 2$) as the eluent to provide olefin $2(0.17 \mathrm{~g}, 0.41 \mathrm{mmol}, d r=88: 12,87 \%)$ in 3
steps as a colorless oil. The isomers were easily separated at this stage. $\mathrm{R}_{f} 0.44$ (60:20:20 hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate). $[\alpha]_{\mathrm{D}}{ }^{20}+13\left(c 2.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14$ $(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.40$ $(\mathrm{s}, 3 \mathrm{H}), 1.45-1.84(\mathrm{~m}, 5 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{dd}, J=5.4$ and $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.88-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.82-4.04$ $(\mathrm{m}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.34(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.84$ $(\mathrm{dt}, J=1.6$ and $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=7.0$ and 11.7 Hz , $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right)$, $24.7\left(\mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{3}\right)$, $30.1\left(\mathrm{CH}_{3}\right)$, $31.1\left(\mathrm{CH}_{3}\right), 34.9\left(\mathrm{CH}_{2}\right), 36.4$ $\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{2}\right), 59.8\left(\mathrm{CH}_{2}\right), 62.8$ $(\mathrm{CH}), 65.4(\mathrm{CH}), 65.6(\mathrm{CH}), 66.1(\mathrm{CH}), 98.6\left(\mathrm{C}_{0}\right), 100.3\left(\mathrm{C}_{0}\right)$, $121.0(\mathrm{CH}), 146.1(\mathrm{CH}), 166.3\left(\mathrm{C}_{0}\right), 207.0\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 2999,2941,2921,1716,1645,1417,1379,1224$, 1174, 1100, 1035, 1008, 937, 876, 823. HRMS (ESI FT-ICRMS) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na} 435.23587$, Found 435.23490.
(-)-Cryptocaryol A (1). To a solution of methyl ketone 2 (148 $\mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(17 \mathrm{~mL})$ at $-30{ }^{\circ} \mathrm{C}$ was added ($c-$ $\mathrm{Hex})_{2} \mathrm{BCl}(0.16 \mathrm{~mL}, 0.72 \mathrm{mmol})$ dropwise, followed by the dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.76 \mathrm{mmol})$, which resulted in the formation of a white cloud. The mixture was stirred under the same conditions for 30 min . After this period, the reaction medium was cooled to $-78^{\circ} \mathrm{C}$, and a solution of aldehyde $3(168 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ was added dropwise. The resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, and the reaction was then quenched by the addition of pH 7 phosphate buffer (1 mL). The mixture was warmed to $0^{\circ} \mathrm{C}$, and $\mathrm{MeOH}(2 \mathrm{~mL})$ and a solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ in MeOH $(1.5 \mathrm{~mL})$ were added dropwise. The reaction medium was stirred for 1 h under the same conditions. The volatiles were removed under reduced pressure, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(1 \times)$, brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The corresponding aldol adduct was partially purified by flash column chromatography using a solution of hexane/dichloromethane/ethyl acetate (70:10:20) as the eluent. To a slurry of $\mathrm{Me}_{4} \mathrm{NHB}(\mathrm{OAc})_{3}(758 \mathrm{mg}, 2.88 \mathrm{mmol})$ in MeCN $(1.0 \mathrm{~mL})$ was added $\mathrm{AcOH}(1.0 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min before being cooled to $-30^{\circ} \mathrm{C}$. Then, a solution of the previously prepared aldol adduct (0.36 $\mathrm{mmol})$ in $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added dropwise, followed by the addition of a solution of CSA ($42 \mathrm{mg}, 0.18 \mathrm{mmol}$) in MeCN $(1.0 \mathrm{~mL})$ and $\mathrm{AcOH}(1.0 \mathrm{~mL})$. The reaction medium was warmed to $-20^{\circ} \mathrm{C}$ and stirred for 18 h . The mixture was poured into an Erlenmeyer flask containing saturated aqueous solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. After gas liberation ceased, saturated aqueous solution of sodium potassium tartrate (30 mL) and $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$ were added. The mixture was stirred vigorously for 3 h . Then, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times)$. The combined organic layers were washed with brine $(1 \times)$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The diol 21 was partially purified by flash column chromatography using hexane/ethyl acetate $(60: 40)$ as the eluent.

To a solution of compound $21(0.36 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added a catalytic amount of CSA. The reaction medium was stirred for 1 h . The reaction medium was concentrated under reduced pressure, and the residue was purified by flash column chromatography using a solution of chloroform/methanol (90:10) as the eluent to provide (-)cryptocaryol A (1) ($3 \mathrm{mg}, 6 \mu \mathrm{~mol}$, less than 10%) as an amorphous white solid. $\mathrm{R}_{f} 0.31\left(90: 10 \mathrm{CHCl}_{3} / \mathrm{MeOH}\right) .[\alpha]_{\mathrm{D}}{ }^{20}$ $-8\left(c 0.06\right.$ in MeOH). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 0.89(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.29(\mathrm{br} \mathrm{m}, 24 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}$, $2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 3 \mathrm{H})$, 1.94 (ddd, $J=2.5,9.9$ and $14.4,1 \mathrm{H}), 2.36(\mathrm{ddt}, J=2.5,11.7$ and $18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H})$, $4.03(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=1.9$ and $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=2.4,5.9$ and $9.4,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}) \delta 14.4\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 30.5-$ $30.9\left(10 \mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 43.9\left(\mathrm{CH}_{2}\right), 45.2\left(\mathrm{CH}_{2}\right)$, $45.7\left(\mathrm{CH}_{2}\right), 45.9\left(\mathrm{CH}_{2}\right), 46.0\left(\mathrm{CH}_{2}\right), 66.6(\mathrm{CH}), 68.2(\mathrm{CH}), 69.1$ $(\mathrm{CH}), 69.9(\mathrm{CH}), 70.1(\mathrm{CH}), 76.6(\mathrm{CH}), 121.4(\mathrm{CH}), 148.5$ (CH), $167.0\left(\mathrm{C}_{0}\right)$. IR (film) $v_{\max } / \mathrm{cm}^{-1} 3367,2915,2849,1716$, 1595, 1453, 1395, 1326, 1266, 1139, 1092, 1037, 844, 809, 722. HRMS (ESI FT-ICR-MS) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{30} \mathrm{H}_{56} \mathrm{O}_{7} \mathrm{Na}$ 551.39237, Found 551.39164.

Acknowledgements

We are grateful to CNPq, CAPES, INCT-INOFAR (CNPqProc. 573.564/2008-6), FAEP-UNICAMP, and FAPESP (2012/02230-0 and 2013/07600-3) for financial support and a fellowship to E.C.L.Jr. (2011/06721-6). The authors thank Marcos A. Pudenzi and Marcos N. Eberlin (Thomson Laboratory) for HRMS analyses and Brian W. Slafer (IQUnicamp) for helpful suggestions about English grammar and style.

Notes and references

${ }^{a}$ Instituto de Química, Universidade Estadual de Campinas, 13083-970, C.P. 6154, Campinas, SP, Brazil. Email: ldias@iqm.unicamp.br
\dagger Electronic Supplementary Information (ESI) available: ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and HRMS spectra of the prepared compounds. See DOI: 10.1039/b000000x/

1 T. Grkovic, J. S. Blees, N. H. Colburn, T. Schmid, C. L. Thomas, C. J. Henrich, J. B. McMahon and K. R. Gustafson, J. Nat. Prod., 2011, 74, 1015.
2 a) J. L. Cmarik, H. Min, G. Hegamyer, S. Zhang, M. Kulesz-Martin, H. Yoshinaga, S. Matsuhashi and N. H. Colburn, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 14037, b) H.-S. Yang, A. P. Jansen, R. Nair, K. Shibahara, A. K. Verma, J. L. Cmarik and N. H. Colburn, Oncogene, 2001, 20, 699.
3 a) Y. Chen, T. Knösel, G. Kristiansen, A. Pietas, M. E. Garber, S. Matsuhashi, I. Ozaki and I. Petersen, J. Pathol., 2003, 200, 640, b) H. Zhang, I. Ozaki, T. Mizuta, H. Hamajima, T. Yasutake, Y. Eguchi, H. Ideguchi, K. Yamamoto and S. Matsuhashi, Oncogene, 2006, 25, 6101 , c) X. Wang, Z. Wei, F. Gao, X. Zhang, C. Zhou, F. Zhu, Q. Wang, Q. Gao, C. Ma, W. Sun, B. Kong and L. Zhang, Anticancer Res., 2008, 28, 2991, d) G. Mudduluru, F. Medved, R. Grobholz, C. Jost, A. Gruber, J. H. Leupold, S. Post, A. Jansen, N. H. Colburn and
H. Allgayer, Cancer, 2007, 110, 1697, e) H. Yu, J. Zeng, X. Liang, W. Wang, Y. Zhou, Y. Sun, S. Liu, W. Li, C. Chen and J. Jia, PLOS ONE, 2014, 9, e105306.
4 Reddy, D. S. and Mohapatra, D. K. Eur. J. Org. Chem. 2013, 1051.
5 Wang, Y. and O'Doherty, G. A. J. Am. Chem. Soc. 2013, 135, 9334.
6 M. F. Cuccarese, Y. Wang, P. J. Beuning and G. A. O'Doherty, ACS Med. Chem. Lett., 2014, 5, 522.
7 E. J. Corey and X.-M. Cheng, in The Logic of Chemical Synthesis, ed. John Wiley, New York, 1989.
8 L. C. Dias, P. K. Kuroishi, E. C. Polo and E. C. de Lucca Jr., Tetrahedron Lett., 2013, 54, 980.
9 Aldehyde 7 was prepared according to the procedure described by Mann and co-workers: E. Airiau, T. Spangenberg, N. Girard, B. Breit and A. Mann, Org. Lett., 2010, 12, 528.
10 For seminal work, see: a) M. A. Blanchette, M. S. Malamas, M. H. Nantz, J. C. Roberts, P. Somfai, D. C. Whritenour, S. Masamune, M. Kageyama and T. Tamura, J. Org. Chem., 1989, 54, 2817. For fundamental contributions in this area, see: b) I. Paterson, R. M. Oballa and R. D. Norcross, Tetrahedron Lett., 1996, 37, 8581, c) I. Paterson, K. R. Gibson and R. M. Oballa, Tetrahedron Lett., 1996, 37, 8585, d) D. A. Evans, P. J. Coleman and B. Côté, J. Org. Chem., 1997, 62, 788, e) D. A. Evans, B. Côté, P. J. Coleman and B. T. Connell, J. Am. Chem. Soc., 2003, 125, 10893. For our recent work in this area, see: f) L. C. Dias, A. A. Marchi, M. A. B. Ferreira and A. M. Aguilar, Org. Lett., 2007, 9, 4869, g) L. C. Dias and A. M. Aguilar, Quím. Nova, 2007, 30, 2007, h) L. C. Dias, A. A. Marchi, M. A. B. Ferreira and A. M. Aguilar, J. Org. Chem., 2008, 73, 6299, i) L. C. Dias and A. M. Aguilar, Chem. Soc. Rev., 2008, 37, 451, j) L. C. Dias, S. M. Pinheiro, V. M. de Oliveira, M. A. B. Ferreira, C. F. Tormena, A. M. Aguilar, J. Zukerman-Schpector and E. R. T. Tiekink, Tetrahedron, 2009, 65, 8714, k) L. C. Dias, E. C. de Lucca Jr., M. A. B. Ferreira, D. C. Garcia and C. F. Tormena, Org. Lett., 2010, 12, 5056, 1) L. C. Dias, E. C. de Lucca Jr., M. A. B. Ferreira, D. C. Garcia and C. F. Tormena, J. Org. Chem., 2012, 77, 1765, m) L. C. Dias, E. C. Polo, M. A. B. Ferreira and C. F. Tormena, J. Org. Chem., 2012, 77, 3766. For theoretical studies, see: n) R. S. Paton and J. M. Goodman, Org. Lett., 2006, 8, 4299, o) J. M. Goodman and R. S. Paton, Chem. Commun., 2007, 2124, p) R. S. Paton and J. M. Goodman, J. Org. Chem., 2008, 73, 1253.
11 a) K. Narasaka and H. C. Pai, Chem. Lett., 1980, 9, 1415. b) K. Narasaka and F.-C. Pai, Tetrahedron, 1984, 40, 2233, c) I. Paterson, R. D. Norcross, R. A. Ward, P. Romea and M. A. Lister, J. Am. Chem. Soc., 1994, 116, 11287.
12 L. C. Dias, D. J. P. Lima, C. C. S. Gonçalves and A. D. Andricopulo, Eur. J. Org. Chem., 2009, 1491.
13 a) S. D. Rychnovsky and D. J. Skalitzky, Tetrahedron Lett., 1990, 31, 945, b) S. D. Rychnovsky, B. Rogers and G. Yang, J. Org. Chem., 1993, 58, 3511, c) S. D. Rychnovsky, B. N. Rogers and T. I. Richardson, Acc. Chem. Res., 1998, 31, 9. For theoretical studies, see: d) C. F. Tormena, L. C. Dias and R. Rittner, J. Phys. Chem. A, 2005, 109, 6077.
14 a) D. A. Evans and K. T. Chapman, Tetrahedron Lett., 1986, 27, 5939 , b) D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560.
15 Y. Kobayashi and C.-H. Tan, Y. Kishi, Helv. Chim. Acta, 2000, 83, 2562.

16 P. R. Hanson, R. Chegondi, J. Nguyen, C. D. Thomas, J. D. Waetzig and A. Whitehead, J. Org. Chem., 2011, 76, 4358.
17 a) K. Ando, J. Org. Chem., 1997, 62, 1934. b) K. Ando, J. Org. Chem., 1998, 63, 8411.

18 We tried several different experiments to optimize the last steps, but none of then led to better results. These experiments are described in the Electronic Supplementary Information file.

