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Dear referees, 

 

Attached please find the revised manuscript NR-COM-12-2015-008596 entitled 

“Ultrasound-responsive ultrathin multiblock copolyamide vesicles”. Thank you very 

much for giving us a chance to improve the manuscript. During the revisions, we had 

supplemented transmission electron microscopy (TEM) and fluorescence data as well 

as some references to further improve the manuscript. We have responded all your 

comments and have indicated all the changes made in the manuscript. The detailed 

responses to you are shown as follows. 

 

 

To referee 1 

 

Comments: Zhou and co-workers present a very interesting article. The authors have 

addressed all the referees' comments. The article presents a novel method to 

specifically deliver therapeutic agents and the data (after corrections) support the 

conclusions. I believe this is an interesting method. I will suggest minor changes. In 

conclusion, a very nice contribution which I believe it will find lot of interest in the 

readership of Nanoscale. I strongly recommend publication as it is or after minor 

corrections. 

 

Response to the comments: The authors feel greatly thankful to referee 1 for the 

positive comments on the manuscript and we have addressed all the points noted by 

the referee. The point-to-point responses are shows as follows. 

 

Question 1: Sentence "Different from diblock copolymers .... blocks" i think could be 

deleted it is a bit obvious 

 

Answer 1: Thank the referee for the careful reminder. We have deleted this sentence 

in the manuscript and added a new statement in the revised manuscript in order to 

better connect the two paragraphs (sentence in red in the second paragraph of page 1). 

 

Question 2: dimension of wall 4.5 nm, maybe an incertitude range could be included. 

 

Answer 2: The referee is right. The wall thickness is 4.3 ± 0.4 nm through the 

statistical analyses of 30 particles (the blue sentence in the second paragraph of page 

2). 

 

Question 3: I will add in the comparison with other stimuli systems, the use of 

Alternated magnetic field, as it is one of the most investigated. Perhaps, the following 
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papers could be cited: Angewandte Chemie 125 (52), 14402-14406; Polymer 

Chemistry 5 (10), 3311-3315; Langmuir 30 (34), 10493-10502. 

 

Answer 3: We have added the comparison with alternated magnetic field (words in 

purple in the third paragraph of page 1) and also cited these three papers in the 

reference 8.    

 

 

To Referee 2 

Comments: The manuscript describes synthesis, processes of self-assembly and 

ultrasound-induced opening of novel polymer multiblock vesicles. Main advantages 

of the vesicles developed by the authors are interesting morphology, relative ease of 

formation, and ultrathin vesicle walls, which in its turn would lead to more efficient 

“drug release” upon ultrasound treatment. Moreover, the authors carried out immense 

amount of work, and the whole study feels well-done: all hypotheses are confirmed by 

a large array of methods, including DRS measurements, calorimetric methods, 

microscopy techniques, computer modeling, etc., figures are illustrative, and selection 

of references is up to date. 

 

In my opinion, additions to the manuscript after the first peer-review fully cover the 

questions made by the previous referees. Additions of the authors are also useful for 

better comprehension of the main concepts of the study. Despite minor concerns, I 

recommend this manuscript to be accepted to Nanoscale journal of The Royal Society 

of Chemistry, as I deem it quite innovative and interesting to a broad spectrum of 

specialists in chemistry and materials science dealing with polymer colloid chemistry, 

self-assembled vesicle formation, drug delivery systems, dissipative particle dynamics 

simulation, etc. 

 

Response to the comments: Thank the referee for the positive comments, and we 

have addressed all the questions as noted by the referee. The point-to-point responses 

are shows as follows. 

 

Question 1: The authors correctly assume that dye molecules not located inside the 

vesicles will have higher values of fluorescence intensity due to the absence of the 

aggregation induced quenching in the experiment that demonstrates release of nile red 

dye upon ultrasonication of the vesicle solutions. Although, it would be more 

illustrative to provide comparison of the concentration-dependent fluorescence 

intensity values of NR dye solution with the values obtained upon vesicle disruption. 

Moreover, such comparison could lead to quantification of the drug release since 

estimative concentration of the dye in the vesicles is known. 

 

 

Answer 1: We are really sorry for the misleading. In fact, a quenching of fluorescence 

would be observed if NR was released into water due to an aggregation induced 
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quenching effect. As shown in the following two figures, there is almost no 

fluorescence for the NR in water (black curve in figure 1a and the magnified one in 

figure 1b). However, if the NR was encapsulated in the hydrophobic layers of 

MBCPA vesicles, a pronounced fluorescence was observed, and a clear decrease of 

fluorescence was observed after the ultrasound irradiation of the vesicle for 14 min 

(Figure 1a). Thus, it is reasonable to detect the release of NR from the vesicles by 

measuring the changes of fluorescence since the fluorescence of the released NR is 

negligible.  

 
Figure 1 (a) The fluorescence emission spectra (excitation: 600nm) of NR dyes in 

water, NR-loaded MBCPA vesicles (MBCPA-0min) and the vesicles after ultrasonic 

irradiation for 14 min (MBCPA-14min); (b) The magnified fluorescence curve of NR 

dyes. 

 

Question 2: Despite fluorescence studies performed in this work being complete and 

conclusive, it also could be demonstrative and providing further evidence for the 

pathway of vesicle “opening” to carry out TEM (or/and AFM) imaging of the sample 

after sonication. 

 

Answer 2: Thank the referee for the kind suggestion. We had supplemented the TEM 

image of the self-assemblies after the sonication treatment of the vesicles in the 

revised supporting information (Fig. S9, ESI†), which indicates the vesicles were 

disrupted by ultrasonication into fragments. We had also pointed it out in the revised 

main text (sentences in green in the second paragraph of page 4) 

 

Question 3: TEM images show a large number of vesicles with holes. It is not clear 

what is statistical percentage of these “not-complete” vesicles, and how they affect 

reproducibility of the drug release tests, if their amount varies from synthesis to 

synthesis. Most importantly, although computer modeling clearly shows a stage of the 

vesicle formation, where a hole is present, it is not discussed by the authors, why part 

of the sample remains this way and does not progress further until vesicle is fully 

formed. The nature of these holes could be explained by the multiblock nature of the 

aggregate, but, in my opinion, this moment deserves more focus in the main text of 

the article. 
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Answer 3: We are really sorry for the misleading. In fact, the finally obtained vesicles 

are completely closed and very stable in water. No release of NR was observed from 

the vesicles without ultrasonication (Fig. 5b), which also proved the vesicles were 

complete. Only a small amount of the vesicles with holes were observed, which was 

probably caused by the disruption of vesicles due to the evaporation of water during 

the sampling process for TEM measurement. We just wanted to prove the hollow 

structure of the vesicles by selecting a TEM image of vesicles with holes (Figure 2a in 

the previous version and Fig. S5 in the ESI† of this new version); however, it could 

not represent the true morphology of the vesicles and would certainly mislead the 

readers. Thus, during the revision, we decided to replace this misleading TEM image 

with a new one consisting of complete vesicles (Fig. 2a of this version). In addition, 

we also revised the explanations of Fig. 2a in the revised main text (sentences in 

orange in the second paragraph of page 2). Thank the referee for the kind reminder. 

We are really sorry for such a misleading.   

 

Question 4: When the authors list power of the ultrasound employed for vesicle 

disruption on page 11, they use “150 W”, it would be more proper to list the intensity 

of the ultrasound (W/cm
2
) also, since it is a more known unit for specialists dealing 

with drug release systems. 

 

Answer 4: Thank the referee for the professional advice. However, we feel very sorry 

for the absence of intensity of ultrasound (W/cm
2
), because we do not have a device 

to measure the data for our ultrasound instrument. So we list the power and frequency 

of our ultrasound instrument in the manuscript. We also noted that, some 

investigations on the release from vesicles triggered by ultrasound also just provide 

the data of power and frequency (Reference 9). Anyway, we are really sorry for this. 

 

Question 5: The text on Fig. 2d is a little too small for comfortable reading. The text 

“membrane thickness”, as well as legend text on Fig. 4b are too small. This also 

applies to the legend caption of Fig. 5a. 

 

Answer 5: The referee is right, and we have revised all these flaws in the Figures of 

the revised version. 

 

 

Dear referees, thank you again for your important and thoughtful suggestions on the 

further revision of our manuscript. We hope the revised manuscript is more 

satisfactory. 

 

With best wishes, 

Sincerely yours 
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Prof. Dr. Yongfeng Zhou 

School of Chemistry and Chemical Engineering 

Shanghai Jiao Tong University 

800 Dongchuan Road, Shanghai 200240 

People’s Republic of China 

Email: yfzhou@sjtu.edu.cn, 

Tel: +86-21-54742664 

Fax: +86-21-54741297 
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Ultrasound-responsive ultrathin multiblock copolyamide vesicles  

Lei Huang,
a  

Chunyang Yu,
b
 Tong Huang,

b  
Shuting Xu,

b
  Yongping Bai,

a* 
and Yongfeng Zhou

b*
  

This study reports the self-assembly of a novel polymer vesicles 

from an amphiphilic multiblock copolyamide, and the vesicles 

have shown a special structure of ultrathin wall thickness of 

about 4.5 nm and of a combined bilayer and monolayer 

packing model. Most interestingly, the vesicles are ultrasound-

responsive and can release the encapsulated model drugs in 

response to ultrasonic irradiation.  

Among all fantastic supramolecular self-assemblies, vesicles 

including lipid vesicles (liposomes), surfactant vesicles and 

polymer vesicles (polymersomes) have drawn great attention 

due to their great importance in living systems and various 

applications such as in pharmaceutical, diagnostic, and cosmetic 

agents.
1
 Up to now, polymer vesicles have been obtained from the 

self-assembly of many kinds of polymer architectures like diblock 

copolymers, triblock copolymers, star copolymers, graft copolymers, 

dendrimers and hyperbranched polymers, and have demonstrated 

great potentials from both the scientific and industrial communities.2 

Herein, we report for  the first time on a novel polymer vesicles self-

assembled from multiblock copolymers. 

As we know, multiblock copolymers are a kind of linear 

polymers consisting of more than three polymer blocks.
3
 Thus, in 

principle, such a kind of polymer structure can not only enlarge 

the structural diversity of polymers but also allow the 

incorporation of more functionalities in one polymer chain.
4
 In 

addition, from the self-assembly aspect, multiblock copolymers 

can introduce multiple hydrophilic and hydrophobic segments in 

the polymer chains, which will induce more complex chain 

folding and phase separation processes when compared with 

those of diblock or triblock copolymers and then may generate 

more complicated supramolecular structures. It has been even 

considered as a simple model for protein folding and DNA 

packing.
5
 However, despite of these advantages, the studies on  

 
Scheme 1 Synthesis and self-assembly of multiblock 

copolyamides into ultrasound-responsive vesicles. 

the synthesis and self-assembly of multiblock copolymers are 

still great limited. Among them, Halperin, Wang and Lu et al.5,6 

have performed the computer simulations, while Tan and 

Sommerdijk et al
7
 have conducted the experimental studies.  

Nevertheless, the obtained self-assemblies are generally limited 

to micelles. 

Herein, as a new progress, we report the self-assembly of 

vesicles from a multiblock copolyamide (MBCPA, Scheme 1) in 

water. The obtained vesicles have an ultrathin wall of 4.5 nm. 

Most interestingly, they can be disrupted and release the 

encapsulated hydrophobic nile red in response to ultrasonic 

irradiation. Compared to other stimuli such as pH, 

oxidation/reduction, temperature, light, alternated magnetic 

field and electrical field etc., noninvasive ultrasound may 

possess some unique advantages such as penetrating deeply in 

the body, relatively easy dynamic examination, providing high 

resolution images of the soft tissues, easily accessible and low 

cost etc.
8 

Up to now, only few works have been reported on the 

ultrasound-responsive polymer vesicles generating from the self-

assembly of poly(ethylene oxide)-block-poly[2-(diethylamino) 

ethyl methacrylate- statistical-2-tetrahydrofuranyloxy ethyl 

methacrylate] (PEO-b- P(DEA-stat-TMA)) and poly (ethylene 

glycol)-polyactide (PEG-b- PDLLA),
9
 and thus the present work 

represents a new type of the ultrasound-responsive polymer 

vesicles.   

The MBCPAs used here were synthesized by solution 

polycondensation in two steps following the reaction method  
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Fig. 1 Characterizations of as-prepared MBCPAs. (a) The NMR 

spectrum; (b) The TGA curves. 

 

described (Fig. S1, ESI†) by Yamazaki.
10

 In the first step, poly 

(Sodium 5-sulfoisophthalate-alt-hexamethylenediamine) (PA6SIP) 

and poly (hexanedioic acid-alt-hexamethylenediamine) (PA66) 

segments were synthesized, respectively; in the second step, the 

multiblock copolyamide was synthesized by coupling of these 

two segments. Fig. 1a shows the 
1
H NMR spectrum of the 

synthesized MBCPA along with peak assignments in deuterated 

sulfuric acid. The signals appearing in the region of 6.0-10.0 ppm  

are ascribed to the protons of benzene ring, and the signals at  

about 5.0 ppm (peak 1), 4.7 ppm (peak 2 ) and 3.9 ppm (peak 3) 

come from the protons adjacent to the amide groups. The 

chemical shifts below 3.2 ppm are assigned to the methylene 

moieties (peaks 4-8). Moreover, the peak 2 is an independent 

signal assigned to the PA66 segments, while the peak 1 is the 

independent proton signals for PA6SIP segments. The real 

composition ratio of MBCPA (PA6SIP:PA66) can be obtained 

according to the integrated areas of peak 1 (S1), peak 2 (S2), and 

is about 0.35:1. According to Carothers’ equation, there should 

be 4 PA6SIP blocks and 10 PA66 blocks in each MBCPA in theory. 

So the real composition ratio between PA6SIP and PA66 blocks 

in MBCPA (0.35:1) is comparable to the theoretic one (0.4:1). 

The multiblock structure of the synthesized copolyamide was 

also proved by the thermal gravity analysis (TGA, Fig. 1b), and 

the TGA curve of MBCPAs shows two stages of evident mass loss 

at 400 
o
C due to degradation of the PA66 blocks and at 450 

o
C 

due to degradation of the PA6SIP blocks (inset in Fig. 1b).
10

 

Differential scanning calorimetry (DSC) traces shows two melting 

peaks around 229 
o
C and 258 

o
C for the physical blend of PA66 

and PA6SIP, while only one melting peak around 252 
o
C for 

MBCPAs, which further ascertain the multiblock structure of 

MBCPAs (Fig. S4, ESI†). The intrinsic viscosity measured in 

sulfuric acid (96 wt %) by an Ubbelohde viscometer at 30 
o
C is  

 
Fig. 2 Morphology characterizations of MBCPA self-assemblies. 

(a)The TEM image of MBCPA self-assemblies stained by 

phosphotungstic acid; (b)The DLS curve; (c)The AFM image; (d) 

The sectional height profiles of the particles and the cartoon to 

illustrate the cross section of the particles. 

 

1.42, and the viscosity-average molecular weight is about 11,672 

according to the semiempirical equation (Fig. S2, ESI†) 

generated by Ruijter and Picken.
10

 The FTIR measurements 

provide a further evidence to prove the formation of multiblock 

copolyamides (Fig. S3, ESI†). 

In the as-prepared MBCPAs, the PA66 segments are 

hydrophobic, while the benzene sulfonic acid sodium groups in 

PA6SIP segments are hydrophilic, so MBCPAs are amphiphilic in 

nature. Moreover, the amide groups in MBCPAs are subject to 

form intermolecular hydrogen bonds. So the self-assembly 

ability of MBCPAs are well expected. To prove this, a direct 

hydration method by putting polymers into deionized water 

with a typical concentration of 1 mg/mL was used to trigger the 

self-assembly process. The transmission electron microscopy 

(TEM) images (Fig. 2a) show the aggregates are spherical 

particles with a clear contrast difference between the inner pool 

and the outer black thin wall. In addition, the particles with 

holes can also be observed (Fig. S5, ESI†). These results indicate 

that the aggregates might be vesicles with hollow lumens. The 

vesicle wall thickness is around 4.3 ± 0.4 nm through the 

statistical analyses of 30 particles. The dynamic light scattering 

measurement indicates the vesicles have an average 

hydrodynamic diameter around 193 nm with a PDI of 0.16 (Fig. 

2b). The atomic force microscopy (AFM) image (Fig. 2c) shows 

collapsed particles with the height-to-diameter ratio more than 

1:10, which also proves the formation of vesicles. The height of 

the collapsed vesicles is around 9 nm, which is equal to the 

thickness of two stacked vesicle membrane as shown in the 

cartoon (Fig. 2d). Thus, the vesicle wall thickness measured by 

TEM is in good agreement with that measured by AFM. The 

MBCPA vesicles have a polydisperse size distribution according 

to the TEM, AFM and DLS measurements. In fact, a wide size 

distribution is often observed for the vesicles self-assembled by 

a direct hydration method.
11

 

The above experiments reveal that the multiblock polyamides 

could self-assemble into vesicles in aqueous solution, so what is 

the self-assembly mechanism? To address it, a dissipative 

particle dynamics simulation was performed to explore the self-
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assembly process of the as-prepared MBCPAs. In order to 

capture the essential feature of MBCPAs, a model molecule 

[(AB)2(CB)5]3 was constructed in the DPD simulations (Fig. 3a). In 

this system, one “A” bead represents a hydrophilic benzene 

sulfonic acid sodium group, one “B” bead refers to a 

hydrophobic hexamethylenediamine group, while one “C” bead 

refers to a hydrophobic adipic acid group (Fig. 3a). Thus, (AB)2 

represents a PA6SIP blocks, while (CB)5 represents a PA66 block. 

The ratio between AB to CB is 2:5 (0.4:1), which is a mimic of the 

theoretic composition of MBCPAs. For easy handling, a 

multiblock polymer with 3 degree of polymerization was 

constructed in our DPD model. The details of the simulation 

model and method are described in the Supporting Information. 

Fig. 3 displays snapshots of the self-assembly process through 

the DPD simulation. After the initially random state (Fig. 3b), the 

MBCPA molecules aggregated into a large irregular aggregate 

with lamellar structure at 66 ns (Fig. 3c). Then, the large irregular 

aggregate gradually changed to a hollow vesicular shape with 

several holes throughout the vesicle membrane at 132 ns (Fig. 

3d). The vesicle turned more regular with the holes closing from 

198 ns (Fig. 3e), 248 ns (Fig. 3f) to 300 ns (Fig. 3g). At t = 792 ns, 

the vesicle was completely sealed with a regular globular shape 

(Fig. 3h). Generally, the vesicles from the linear block 

copolymers can be generated through the mechanisms of 

“micelle-rod-membrane-vesicles” or “micelle-semivesicle-

vesicle”.
12

 The mechanism of MBCPA vesicles as shown here is 

closer to the “micelle-rod-membrane-vesicle” process except 

that no rod-like intermediates are observed, and it is very similar 

to the vesicle self-assembly mechanism from Janus dendrimers 

and Janus hyperbranched polymers.
13

 During the TEM 

measurements, some intermediates of lamellar structures, 

vesicles with two or more holes, and vesicles in closing the holes 

were also observed (Fig. S6, ESI†), which agree well with the self-

assembly pathway as indicated in Fig. 3.  

In addition, the simulation results can further provide details 

on the vesicle structure. Fig. 4a shows that the polymer adopts a 

core-shell structure with the hydrophilic units on the vesicle 

shells and with the hydrophobic units inside the vesicle cores. In 

addition, it can be also seen that the polymer chains display 

three kinds of packing behaviors in the vesicle membrane (Fig. 

4a), namely the folding chains, hanging chains and spanned 

chains, respectively. For folding chains, the polymer segments 

do not span the whole vesicle membrane but fold into a “v” type 

inside the membrane; For spanned chains, the polymer 

segments do span the whole vesicle membrane; For hanging 

chains, the polymer segments do not fold and span the vesicle, 

but just hang in the vesicle membrane. Through the combination 

of these three packing models, the MBCPAs pack into the 

vesicles. So, the vesicle is not a simple monolayer or bilayer 

structure, on the contrary, it is a combination of bilayer and 

monolayer structure. Such a self-assembly mechanism might be 

a unique characteristics for multiblock copolymer vesicles when 

compared to that of the conventional polymersomes and 

liposomes.
14

 

Furthermore, the density distribution from the center of mass 

to the outside of the vesicle was calculated to characterize the 

vesicle microstructure. The detailed calculation description can 

be seen in supporting information. As can be seen in Fig. 4b, the 

density distribution profile of hydrophilic segments has two  

 

Fig. 3 DPD simulations on the self-assembly of MBCPAs captured 

at different time intervals. (a) The model [(AB)2(CB)5]3 for one 

MBCPA molecule. (b) Randomly distributed [(AB)2(CB)5]3 

molecules in water. (c and d) Formation of a large irregular 

aggregate with the lamellar structure. (e) Formation of a hollow 

vesicular aggregate with several holes throughout the vesicle 

membrane. (f and g) The vesicle in closing the holes. (h) The final 

vesicle structure. For each image from (b−h), the upper one is 

the 3D view, while the lower one is the cross-section view. The 

water beads are removed for clarity. Blue: A type bead (benzene 

sulfonic acid sodium salt block); red: B type bead 

(hexamethylenediamine block); gray: C type bead (adipic acid 

block). 

 

 

Fig. 4 The vesicular structure by the DPD simulation. (a) The 

schematic of the packing modes of polymer chains within the 

vesicle membrane, abd the circle represents the membrane of 

the vesicle. (b) Radial density distributions of the A (blue), B 

(red), C (gray) and S (black, solvent particle) components in the 

vesicle. The distance from the center of mass of the vesicle to 

the outside of the vesicle is R. Membrane thickness is defined as 

the distance between the peaks of density distribution of the 

hydrophilic A segments located on the inside surface and on the 

outside surface. 

 

peaks while the density distribution profile of two hydrophobic 

blocks has only one smooth peak, which supports the core-shell 

structure very well. We can also calculate the membrane 

thickness of the vesicles from the density distribution profile. 

The calculated membrane thickness of the vesicle is 4.5 nm, 

which is very close to the experimental result 4.3 ± 0.4 nm. 
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Fig. 5 Ultrasound-responsive dye release experiments from 

vesicles. (a)The fluorescence emission spectra of NR-loaded 

MBCPA vesicles (excitation: 600nm) recorded at different 

ultrasonic irradiation time; (b)The accumulative release of NRs 

from MBCPA vesicles with (MBCPA-us) or without 

ultrasonication that performed at room temperature (MBCPA-rt) 

or at 35 
o
C (MBCPA-35 

o
C), respectively. 

 

Generally, the vesicle thickness of polymersomes is around 

10-30 nm, while that of the liposomes is around 5 nm or less.
15 

Thus, as a kind of polymer vesicles, the wall thickness of 4.5 nm 

for the obtained MBCPA vesicles is ultrathin. And what’s more, 

there should be a large number of intermolecular hydrogen 

bonds between amide groups of the synthesized multiblock 

copolyamides in the vesicles. Thus, we deduce that the vesicles 

might be disrupted under an external ultrasound stimulus. 

As proof-of-principle experiments, the release behaviour of 

the MBCPA vesicles encapsulated with nile red (NR) was studied 

under the ultrasound with the power of 150 W and the 

frequency of 40 KHz. NR can be solubilized in the hydrophobic 

interiors of the MBCPA vesicles. When the vesicles were 

disrupted, the encapsulated NR dyes would be released to water 

to form aggregates, and a quenching of fluorescence could be 

detected.
16

 So, NR can be used as a probe to detect vesicular 

disruption based on the change of its emitted fluorescence. Fig. 

5a shows that the fluorescence intensity of MBCPA vesicles 

decreases gradually with increasing the cumulative ultrasonic 

time. There is almost 50% fluorescence decrease after 14 min’s 

ultrasonic irradiation (Fig. 5b). Since the ultrasonication will 

increase the solution temperature, the ultrasound was stopped 

for one minute after 30 seconds of irradiation. In addition, some 

ice was added to prevent the increase of the solution 

temperature above 35 
o
C. As the control experiments, almost no 

fluorescence changes were observed for the NR-loaded MBCPA 

vesicles in room temperature (Fig. S8, ESI†, Curve MBCPA-rt in 

Fig. 5b) and at 35 
o
C (Fig. S8, ESI†, Curve MBCPA-35 

o
C in Fig. 5b) 

in the absence of ultrasonic irradiation. Thus, the large decrease 

in the fluorescence intensity should be attributed to the release 

of NR dyes from the MBCPA vesicles, that is, the vesicles should 

be disrupted by the ultrasound. The disruption of MBCPA 

vesicles by ultrasound was also proved by the TEM 

measurement (Fig. S9, ESI†). Moreover, to further reveal the 

uniqueness of ultrasound-responsive behaviour of MBCPA 

vesicles, another ultrasound release experiment of NR-loaded 

hyperbranched polymer (HBPO-star-PEO) vesicles was also 

performed,
17

 where HBPO represents the hydrophobic 

hyperbranched poly(3-ethyl-3-oxetanemethanol) core and PEO 

represents the hydrophilic poly(ethylene oxide) arm. From Fig. 

S8c (ESI†), we can find that there is only 5% fluorescence 

decrease, after 14 mins’ ultrasonication, which indicates that the 

HBPO-star-PEO vesicles are not ultrasound-responsive. 

To our knowledge, the MBCPA vesicles reported here 

represent a new kind of ultrasound-responsive vesicles. The 

micro differential scanning calorimetry (micro-DSC) and infrared 

spectroscopy measurements of MBCPA vesicle aqueous solution 

at a concentration of 1 mg/mL both indicate that the 

intermolecular hydrogen bonds inside the MBCPA vesicles are 

broken after ultrasonic irradiation (Figs. S10 and S11, ESI†). This 

might be the origin of ultrasound stimuli-responsive behaviour 

of MBCPA vesicles. 

Conclusions 

In conclusion, herein we have demonstrated the formation of 

ultrasound responsive vesicles with an ultrathin membrane 

through the self-assembly of multiblock copolyamides. The 

computer simulation results have deepened our understanding 

on the self-assembly pathway of the vesicles which is consistent 

with the experimental results, and have also demonstrated that 

the vesicles possess a combined bilayer and monolayer structure. 

In addition, the origin of the ultrasonic responsivity has been 

studied, and it is probably due to the break of intermolecular 

hydrogen bonds inside the vesicles. We believe that the present 

work has extended the family of polymer vesicles with new 

structure and property. Furthermore, we expect that the as-

prepared ultrasound responsive vesicles might have some 

application in controlled drug release, and this work is still in 

progress. 
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A novel ultrasound-responsive polymer vesicles with ultrathin wall and special 

packing model were generated from an amphiphilic multiblock copolyamide. 
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1. Materials.  

N-methyl-2-pyrrolidone (NMP, Shanghai Chemical Reagent Co., >99%) was 

refluxed with sodium and distilled to remove the water before use. Triphenyl 

phosphite (TPP, TCI, >97%) was purified by vacuum-distillation before use. 

Anhydrous calcium chloride was dried under vacuum at 180
o
C for 24h. Pyridine (Py, 

Shanghai Chemical Reagent Co., >99%), acetic acid, hexamethylenediamine (HMD), 

hexanedioic acid (HA), methanol (MeOH, Shanghai Chemical Reagent Co., >99%) 

nile red (NR, TCI, >99%) were used as received. Sodium 5-sulfoisophthalate 

(NaSIPA, TCI) and anhydrous ethanol (Acros) were also used as received. 

2. Instruments and Measurements 

Fourier Transform Infrared Spectroscopy (FTIR)  

FTIR and liquid IR measurements were carried out on a Perkin-Elmer Spectrum 

100 PC Fourier transform infrared spectrometer in the range of 500~4500 cm
-1

 with 

an accuracy of 4 cm
-1

. For liquid infrared spectra, first, a droplet of multiblock 

copolyamide vesicles aqueous solution (1mg/mL) was sprayed onto the calcium 

fluoride wafer at room temperature, and then another calcium fluoride wafer was used 

as a cover to encapsulate the MBCPA vesicles solution. 
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Nuclear Magnetic Resonance (NMR) and Intrinsic viscosity 

The Varian Mercury Plus spectrometer was used to obtain 
1
H NMR spectra (400 

MHz) with sulfuric acid (D2SO4-d2) used as solvent. Intrinsic viscosity in sulfuric acid 

(96%) was determined in an Ubbelohde viscometer at 30 ± 0.1 
o
C.  

Thermal Gravity Analysis (TGA) 

The thermogravimetric analysis (TGA) was performed on a Perkin-Elmer 

Q5000IR thermobalance with heating rate of 20 
o
C min

-1
 and nitrogen was used as the 

purge gas. 

Transmission Electron Microscopy (TEM)  

Transmission Electron Microscopy (TEM) analysis was performed on a 

JEM-2100/INCA OXFORD instrument operating at an accelerating voltage of 200 

KV. The samples were sprayed onto the carbon-coated copper grids and air-dried at 

room temperature before measurement. The stained TEM sample was prepared by 

adding 1-3 drops of 3% phosphotungstic acid aqueous into the assembly solution 

(0.1mg/mL). Then, the stained solution was dropped onto the carbon-coated copper 

grids, and the grids were dried at room temperature for 24 h. 

Dynamic light scattering (DLS)  

The dynamic light scattering (DLS) measurement was performed in aqueous 

solution at 25 
o
C at a scattering angle of 90°, using a Malvern Zetasizer Nano S 

apparatus equipped with a 4.0 mW laser operating at λ=633 nm.  

Atomic Force Microscopy (AFM)  

AFM measurements were carried out on a multimode Nanoscope-IIIa Scanning 

Probe Microscope equipped with a MikroMasch silicon cantilever, NSCII (radius < 

10nm, resonance frequency = 300 kHz, spring constant = 40 N/m) with tapping mode 

(TM) at room temperature. The sample for AFM observations were prepared by 

depositing several drops of the solution (1 mg/mL) onto the surface of fresh cleaved 

mica, and the samples were air-dried at room temperature. 
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Fluorescence spectrophotometer (FL)  

For the fluorescence spectra of the vesicles loaded with NR, a fluorescence 

spectrophotometer (LS 50B, Perkin Elmer, Inc, USA) was used, with the excitation 

wavelength set at 600 nm. The concentration of the vesicle solution is 1 mg/mL. 

Micro-Differential Scanning Calorimetry (micro-DSC) 

Micro-DSC measurements were carried out on a VP DSC from MicroCal. The 

volume of the sample cell is 0.509 mL. The reference cell was filled with deionized 

water. The sample solution with a concentration of 1.0 mg/mL was degassed at 25 
o
C 

for half an hour and equilibrated at 10 
o
C for 1h before the heating process with the 

heating rate of 1.0 
o
C/min. 

3. Synthesis and Characterization of MBCPAs 

The multiblock copolyamide, MBCPA (feed ratio: 0.4:1), was synthesized by 

solution polycondensation in two steps following the reaction method described by 

Yamazaki.
1-4

 As show in Fig. S1, PASIP and PA66 segments were synthesized in the 

first step, respectively; in the second step, the multiblock copolyamide was 

synthesized by coupling of these two segments.  

In a typical preparation of PA6SIP segments, a three neck 100mL round bottom 

flask equipped with mechanical stirrer and nitrogen inlet was charged with PA6SIP 

salts and CaCl2 (18%, w/w), 7.1 mL of NMP, 1 mL of pyridine and 1.1 mL of 

triphenyl phosphite. Then, this reaction mixture was heated to 100
o
C for 3 h under N2 

atmosphere. The preparation of PA66 segments was prepared by the similar 

procedure. 

Then, the solution of PA6SIP segment was transferred quickly to the reaction 

vessel of PA66 segment. An additional amount of CaCl2 anhydrous (0.05 g) was 

added in the new reaction system. The reaction was continued for another 22 h at 100 

o
C under N2 atmosphere. Finally, the copolymer solution was precipitated in 250mL 

of methanol. The fibrous product obtained was collected by filtration and then washed 

several times with methanol. The copolyamide as obtained was dried in a vacuum 

oven at 100 
o
C for 24 h. For simplicity, we denoted it as MBCPA.  
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Fig. S1 The synthesis scheme of the multiblock copolyamide. 

Then, viscosimetry in concentrated (96 wt %) sulfuric acid was performed in 

order to determine the intrinsic viscosities [η] of the multiblock copolyamide. Then, 

according to the following semiempirical equation induced by Ruijter and Picken et 

al., the viscosity average molecular weight for the multiblock copolyamide can be 

estimated. 

 

   
   

                          
   

                              

 

Fig. S2 The semiempirical equation of viscosity average molecular weight of the 

multiblock copolyamide. 

Where MAB is the mass of the repeating unit in the block copolyamide. In 

addition, MA and MB represent the molar masses and [η]A and [η]B the corresponding 

intrinsic viscosities of respectively the PA66 and PA6SIP blocks. 

FTIR were used to ascertain the structure of as-prepared MBCPA. Fig. S3 

displays the typical FTIR spectra of the product, which exhibit the characteristic 

bands associated with polyamides. Bands with maximums at 3305 cm
-1

 

(hydrogen-bonded N-H stretching), round 1642 cm
-1

 (C=O stretching), and round 

1540 cm
-1

 (C-N stretching and CO-N-H bending) all correspond to motions associated 

with the amide group. Meanwhile, the absorption bands at round 1043 cm
-1

 (O=S=O 

symmetric stretching) are attributed to the sulfonate groups. The results above should 

prove the formation of copolyamide. 
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Fig. S3 The FTIR spectrum of as-prepared MBCPAs. 

4. The DSC measurements of MBCPAs  

For further demonstrate the multiblock structure of MBCPA, DSC was used to 

prove that the prepared MBCPA was the multiblock copolyamide rather than the 

physical blend of PA66 and PA6SIP. It is well known that there is bigger phase 

separation in the physical blend of PA66 and PA6SIP than the prepared copolyamide 

MBCPA. Hence, the physical blend of PA66 and PA6SIP might show two melting 

peak. However, the MBCPA should display only one peak in DSC measurement 

when the two blocks are not adequate long. Fig. S4 shows a typical DSC curves of 

MBCPAs and the physical blend (mass ratio PA6SIP : PA66 = 0.46 : 1). The blend 

displays two melting peaks around 230 
o
C and 258 

o
C, respectively. Otherwise, the 

MBCPA possess only one melting point of 252 
o
C. These results indicate that the 

prepared MBCPA is not the physical blend of PA66 and PA6SIP. 
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Fig. S4 The DSC curves of as-prepared MBCPAs and the physical blend of PA66 and 

PA6SIP. 

5. The TEM image of MBCPA vesicles 

TEM was used to characterize the morphology of the self-assemblies from 

MBCPAs. Most of the self-assemblies are spherical and closed particles. Fig. S5 

shows some special particles with holes on the surface (white arrows), which 

indicates the self-assemblies are hollow in nature. The hole on the vesicle was 

probably generated by the disruption of vesicles due to the evaporation of water 

during the sampling process for TEM measurement. 

 

Fig. S5 The TEM image of the MBCPA self-assemblies with holes. 
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6. Characterizations of the vesicular structure 

TEM was used to characterize the morphology of the self-assemblies from the 

multiblock copolyamide. Fig. S6 displays a typical TEM image of the intermediates 

of vesicles. From Fig. S6, some lamellar structures, the intermediates of MBCPA 

vesicles with two or more holes and vesicles with closed holes could be observed, 

which supports the self-assembly pathway of the vesicles (Fig. 3) as disclosed by the 

DPD simulations very well.  

 
 

Fig. S6 The TEM image of the self-assembled intermediates for MBCPA vesicles. 

 

7. Coarse-grained MBCPA model and DPD simulation method 

Dissipative particle dynamics (DPD) is a particle-based, mesoscale simulation 

technique. First introduced by Hoogerbrugge and Koelman in 1992
8 

and improved by 

Español and Warren,
9
 DPD method takes some of the merit of molecular dynamics 

(MD) and allows the simulation of hydrodynamic behavior of large complex fluid 

systems up to the microsecond range.  

A. Interactions between DPD Beads. In general, a DPD bead represents a group 

of atoms, and all of the beads in the system are assumed to possess the same volume. 

The force on bead i is given by the sum of a conservative force 
C

ijF , a dissipative 

force , and a random force :  

 

                                         (Equation 1) 

D

ijF R

ijF

( )C D R

i ij ij ij

j i

F F F F


  

200 nm 
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The sum runs over all other beads within a certain cutoff radius Rc. Different parts of 

the forces are given by: 

 ,                                          (Equation 2) 

 ,                                     (Equation 3) 

  ,                                     (Equation 4) 

where , , ,  and  are the positions of bead i and 

bead j, respectively. ,  and  are the velocities of bead i and bead j, 

respectively. αij is a constant that describes the maximum repulsion between 

interacting beads. γ and σ are the amplitudes of dissipative and random forces, 

respectively. ω
C
, ω

D
 and ω

R
 are three weight functions for the conservative, 

dissipative, and random forces, respectively. For the conservative force, we choose 

ωij
C
(rij)=1-rij/Rc for rij<Rc and ωij

C
(rij)=0 for rij≥Rc. ωij

D
(rij) and ωij

R
(rij) follow a 

certain relation according to the fluctuation-dissipation theorem, i.e., ωij
D
(r)=[ωij

R
(r)]

2
, 

and σ
2
=2γkBT, so that the system has a canonical equilibrium distribution. According 

to Groot and Warren,
3
 we choose a simple form of ω

D
 and ω

R
 as following:  

  .                                (Equation 5) 

ξij in Equation 4 is a random number with zero mean and unit variance, chosen 

independently for each interacting pair of beads at each time step Δt. A modified 

version of velocity-Verlet algorithm is used here to integrate the equations of motion. 

For simplicity, the cutoff radius Rc, the bead mass m, and the temperature kBT are 

taken as the units of the simulations, i.e., Rc=m=kBT=1; thus the time unit τ=(mRc
2
/ 

kBT)
1/2

=1.  

Moreover, in our DPD simulations, a harmonic spring force �⃗�𝑖𝑗
𝑆  −𝐶𝑆(𝑟𝑖𝑗 −

𝑟𝑒𝑞
𝑆 )𝑒𝑖𝑗  𝐶𝑆  4 𝑟𝑒𝑞

𝑆  0  was adopted between bonded beads i and j in the polymer. 

Note that  is used to impose connection between beads of a polymer, and the 

choice of C and r0 will not affect the statistical behavior of the system. 

B. System Parameters. In this study, we consider a typical DPD model of 

[(AB)2(CB)5]n (n=3) to represent a multiblock copolyamide (Fig. S7), where “A” 

represents the hydrophilic benzene sulfonic acid sodium salt repeat unit, “B” 

represents the hydrophobic hexamethylenediamine repeat unit, “C” represents the 
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hydrophobic hexanedioic acid repeat unit. Meanwhile, we use “S” represents the 

solvent particle.  

 

Fig. S7 The coarse-grained models for [(AB)2(CB)5]n (n=3) structure. Blue: A type 

bead (benzene sulfonic acid sodium salt block); red: B type bead 

(hexamethylenediamine block); gray: C type bead (hexanedioic acid block).  

 

Generally, the DPD interaction parameters (αij) can be estimated based on the 

relationship between α and the Flory-Huggins parameters χ established by Groot and 

Warren,7  

,                                            (Equation 6) 

where αii=25 is for the same type of bead. To calculate the Flory-Huggins parameters, 

all-atom molecular dynamics (AAMD) simulation was performed for pure and binary 

components as listed in Table S1. Here, all the AAMD simulations were carried out 

by using GROMACS8 software package to estimate χ parameters between different 

components. In the AAMD simulations, the systems of A, B, C, water, A/B, A/C, B/C, 

A/water, B/water and C/water were firstly constructed in a simulation box with 3D 

periodic boundary conditions, respectively. At the beginning of all the simulations, 

energy minimizations were performed to relax the unfavorable local structures of the 

molecules. Subsequently, 5 ns MD simulations were performed using General Amber 

force field9 in NPT ensemble with v-rescale10 thermostat and Parrinello-Rahman 

barostat,
11

 and the velocity Verlet integrator was used for integrating the equations of 

motion. The TIP4P water model is used to calculate interaction parameter between 

polymer segment and water. A time step of 1fs was employed, and all bonds to 

hydrogen were constrained by using LINCS algorithm. The cutoff radius of 10 Å with 

the nearest image convention was used for the van der Waals interaction calculations. 

The electrostatic interactions were evaluated by particle mesh Ewald (PME) method 

with a direct space cutoff distance of 10 Å. All calculations were performed at a 

3.27ij ii ij   
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pressure P = 1.0 atm and temperature T = 303.0 K. The last 1.0 ns trajectory was used 

to calculate potential energy.  

  For binary components i and j, the Flory-Huggins parameter χij can be estimated by 

the following equation: 

 𝑖𝑗  
          

𝑘  
,                                             (Equation 7) 

where Vbead is the average volume of the coarse-grained bead in our DPD simulations, 

it was calculated by the following equation: 

𝑉𝑏𝑒𝑎𝑑  
  ×𝑁 :  ×𝑁 : 𝑐×𝑁𝑐

𝑁 :𝑁 :𝑁𝑐
 

 64∗6:  7∗  : 98∗ 5

4 
 217Å ≈ 7𝑉𝑤𝑎𝑡𝑒𝑟;        (Equation 8) 

kb is boltzmann constant and T is temperature;   𝑚𝑖  is the mixing energy 

  𝑚𝑖   𝑖 (
 𝑐  

 
)
𝑖
  𝑗 (

 𝑐  

 
)
𝑗
  𝑖𝑗 (

 𝑐  

 
)
𝑖𝑗

                     (Equation 9) 

Here, υi and υj are the volume fractions of the components i and j. The cohesive 

energy Ecoh can be obtained by  

 𝑐𝑜  ∑  𝑛𝑏
𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 −  𝑛𝑏

𝑛𝑛
𝑖  ,                                  (Equation 10) 

where  𝑛𝑏
𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 is the non-bonded energy for the ith isolated A or B or C segments in 

vacuum, and  𝑛𝑏
𝑛  is the non-bonded energy of the model with nA or nB or nC in the 

simulation box. In the meanwhile, the solubility parameter δ of each pure components 

can be obtained by the square root of the cohesive energy density,  

δ  √
 𝑐𝑜 

𝑉⁄
2

,                                              (Equation 11) 

where V is the volume of the simulation box. Then, according to Equation 9, the DPD 

interaction parameters αij were calculated from the Flory-Huggins χ parameters and 

shown in Table S2 

 

Table S1. Pure and binary components examined by MD simulations. 

Components 
Number of 

molecules 

Density 

(g/cm
3
) 

Volume 

(Å
3
) 

δ(J/cm
3
)
1/2

 χ 

H2O 5066 0.991 30 47.59 - 

A 100 1.581 264 46.06 - 

B 100 0.773 217 20.34 - 

C 100 1.084 198 29.30 - 

A/B 100/100 1.116 - - 12.62 

A/C 100/100 1.029 - - 15.56 

B/C 100/100 0.927 - - 1.11 

A/H2O 50/4000 1.076 - - -0.21 

B/H2O 50/4000 0.974 - - 10.44 

C/H2O 50/4000 0.997 - - 8.64 
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Table S2. Conservative force constants αij used by DPD simulations. 

 H2O A B C 

H2O 25    

A 24.31 25   

B 59.14 66.27 25  

C 53.25 75.88 28.63 25 

For easy numerical handling, we used reduced units in DPD simulations. However, 

we could convert them to the real units by mapping the bead size and the diffusion 

coefficient. Since the average volume of one bead in DPD simulations is about 210 Å
3
 

and the reduced number density is 3, a cube of size Rc
3
, therefore, corresponds to 630 

Å
3
. Thus, the length scale in the simulations can be obtained as 𝑅𝑐  √630Å 

3
 

8.57Å. Moreover, Groot
12

 showed that the effective time unit τ of the DPD simulation 

can be obtained by matching the bead diffusion coefficient in the simulation to that of 

pure water. According to the analysis at αii=25 and =3, the relationship between the 

effective time unit τ and Nm can be expressed as: 

.                             (Equation 12)

 

In Equation 12, Nm is the number of water molecules that each DPD bead represents, 

which equals 7 in our simulations. Therefore in our DPD simulations, the effective 

time unit τ is 658 ps and the integration time step Δt = 13.2 ps.  

All the DPD simulations were performed in a cubic box of size 60×60×60 Rc
3
 

containing 6.48×10
5
 CG beads by using HOOMD package13-15 on NVIDIA Tesla K20 

GPU. The concentration of the block copolymers is 0.06. Periodic boundary 

conditions were applied.  

In addition, we define the radial density distribution 𝜌 𝑟  as the average number 

density of each type particles at a radial distance 𝑟 from the center of mass of the 

vesicle to the outside of the vesicle. Hence, the integration over 𝑟 yields the total 

number of each type particles. The mathematical expression is as 

𝑁 𝑟  4𝜋 ∫ 𝑟 :∞

0
𝜌 𝑟 𝑑𝑟. However, considering the number density of current DPD 

simulation is 3, all RDFs are divided by the normalization. 

 

2
5/3= 25.7 0.1  [ps]m sim c
m

water

N D R
N

D
  

Page 23 of 33 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



8. The dye release experiments of NR-loaded MBCPA vesicles 

without ultrasonic irradiation 

Fig. S8 shows the fluorescence curves of NR-loaded MBCPA vesicles aqueous 

solutions at room temperature, 35 
o
C and NR-loaded HBPO-star-PEO vesicles 

aqueous solution, respectively. The NR-loaded MBCPA vesicles aqueous solutions 

were maintained at room temperature and 35 
o
C for 14 min, and it can be seen that 

their fluorescence intensities have seldom changed. The results indicate that the NR 

dyes can not been released to water, that is, the MBCPA vesicles have not been 

disrupted. Moreover, from Fig. S8c, we can also find that the fluorescence intensity of 

NR-loaded HBPO-star-PEO vesicles have decreased very slightly after 14 min’s 

ultrasonication. There is only 5% fluorescence decrease, that is, the HBPO-star-PEO 

vesicles have barely been disrupted and they are not ultrasound-responsive. 
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Fig. S8 The fluorescence emission spectra of NR-loaded MBCPA vesicle aqueous 

solution at the room temperature (a) and at 35
o
C (b) without untrasonication, and of 

NR-loaded HBPO-star-PEO vesicle aqueous solution under ultrasonic irradication (c). 

The inset in image (c) shows the accumulative release of NRs from NR-loaded 

HBPO-star-PEO vesicles with ultrasound treatment. 

9. The effect of ultrasound on the morphologies of MBCPA 

vesicles 

Fig. S9 displays the effect of ultrasound irradiation on the morphologies of the 

MBCPA vesicles. The MBCPA vesicles transformed into lots of vesicles fragments 

after ultrasound treatment for 14 min, which indicates that the vesicles should be 

disrupted by ultrasound.  

 

Fig. S9 The TEM image of MBCPA vesicles after ultrasonication treatment for 14 

min. 
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10. The origin of ultrasound-responsive behavior of MBCPA 

vesicles 

To get insight into the nature of ultrasound stimuli-responsive behavior of  

MBCPA vesicles, the micro-DSC of MBCPA vesicles aqueous solution before and 

after their ultrasound treatment were investigated. According to Fig. S10, it is clearly 

noted that the MBCPA vesicle aqueous solution before ultrasound treatment displays 

one endothermic peak with the onset temperature of 82
o
C. It is believed that the 

endothermic peak is attributed to the breakup of intermolecular hydrogen bonds 

among the multiblock copolyamides in the vesicles. As a contrast, after ultrasonic 

treatment for 10 min, the endothermic peak of the MBCPA vesicle aqueous solution 

totally disappeared. In other words, the intermolecular hydrogen bonds in the vesicles 

might be disrupted due to ultrasonic irradiation.  

To further ascertain our speculation, the infrared spectra of MBCPA vesicles 

aqueous solution before and after their ultrasound treatment were studied. Fig. S11 

represent the FTIR spectra obtained in the frequency range of 3000-850 cm
-1

. From 

Fig. S11a, it is noted that the intensity of the band (C-N stretching and CO-N-H 

bending) at round 1539 cm
-1

 decreased after ultrasonic treatment. The decrease of this 

characteristic band of amide group is directly associated with the decrease of the 

average strength of the intermolecular hydrogen bond.
5
 In addition, the peak position 

of the band at about 907 cm
-1

 arising from the stretching vibration of C-CO was found 

to shift to lower frequency, implying that the weakening of intermolecular hydrogen 

bond. What’s more, as shown in Fig. S11b, the absorption bands at round 1475 cm
-1

 

and 1416 cm
-1

 are attributed to the shear vibration of the methylene groups adjacent to 

the amide groups. Obviously, their strengths decreased after ultrasound treatment. 

These two bands are affected by the intensity of hydrogen bond too. Moreover, 

similar changes are observed from peaks at 1278 cm
-1

 and 1199 cm
-1

, which are 

originated from the coupling of the in-plane vibration of CO-NH and the out-of-plane 

vibration of methylene and the bending vibration of methylene, respectively.
6,7

 It is 

clear that their intensities both decreased after ultrasound experiment, proving that the 

intensity of hydrogen bond becomes weaker. As a consequence, it can be believed 

that the intermolecular hydrogen bonds of MBCPA vesicular assemblies should be 
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broken after ultrasound experiment. This is the origin of ultrasound stimuli-response 

behavior of MBCPA vesicles. 

 

Fig. S10 The micro-DSC curves of MBCPA vesicle aqueous solution before and after 

ultrasound treatment. 

 

Fig. S11 The liquid infrared spectra of MBCPA vesicle aqueous solution before and 

after ultrasound treatment. 
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Fig. 3 DPD simulations on the self

at different time intervals. (a) The model [(AB)

MBCPA molecule. (b) Randomly distributed [(AB)

molecules in 

aggregate with

vesicular aggregate with several holes throughout the vesicle 

membrane. (f and g) 

vesicle structure. For each image from (b−h), the upper one is 

the 3D view, while the lower one is the cross

water beads are removed for clarity. Blue: A type bead (benzene 

sulfonic acid sodium salt block); red: B type bead 

(hexamethylene

block). 

Fig. 4 The vesicular structure by the DPD simulation. (a) The 

schematic of the packing modes of polymer chains within the 

vesicle membrane, 

the vesicle. 

(red), C (gray) and S (black

vesicle. The distance from the center of mass of the vesicle to 

the outside of the vesicle is R. Membrane thickness is defined as 

the dist

hydrophilic A segments located on the inside surface and on the 

outside surface.

peaks while the density distribution profile of two hydrophobic 

blocks has only one smooth peak

structure very well. We can also calculate the membrane 

thickness of the vesicle

The calculated membrane thickness of the vesicle is 4.5 nm,

which is very close to the experimental result 4.3 ± 0.4
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