
Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

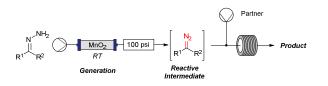
Organic & Biomolecular Chemistry

Cyclopropanation using flow-generated diazo compounds

Nuria M. Roda,^a Duc N. Tran,^a Claudio Battilocchio,^a Ricardo Labes,^a Richard J. Ingham,^a Joel M. Hawkins,^b Steven V. Ley^a*

Received ooth January 2012, Accepted ooth January 2012

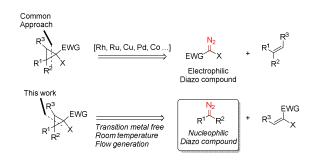
Cite this: DOI: 10.1039/xoxxooooox


DOI: 10.1039/x0xx00000x

www.rsc.org/

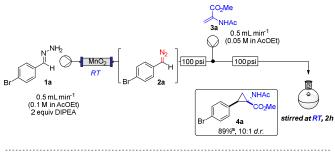
We have devised a room temperature process for the cyclopropanation using unstabilised diazo compounds generated in flow. The protocol was applied to a wide range of different diazo species which were combined with electron-poor olefins in order to generate functionalised cyclopropanes.

Introduction


Flow chemistry is finding increasing use as an enabling technology in both industrial and academic settings,¹ providing a number of advantages over traditional batch mode processes and thereby leading to a variety of interesting opportunities. Many reports to date have involved the adaptation of a single transformation from batch to flow modes.² From our perspective, a more important goal would be the discovery of new patterns of reactivity. Using flow chemistry methods the space/time dynamics of a reaction profile can be adjusted along with other reaction parameters (i.e. pressure, temperature and mixing) that can be controlled accurately. New opportunities arise especially in harnessing reactive intermediates, which can be very challenging when using conventional methods. In a flow mode, it is possible to continuously generate highly reactive species free from contaminating reagents and then deliver these to a reaction zone for combination with various partners to afford a range of products.

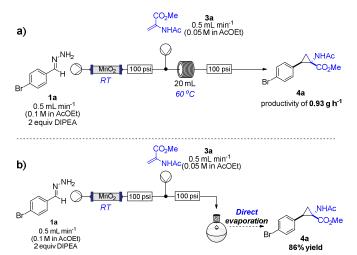
Scheme 1. Flow generation, translocation and reaction of diazo intermediates.

Using this approach, we have previously established a continuous process for the production of transient diazo species on demand, as a class of interesting reactive building blocks (Scheme 1).³ Notably, this approach enabled the continuous generation of highly reactive intermediates and avoided the hazards associated with bulk handling of these species.⁴


The cyclopropane ring features in many natural products and often in bioactive and other functional materials due to its particular properties.5 Accordingly, conformational constraints and cyclopropanation of olefins using stabilised electrophilic diazo compounds has been well studied. In particular, transition-metal catalysis for the coupling of olefins and diazo compounds are amongst the most well developed methods for cyclopropane preparation.⁶ By contrast, unstabilised diazo compounds are underexplored. Interestingly, this highly energetic species often demonstrates a reversed reactivity pattern due to their amphiphilic character (Scheme 2).⁷ Further to our initial investigations using the flow generate/translocate/react protocol for sp²-sp³ cross couplings, we envisaged that the diazo species could react with different electron poor olefins in order to give access to substituted cyclopropanes, under mild conditions and without the need of any transition metals in the coupling step. This method would represent an attractive alternative approach to the preparation of poly functional cyclopropanes.

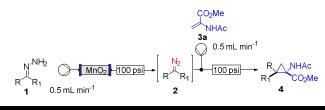
Scheme 2. Cyclopropanation of diazo species.

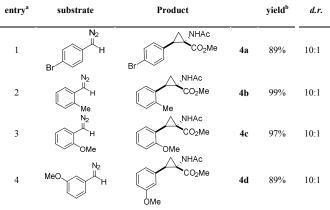
Results and discussion


The study commenced with the use of the readily prepared hydrazone 1a as model substrate for the reaction.⁸ We soon found that in AcOEt as solvent, a consistent and clean stream of diazo compounds 2a was generated by passage through a column packed with activated manganese dioxide. As in previous studies,³ the use of Hünig's base was necessary to suppress the formation of byproducts. Using this protocol, we were able to rapidly establish the cyclopropanation procedure using the olefin substrate 3a. Under optimised conditions, a solution of 1a (0.1 M in AcOEt, 2 equiv of DIPEA) was passed through a column reactor packed with activated MnO_2 . The exiting stream of diazo (0.5 mL min⁻¹) was combined with a solution of olefin (**3a**, 0.05 M in AcOEt, 0.5 mL min⁻¹) after mixing at a T-piece and then stirred at room temperature for 2 h. With these optimised conditions, 4a was isolated in 89% yield (Scheme 3). The process was scaled up using a column of 3 g MnO₂ to produce 1.14 g of cyclopropane 4a (86% yield) in one run using only 1.2 equiv of diazo compound. Notably, the transformation was also achieved with high diastereoselectivity (10:1). No attempt was made at this stage to further increase the scale of the reaction.

scale-up: 1.14 g, 86%^b, 10:1 *d.r.* (stirred at *RT*, for 24h)

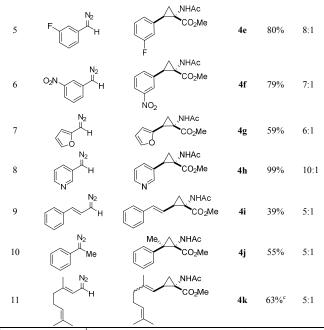
Scheme 3. Cyclopropanation reaction via the generation, translocation and reaction protocol (major isomer); ^a 0.2 mmol scale; ^b 4.25 mmol scale

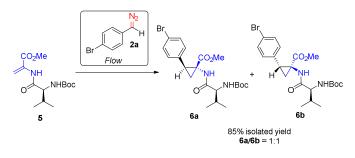

With the aim of continuously processing material, we briefly investigated the flow cyclopropanation under different conditions (*i.e.* temperature and residence time) and rapidly found that running the reaction continuously in a 20 mL polymer (PFA) coil at 60 °C, a continuous throughput of 0.93 g h⁻¹ of material could be obtained. Notably, in addition to this we found that the combination of the two reaction streams and the direct feed into a rotary evaporator gave complete conversion to the cyclopropyl derivative **4a** in situ (scheme 4).



Scheme 4. Flow diazo generation and cyclopropanation sequence using: a) a heated reactor coil; b) direct evaporation.

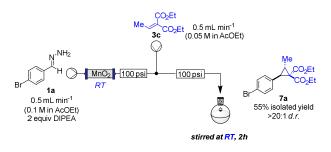
Next we wished to assess the scope of this new room temperature cyclopropanation process. Electron-withdrawing substituents on the aryl ring of diazo species (Table 1) were well tolerated, giving cyclopropanes **4a**, **4e** and **4f** in very good yields (80-89%). Similarly, electron-donating groups also generated cyclopropanes in high yields (**4b-d**, 89-99%). Importantly, the steric hindrance exerted by *ortho* substituents seems not to affect the reaction outcome, as illustrated by comparison between **4c** and **4d**. This unusual feature of the protocol contrasts with metal-catalysed procedures for cyclopropanation.⁶ Heterocycles are well tolerated (**4g**, **4h**) as is the presence of unsaturation (**4i**). Notably, the use of the ketone derivatives (table 1, entry 10) gave an interesting 55% isolated yield of the product **4j**, with a good level of diasteroselectivity (5:1). One remarkable aspect of the protocol is that all the products were obtained with good to excellent diasteroselectivity (table 1).


Table 1. Cyclopropanation of different diazo species with olefin 3a.^a

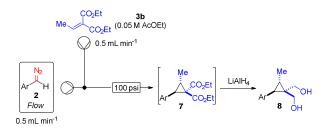

Page 2 of 5

Organic & Biomolecular Chemistry

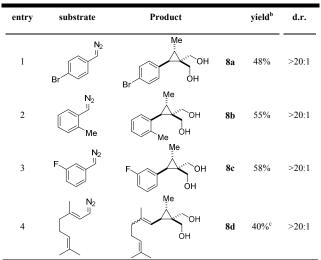
 $^{\rm a}$ 0.2 mmol scale; $^{\rm b}$ isolated yield after aqueous work-up and silica gel plug filtration; $^{\rm c}$ ratio of E/Z 3:1.


Additionally, we were also pleased to find that increasing the functional complexity of the olefinic partner did not affect the outcome of the reaction as shown by reacting the diazo species 2a with the more elaborate structures (i.e. 5, scheme 5) which gave high yield of the corresponding cyclopropyl peptides 6a and 6b.

Scheme 5. Diastereoseletive cyclopropanation of dipeptide 6.


We also decided to investigate the preparation of specifically challenging, unstable and difficult to access cyclopropyl compounds, in particular substituted donor-acceptor cyclopropanes.⁹

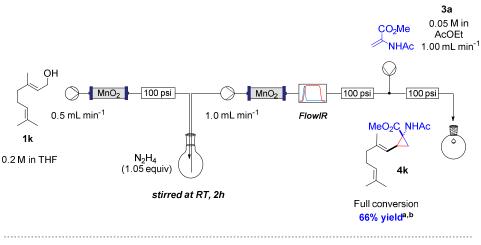
For example, the reaction of the diazo **2a** with olefin **3c** gave **7a** in 55% yield as a single diastereoisomer (scheme 6).


Scheme 6. Diastereoseletive cyclopropanation of 3b.

While this yield was lower than desired, the olefin starting material had all been consumed. Further attempts with different diazo species failed to give any isolable products. We quickly realised the chemical sensitivity of this class of cyclopropane products to silica gel chromatography and devised an alternative "work-up" involving the use of LiAlH₄ (scheme 7) to give the corresponding diols which were readily isolated (table 2). This 2-step transformation provides synthetically useful yields with very high diastereoselectivities.

Scheme 7. Diastereoseletive cyclopropanation of 3b, followed by reduction to diol 8.

 Table 2. Cyclopropanation of different diazo species with olefin 3b.^a



^a One-pot procedure at 0.2 mmol scale; ^b isolated yield after aqueous work-up and silica gel plug filtration; ^c ratio of E/Z 1.2:1.

Another valuable aspect of flow chemistry is associated with the advantages of continuously flowing material though a multistep sequence without the need to isolate intermediates. To showcase this aspect, we devised a 4-step sequence, whereby the use of a very cheap source of material (geraniol) would generate a more complex molecular product, **4k** (scheme 8).

During optimisation of this procedure, we discovered that an excess of MnO_2 (7 g) was required for the complete oxidation of geraniol (delivered at 0.5 mL min⁻¹ as a 0.2 M solution in THF) to geranial (step 1).¹⁰ The output from the reagent column was collected in a reactor flask containing 1.05 equiv of hydrazine. After stirring for 2 h at room temperature (step 2), the crude reaction mixture was pumped through a pre-activated column of MnO_2 (1.0 mL min⁻¹) to generate the diazo intermediate (step 3). The MnO_2 column served also to decompose any residual hydrazine.¹¹ In-line IR monitoring at

around 2070 cm⁻¹ identified the diazo product exiting the reactor. This diazo stream was finally combined in a T-piece with a stream $(1.0 \text{ mL min}^{-1})$ containing olefin **3a** (step 4). Direct evaporation of the final reaction mixture in a rotary evaporator gave **4k** in good yield.

^ayield following concentration, measured by ¹H-NMR compared to an internal standard; ^breaction run on 2 mmol scale

Scheme 8. Telescoped sequence for the preparation of cyclopropane amino acid 4k.

Conclusions

In conclusion, we devised a system that could deliver, rapidly and efficiently, differently decorated cyclopropanes under flow conditions, with no need for precious metal catalysis and under remarkable mild conditions (room temperature). The process was successfully applied to a wide range of different *unstabilised nucleophilic diazo* species which were combined with electron-poor olefins. In this work, we demonstrated how flow chemistry can serve as a discovery tool for generating new chemical reactivity windows to prepare valuable products. This approach again exemplifies the opportunities that arise by using flow chemistry methods.

Acknowledgements

We are grateful to Pfizer Worldwide Research and Development (CB, RJI and JMH), the Swiss National Science Foundation (DNT), CAPES (RL, n° 9865/13-6) and the EPSRC (SVL, grant n° EP/K0099494/1 and n° EP/K039520/1) for financial support.

Notes and references

^{*a*} Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; email: <u>svl1000@cam.ac.uk</u>; group webpage: <u>http://www.leygroup.ch.cam.ac.uk/</u> ^{*b*} Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/c000000x/

- Selected recent reviews for chemical flow systems: a) R. L. Hartman, J. P. McMullen and K. F. Jensen, *Angew. Chem. Int. Ed.*, 2011, **50**, 7502–7519; b) J. Wegner, S. Ceylan and A. Kirschning, *Adv. Synth. Catal.* 2012, **354**, 17–57; c) C. Wiles and P. Watts, *Green Chem.*, 2012, **14**, 38–54; d) L. Malet-Sanz and F. Susanne, *J. Med. Chem.* 2012, **55**, 4062–4098; e) I. R. Baxendale, *J. Chem. Technol. Biotechnol.* 2013, **88**, 519–552; f) J. C. Pastre, D. L. Browne and S. V. Ley, *Chem. Soc. Rev.* 2013, **42**, 8849–8869; g) S. V, Ley, D. E. Fitzpatrick, R. J. Ingham and R. M. Myers, *Angew. Chem. Int. Ed.*, 2014, **53**, 2-17.
- 2 Selected recent examples for chemical flow systems: a) H. Kim, A. Nagaki and J.-I. Yoshida, Nature Commun., 2011, 2, 264; b) F. Levesque and P. H. Seeberger, Angew. Chem. Int. Ed., 2012, 51, 1706-1709; c) B. J. Deadman, C. Battilocchio, E. Sliwinski and S. V. Ley, Green Chem., 2013, 15, 2050-2055; d) Z. He and T. F. Jamison, Angew. Chem. Int. Ed., 2014, 53, 3353 -3357; e) M. Baumann and I. R. Baxendale, Beilstein J. Org. Chem. 2013, 9, 1613-1619; f) S. Newton, C. F. Carter, C. M. Pearson, L. de C. Alves, H. Lange, P. Thansandote and S. V. Ley Angew. Chem. Int. Ed., 2014, 53, 4915-4920; g) A. M. Nightingale, T. W. Phillips, J. H. Bannock and J. C. de Mello, Nature Commun., 2014, 5, 3777; h) X. Fan, V. Sans, P. Yaseneva, D. D. Plaza, J. Williams and A. Lapkin, Org. Process Res. Dev. 2012, 16, 1039-1042; i) S. Glöckner, D. N. Tran, R. J. Ingham, S. Fenner, Z. E. Wilson, C. Battilocchio and S. V. Ley, Org. Biomol. Chem. DOI:10.1039/C4OB02105C.; j) T. Ouchi, C. Battilocchio, J. M. Hawkins and S. V. Ley Org. Process Res. Dev., 2014, 18, 1560-1566. Example of flow cyclopropanation using

Organic & Biomolecular Chemistry

diazomethane: F. Mastronardi, B. Gutmann, and C. O. Kappe Org. Lett., 2013, 15, 5590–5593.

- 3 D. N. Tran, C. Battilocchio, S.-B. Lou, J. M. Hawkins and S. V. Ley, *Chem. Sci.* DOI: 10.1039/C4SC03072A.
- 4 Recent review about generation of diazo species in flow: B. J. Deadman, S. G. Collins, and A. R. Maguire *Chem. Eur. J.*, DOI: 10.1002/chem.201404348.
- 5 Selected reviews on cyclopropanes: a) W. A. Donaldson, *Tetrahedron*, 2001, 57, 8589-8627; b) H. Lebel, J.-F. Marcoux, C. Molinaro and A. B. Charette, *Chem. Rev.* 2003, 103, 977–1050; c) L. A. Wessjohann, W. Brandt and T. Thiemann, *Chem. Rev.* 2003, 103, 1625–1648; d) F. Brackmann and A. de Meijere, *Chem. Rev.* 2007, 107, 4493–4537.
- 6 Selected recent examples for metal-catalysed cyclopropanation: a) J.-J. Shen, S.-F. Zhu, Y. Cai, H. Xu, X.-L. Xie, and Q.-L. Zhou, *Angew. Chem. Int. Ed.* 2014, 53, 13188 13191; b) V. N. G. Lindsay, D. Fiset, P. J. Gritsch, S. Azzi, and A. B. Charette *J. Am. Chem. Soc.* 2013, 135, 1463–1470; c) X. Xu, H. J. Lu, J. V. Ruppel, X. Cui, S. L. de Mesa, L. Wojtas and X. P. Zhang, *J. Am. Chem. Soc.* 2011, 133, 15292–15295; d) S. F. Zhu, X. Xu, J. A. Perman and X. P. Zhang, *J. Am. Chem. Soc.* 2010, 132, 12796–12799; e) M. P. Doyle, *Angew. Chem. Int. Ed.* 2009, 48, 850 852.
- 7 a) M. Doyle, Acc. Chem. Res. 1986, 19, 348–356; b) A. J. Padwa, Organomet. Chem. 2001, 617, 3–16; c) M. Regitz and G. Mass, Diazo Compounds Properties and Synthesis, Academic Press, Inc., Orlando, 1986; d) M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998; e) J. N. Johnston, H. Muchalski and T. L. Troyer Angew. Chem. Int. Ed., 2010, 49, 2290–2298. f) G. Maas, Angew. Chem. Int. Ed., 2009, 48, 8186–8195; g) V. L. Rendina and J. S. Kingsbury, J. Org. Chem., 2012, 77, 1181–1185; h) A. J. Wommack and J. S. Kingsbury, J. Org. Chem., 2013, 78, 10573–10587; i) T. L. Holton and H. Shechter, J. Org. Chem., 1995, 60, 4725–4729.
- 8 Hydrazones can be safely synthesised in flow manner starting from aldehydes/ketones and hydrazine. A preliminary example was shown in the telescoped synthesis of **4k** (scheme 8).
- 9 Selected recent reviews for donor-acceptor cyclopropanes: a) T. F. Schneider, Johannes Kaschel and D. B. Werz, *Angew. Chem. Int. Ed.* 2014, **53**, 5504–5523; b) M. A. Cavitt, L. H. Phun and S. France, *Chem Soc Rev.* 2014, **43**, 804-818.
- I. Hemeon, N. W. Barnett, N. Gathergood, P. J. Scammells and R. D. Singer, *Australian. J. Org. Chem.*, 2004, 57, 125 - 128.
- 11 Ila Bhatnagar and M. V. George J. Org. Chem., 1968, 33, 2407–2411.