This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Growth of multiple WS$_2$/SnS layered semiconductor heterojunctions

Robert Browninga, Paul Plachindaa, Prasanna Padigia, Raj Solankia, and Sergei Rouvimovb

Both WS$_2$ and SnS are 2-dimensional, van der Waals semiconductors, but with different crystal structures. Heteroepitaxy of these materials was investigated by growing 3 alternating layers of each of these materials using atomic layer deposition on 5 cm x 5 cm substrates. Initially, WS$_2$ and SnS films were grown and characterized separately. Back-gated transistors of WS$_2$ displayed n-type behavior with an effective mobility of 12 cm2V$^{-1}$s$^{-1}$, whereas SnS transistors showed a p-type conductivity with a hole mobility of 818 cm2V$^{-1}$s$^{-1}$. All mobility measurements were performed at room temperature. As expected, the heterostructure displayed an ambipolar behavior with a slightly higher electron mobility than that of WS$_2$ transistors, but with a significantly reduced hole mobility. The reason for this drop can be explained with transmission electron micrographs that show the striation direction of the SnS layers is perpendicular to that of the WS$_2$ with a 15 degree twist, hence the holes have to pass through van der Waals layers that result in drop of their mobility.

Introduction

The unique electrical, thermal, and spin properties of two-dimensional (2D) materials, such as transition metal chalcogenides, are derived from the nature of their atomic bonds. Within each 2D layer, the metal and chalcogenide atoms are held by covalent-ionic mixed bonds and the individual layers are held together by van der Waals bonds$^{1, 2}$. Over the past few years, a significant number of articles have been published on properties of single and few-layered films of semiconducting (e.g., MoS$_2$), conducting (e.g., TiS$_2$), and insulating (e.g., BN) 2D crystals$^{3-14}$. To utilize these materials for fabrication of devices, one would need to produce electrically modulated layers which can be achieved either by doping or via selecting intrinsically doped layers for producing heterojunctions. However, at this time identification of suitable dopants is lagging for these materials, hence heterojunctions are being utilized to achieve this goal. Since single layers have no dangling bonds, van der Waals heterostructures formed by stacking these layers should, in principle, be free of lattice matching constraints and interface states that should lead to high performance devices. Moreover, first-principle density functional calculations of the metal chalcogenide heterojunctions predict unique properties such as formation of optically active states and spatially separated electron-hole pairs$^{4, 5}$. For practical applications, one needs to produce large area heterojunctions of these materials. To achieve this goal, we have been investigating large area growth of these layered materials via atomic layer deposition (ALD). We report below on growth of WS$_2$ and SnS heterostructures, where both of the materials are layered metal chalcogenides, but of different crystal structures.

To date, axial MX$_2$ (where M = transition metal, X = S, Se or Te) heterostructures have been produced mostly by the mechanical transfer process of exfoliated layers. This approach has been utilized to fabricate devices that include p-n diodes$^{6, 7}$, flexible MoS$_2$ transistors with graphene source/drain contacts8 and MoS$_2$ semiconductor with h-BN insulator as a back-gated transistor9, non-volatile memories10, tunnel transistors11, and top gated transistors composed of layers of MoS$_2$, h-BN, and graphene12. Although this approach has demonstrated the feasibility of producing heterostructures, it suffers from possibility of contamination, reproducibility, and lack of ability to scale up3. A technique that overcomes most of these limitations is chemical vapour deposition (CVD).

Growth of van der Waals heterostructures are well suited for CVD since these materials would not require lattice matching. This technique has been used to grow both lateral and vertical epitaxial layers of MoS$_2$ and WS$_2$, WSe$_2$ and MoSe$_2$, and mixed MoS$_2$/MoSe$_2$ and WS$_2$/WSe$_2$ heterostructures$^{14-16}$. However, in all these cases the films are composed of triangular, facetted flakes. To overcome this limitation, we describe below growth of multilayered WS$_2$/SnS stacks of different thicknesses via ALD. Unlike CVD, these films were smooth and continuous as recently demonstrated with MoS$_2$ films17.
ALD is a monolayer stepwise growth process where the reactants are alternately injected into the growth area, and following each reaction, excess species and by-products are purged out. As a result, high quality films are grown over large areas by sequential surface reactions. This process enables precise control of the film composition and thickness as the growth proceeds layer by layer. Hence this approach is ideal for growth of layered materials and heterojunctions.

Experimental

The metal chalcogenide films were grown in a Microchemistry F-120 ALD reactor that can handle two 50 mm x 50 mm substrates per run. The substrates consisted of either p- or n-type Si wafers coated with a film of silicon oxide ranging in thickness from 55 nm to 940 nm. Initially, WS$_2$ and SnS films were grown separately at 390 °C. The precursors for WS$_2$ growth were WCl$_5$ and H$_2$S (9%, balance Ar). The WCl$_5$ source temperature was set at 110 °C and the carrier gas (nitrogen) flow rate was 250 sccm. The pulse sequence per cycle was as follows; WCl$_5$ pulse width was 0.8 s, N$_2$ purge of 1.0 s, H$_2$S pulse of 1.2 s, followed by 1.0 s N$_2$ purge. The film growth rate was 0.125 nm/cycle. Raman signal of a 2.5 nm thick WS$_2$ film (measured with AFM) produced with an excitation wavelength of 532 nm is shown in Fig. 1. This spectrum is similar to what has been reported in literature for the hexagonal lattice, 2H stacked phase. The Raman spectrum is dominated by the first-order optical modes $E_{1g}^{1/2}$ (355 cm$^{-1}$) and A_{1g} (415 cm$^{-1}$) and a second order longitudinal acoustic mode 2LA (M) at the M point, that occurs at 353 cm$^{-1}$. Since $E_{1g}^{1/2}$ and the 2LA(M) modes are close together, they overlap. The peak at around 300 cm$^{-1}$ is due to another 2LA(M).

The SnS films were grown from tin (II) acetylacetonate and H$_2$S. The tin source temperature was 95 °C and its pulse sequence was: tin 0.6 s, N$_2$ purge of 1 s, H$_2$S pulse of 1.2 s, and N$_2$ 1 s. The growth rate was 0.47 nm/cycle. At lower growth temperatures (< 250 °C), the films were composed of mixed phases, however over around 300 °C, only SnS phase films were produced, as determined by Raman spectroscopy. Typical Raman spectrum from a 4.5 nm thick (measured via AFM) is shown in Fig. 2, where the laser pump wavelength was 532 nm. The peaks observed at 95, 162, 190, 225, and 287 cm$^{-1}$ are consistent with those reported from single crystal SnS at 94, 162, 191, 219, and 288 cm$^{-1}$. The origin of these peaks has been attributed to first order single phonon oriented transverse or longitudinal optical vibrational modes.

The crystal structure of SnS has been described as orthorhombic with slightly distorted NaCl lattice. However in contrast to a densely packed NaCl structure, it forms a layered structure with double layers perpendicular to the a axis, and where the layers are held by weak van der Waals bonds. The layered crystal structure and the unit cell of SnS are shown in Fig. 3.

Results and discussion

Heterojunctions were produced by alternately growing WS$_2$ and SnS layers. The thickness of each layer was controlled by selecting appropriate number of cycles of its precursors. Thickness of each material was varied from a couple of layers to 10 layers. The surface of these films was smooth and continuous. Scanning electron microscopy was employed to detect grain boundaries, but none was observed. Raman spectrum of one of these stacks is shown in Fig. 4. It shows the
two optical modes of WS$_2$ but not the LA(M) at 300 cm$^{-1}$. Both of these peaks are shifted towards higher frequency by 2 cm$^{-1}$.

Figure 4. Raman spectrum of the WS$_2$/SnS hetrostructure.

After deposition, a small section of the sample of this stack was cleaved and saved for observation with a transmission electron microscope (TEM). The TEM samples were prepared using focused ion beam (FIB) milling which proved to be difficult since it damaged the films, especially the SnS layers. Hence, a sample composed of thicker films (Fig. 4) was selected for further analysis. A cross-sectional TEM view of a film composed of 3 pairs of SnS/WS$_2$ layers is shown in Fig. 5.

Figure 5. Cross-sectional TEM view of 3 alternating sets of WS$_2$/SnS layers, starting with WS$_2$ at the bottom. Scale marker is 30nm.

This sample had the thickest SnS layer and suffered the least FIB damage, however the damage at the interface is evident. The low magnification micrograph is shown to demonstrate the continuous nature of the film. The darker layers are WS$_2$ and the lighter layers are SnS.

A close up of one of the WS$_2$/SnS interfaces from an undamaged portion is shown in Fig. 6, where a continuous transition can be observed from a layer of WS$_2$ to SnS. The four layers of WS$_2$ and the SnS lattice are clearly visible. These van der Waals materials were selected to study how they would align since they have different crystal structures.

Figure 6. Cross-sectional TEM micrograph of the SnS/WS2 interface. The scale marker represents 1 nm.

The WS$_2$ displays a clear lattice only in the axial direction, where the spacing between the layers is measured to be about 6.2 Å. A comparison of this value with unstrained WS$_2$ displays a clear lattice only in the axial direction, where the spacing between the layers is measured to be about 6.2 Å. A comparison of this value with unstrained WS$_2$.

Figure 7. (a) FFT of SnS part of the structure. Lattice axes are shown on the FFT. Blue is the c* axis of SnS and red is the b* axis of SnS. (b) FFT of the WS$_2$ part of the structure.
(c=6.145 Å) [JCPDS 08-0237] confirms that the film is monophased and hexagonal. In the SnS portion, the peaks clearly visible in the FFT in figure 7a correspond to the [0,1,1] family of reflections, and thus the orientation corresponds to the [100] zone axis. The (0,0,1) reflections are not present due to reflection condition in Pnma group. The lattice parameters were determined to be c=4.06 Å, and a=4.36 Å, which matches with Herzenbergite SnS (JCPDS No. 39-0354, b= 3.9838 Å, c = 4.3291 Å). There is a stretch of about 2.2% in the b-direction with Herzenbergite SnS (JCPDS No. 39-0354, b= 3.9838 Å, c = 4.3291 Å). There is a stretch of about 2.2% in the b-direction with Herzenbergite SnS (JCPDS No. 39-0354, b= 3.9838 Å, c = 4.3291 Å).

It is interesting to note that although both WS$_2$ and SnS are layered materials, the Fast Fourier Transform analysis of the HRTEM images reveals that the orientation of SnS layers is completely different than the WS$_2$ layers. In order to reveal mutual orientation of the two layers we took an FFT from the interface area. As can be seen from figure 8, the angle between c* (WS$_2$, green) and c* (SnS, blue) is close to 15 degrees. The closest low index zone axis, which corresponds to this tilt is the [410] axis, with angle to [001] being 14.03°, thus the orientation relation between the two components of the heterostructure is [410][SnS]/[0001]WS$_2$. This angular orientation continues at other interfaces in the stack. This is quite counterintuitive, since one would expect that two layered materials to pack in a way that preserves their layered structure within the heterostructure, as in the case of MoS$_2$/WS$_2$ heterojunctions, where stacked layers of MoS$_2$ and WS$_2$ preserved the 2H stacking16. In this case both the layers had similar 2H phase crystal structures16. However, in our case the two layered materials have different crystal structures where the layered nature of the materials is preserved, however the growth occurs at an angle with respect to their van der Waals planes. This answers one of the questions we intended to address concerning heteroepitaxy of layered materials of different crystal structures. The misaligned growth of the two materials would have implications on the electrical properties of the heterostructures. In order to better understand the effect of this orientation, back-gated transistors of WS$_2$, SnS, and the heterostructure were fabricated and characterized. The individual SnS and WS$_2$ devices were fabricated with films whose Raman signatures are presented in figures 1 and 2 and have thicknesses (4.5 nm and 2.5 nm respectively) roughly equal to those of the heterostructures shown in Fig. 5. Optical lithography was used to pattern source and drain contacts. This was followed by electron beam deposition of 30 nm of Ti, followed by 30 nm of Au for the WS$_2$ FETs and only Au film as the contact for SnS FETs. With the gate bias set at zero, the drain current versus drain voltage profiles were recorded. This showed a linear profile, indicating ohmic contacts. Next, the dependence of the drain current (Id) on the gate voltages (Vg) were examined. Field-effect mobility (µ) was extracted from slope of this curve in the linear region by using the expression

$$\mu = \frac{N_d}{V_g} \frac{L}{W} \frac{I_d}{C}$$

, where V$_g$ is the drain voltage (0.1 V), C is the gate capacitance per unit area, and L and W are the channel length and width, which were 6 µm and 100 µm, respectively25. The same procedure was then followed for the heterostructure films. Back-gated SnS transistors with Au contacts and gate oxide of 55 nm showed a p-type behaviour, with an effective mobility of 818 cm2/V·s. On the other hand, current transport in the WS$_2$ transistors with Ti/Au contacts is dominated by electrons, hence displayed an n-type transport with a mobility of 12 cm2/V·s. Plots of log of drain current (I$_d$) as a function of back gate voltage (V$_g$) for both these devices are shown in Fig. 9. The transfer characteristics of the heterojunction stack consisting of six layers composed of alternating 3 layers each of WS$_2$ and SnS (of Fig. 5) are shown in Fig. 10. It shows an ambipolar conductance, which was not surprising based on the individual transistors. For positive drain bias and gate voltage, it represents an n-FET while for negative drain bias and gate voltage it behaved as a p-FET. The effective mobilities, measured at room temperature, were 48 cm2/V·s for n-FET and 20 cm2/V·s for p-FET. While there is an increase in the mobility of WS$_2$, the p-type mobility of SnS drops. We attribute the significant drop in the hole mobility to the resistance of hole transport through the layer boundaries of SnS due to its alignment with respect to WS$_2$. This is consistent with the reported significant decrease in mobility of holes traveling from parallel to perpendicular direction of the van der Waals layers26. The I$_{on}$/I$_{off}$ ratio for this device was 104. Also, since SnS is p-type and WS$_2$ is n-type, we expect a depletion region at the interface. This is one of the issues we plan to examine in the future.

Conclusions

Figure 8. FFT of the interface section of figure 6. The green lattice corresponds to the WS$_2$ interlayer spacing. The blue c* axis of SnS, red b* axis of SnS.
We have utilized ALD to grow multiple heterojunctions composed of WS$_2$ and SnS layers over 5 cm x 5 cm silicon oxide coated silicon wafer substrates. The film surfaces were smooth and continuous. Cross-sectional TEM analysis showed that SnS layers grew at an angle of about 15 degrees with respect to WS$_2$ layers. This is most likely due to the different crystal structures of the two materials. Back-gated transistors showed that as a consequence of this misalignment, the hole mobility dropped significantly since the carriers had to pass through the van der Waals bonds. Currently, we are examining ALD grown heterojunctions of layered materials with similar crystal structures. We plan to report these results in the near future.

![Graph](image)

Fig. 9. Transfer characteristics of (a) WS$_2$ FET and (b) SnS FET.

![Graph](image)

Fig. 10. Transfer characteristics of the heterojunction FET.

References

