
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Nanoscale

www.rsc.org/nanoscale

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Layered nano-gratings by electron beam writing to 

form 3-level diffractive optical elements for 3D phase-

offset holographic lithography  
 

Liang (Leon) Yuan* and Peter R. Herman 
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering and Institute 

for Optical Sciences, University of Toronto, 10 King's College Road, Toronto, Ontario,  

M5S 3G4, Canada 

 *Email: leon.yuan@mail.utoronto.ca 

 

Abstract: Multilevel nanophotonic structure is a major goal in providing advanced 

optical functionalities such as found in photonics crystals and metamaterials. A three-

level nano-grating phase mask has been fabricated in electron-beam resist (ma-N) to meet 

with the requirement for holographic generation of diamond-like 3D nanostructure in 

photoresist in a single exposure step. A 2D mask with 600 nm periodicity is presented for 

generating first order diffracted beams with preferred π/2 phase shift on the X- and Y- 

axes and with sufficient 1
st
 order diffraction efficiency of 3.5% at 800 nm wavelength for 

creating 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is 

anticipated to provide an 8% complete PBG upon silicon inversion. A thin SiO2 layer was 

used to isolate the grating layers and multiple spin-coating steps served to planarize the 

final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM 

inspection and verification of each insulating grating layer. This e-beam lithographic 

method is extensible to assembling multiple layers of nanophotonic structure.    

  

1. Introduction 

Phase mask lithography has become a widely used method in fabricating a variety of three-dimensional 

(3D) periodic nanostructures [1-8] owing to the inherent stability of phase-locked interfering beams and the 

rapid fabrication time. Typical binary masks of 2D square symmetry are limited in producing body 

centered tetragonal (BCT) structures in photosensitive materials with potential only for generating 

directional stopbands or partial photonic band gaps (PBGs) [1, 2].  Hence, multi-level phase masks with 

phase-shift control are more desirable in offering favorable symmetry that benefits the formation of 

complete PBGs [3, 4] when using materials with sufficiently high refractive index. However, the formation 

of PBGs in the visible or telecommunication spectrum imposes significant demands on the phase mask 

design [5, 6], requiring precise multi-layered structuring of optical elements with 100-nm resolution. 

 

A variety of lithographic and processing techniques have been demonstrated that enable high resolution 

nanopatterning of single-layered optical materials, which in turn can be assembled into 3D nanostructures 

with multiple processing steps. Electron beam lithography together with layer-by-layer assembly enabled 

the formation of a 3D photonic crystal in III-V semiconductors to offer a complete PBG [9]. Focused ion 

beam milling has further provided high resolution subtractive processing to form 3D metamaterial with 

alternating dielectric and metallic layers [10].  However, such methods have not been widely applied in 

forming phase masks for interference holography of 3D photonic crystal templates [11].  Gray-scale 

lithographic processing provides variable level diffractive optics, for example in polymer [12], 

photosensitive hybrid glasses [13] or diamond [14], but is challenging to scale down to the hundreds of nm 

resolution. Alternatively, multi-level phase masks with approximately 1-µm grating periods have been 

laser-structured in photoresist and glass but lack precision in phase registration of the gratings [6, 15, 16]. 

We seek to improve the resolution of such multi-level phase masks by additive processing of transparent 

resist, and using electron beam lithography together with thickness-controlled layers for phase-locking of 

the diffracted beams. 

 

In this research, two-layered phase gratings have been formed in transparent dielectric resist (350 nm thick 

ma-N resist) in multiple processing steps by electron beam lithography.  A thin SiO2 layer was used to 

isolate the grating layers and followed with dual spin-coating steps to planarize the final resist coating 

layer. In this way, independent pattern control on each of the two layers was demonstrated on polymeric 
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dielectric materials. This method provided a three-level phase mask with 600 nm X- and Y-axis periodicity, 

first order beam efficiency of up to 3.5% for 800 nm wavelength light, and appropriate π/2 phase shift such 

that diamond-like 3D nanostructure could be fabricated in SU-8 photoresist. Because the polymeric resist 

was highly insulating and challenging to image by SEM, each nanostructure layer was verified by a soft-

coating of conductive polymer that could be removed without substrate damage and thereby enable step-

by-step SEM inspection. The 600 nm periodicity was selected to meet the important design challenge of 

reducing the axial-to-lateral period ratio (c/a) of the exposed 3D periodic structure to reach the ideal value 

of c/a≈√  [17] that predicts the widest expected PBG (i.e. 24-27% for inverted silicon [4, 18]) near the 

telecommunication wavelength of 1.5 µm.  Experimental demonstrations typically report c/a values above 

~3.6 [2, 6, 11, 15, 16]. The precision of e-beam writing is promising here for creating more advanced 

diffractive optical components based on multi-layered dielectric nano-grating masks, with benefits of inter-

layer phase shift control that is not possible with traditional binary (single layer) phase masks. 

 

2.  Phase Mask Fabrication 

The conceptual approach in forming two-layered phase masks in e-beam resist is outlined in Fig. 1. A glass 

substrate (Fig. 1a) was first coated with a single layer of transparent e-beam resist to a thickness tuned for 

optimal half wavelength of λ/[2(n-1)] or π phase optical delay to maximize the 1
st
 order diffraction 

efficiency. E-beam exposure and development of the resist were then used to form the one-dimensional 

(1D) binary grating as shown in Fig. 1b.  A thin conformal silica isolation layer (Fig. 1c) served to 

physically and chemically isolate the first layer grating from a second resist coating, which upon additional 

e-beam patterning and development led to the crossed dual-layered nano-grating structure as depicted in 

Fig. 1d-i. To improve on an uneven coating thickness anticipated in the top resist layer (Fig. 1d-i), two or 

more successive spin-coatings of the resist were introduced to planarize the top surface of the second resist 

layer prior to e-beam patterning.  In this way, smooth crossed grating lines are expected as shown in Fig. 

1d-ii on which the multi-level phase mask can be based. 

In order to verify the thickness, period and uniformity of the grating nanostructures at each processing step 

(Fig. 1b, 1c and 1d), a “soft” conformal coating of a conductive polymer was necessary for SEM 

inspection, for example, over the first grating surface as shown in Fig. 1b-i. A reversible conductive coating 

is desired that returns the sample to the original state. 

Both positive- and negative-tone e-beam resists were tested to serve as transparent grating layers. Negative 

e-beam resist (micro resist technology GmbH, ma-N 2405) was spin-coated on glass at 3000 rpm for 30 s 

and baked at 90 ⁰C for 90 s on a hotplate to yield a 350 nm thick film. A thin conductive layer (20 nm 

thickness) of either aquaSAVE (Mitsubishi Rayon) or Cr was deposited to assist with charge dissipation 

during the resist patterning with an electron beam lithography system (Vistec, EBPG 5000+) at an 

optimized 250 µC/cm
2
 dosage.  After exposure, the aquaSAVE or Cr layer was removed with a water wash 

or with CR-7 solution (Cyantek), following the manufacturer’s recommendations.  The photoresist was 

immersed in developer of ma-D 525 (micro resist technology GmbH) for 135 s and dried with Nitrogen gas 

flow. Alternatively, a positive-tone resist of ZEP 520A (ZEON Chemicals) was spin-coated on glass at 

6000 rpm for 60 s and baked at 180 ⁰C for 2 minutes on a hotplate to form a 360 nm thickness. Similar 

procedures were followed for conductive coating and removal, and e-beam exposure was optimized at 280 

µC/cm
2
 dosage.   The resist was immersed in developer ZED-N50 (ZEON Chemicals) for 60 s, fixed in 

MIBK:IPA (9:1 in volume, MicroChem) solution for 30 s and dried in a Nitrogen gas flow.  

In the case of positive-tone resist, e-beam exposure of a second resist layer was found to unavoidably 

penetrate and alter the underlying first layer.  In the case of the negative-tone resist (ma-N), this problem 

was solved with a physio-chemical isolation layer. A conformal SiO2 layer of 40 nm thickness was  

sputtered (AJA International, ATC Orion 8 Sputter Deposition System) over the first grating layer by the 

standard manufacturer procedure to provide a robust nano-grating substrate (Fig. 1c) on which second 

grating layer patterns could be generated and removed until the desired grating patterns (Fig. 1d-ii) were 

obtained. The second layer grating was formed with a similar procedure as the first layer. Spin rates were 

varied to independently control the layer thicknesses. 
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For SEM imaging (Hitachi, S3400 and S5200), a 20-nm thick conformal coating of aquaSAVE 

(Mitsubishi Rayon) was formed by dispensing directly over the grating layer (as in Fig. 1b-i) at 1000 rpm 

for 40 s and then baking at 90 ⁰C for 60 s. Following SEM imaging, the polymer was removed by water 

wash, enabling a procedure for non-destructive inspection of the gratings. To verify that the aquaSAVE 

coating was sufficiently conformal, a single-layer grating was first formed in ZEP 520A e-beam resist into 

the square array pattern of 600 nm square holes as shown in the atomic force microscopy (AFM) image in 

Fig. 2a.  The AFM scan was repeated (Fig. 2b) following a 20 nm soft coating of aquaSAVE.   The cross-

hole profiles (bottom images) of the uncoated and coated samples revealed nearly identical profile shapes 

with respective 360 nm and 350 nm hole depths, attesting to a conformal coating of 20nm thickness and 

±10 nm variation.  

 
 

Fig. 1. Flow chart for processing a two-layered nano-grating mask. e-beam resist was spun over a glass 

substrate (a) and e-beam patterned to form a nano-grating (b), followed by silica conformal coating (c), on 

which  second grating layer patterns by a single (d-i) or double spin-coating (d-ii) could be repeatedly 

generated and removed until the desired grating patterns were generated (d-ii).  Such high-resolution e-

beam written patterns were verified by SEM inspection (b-i).  A conductive polymer was spin-coated to 

provide enhanced conductivity of the nanostructured sample for the SEM inspection, after which the 

sample was recovered by washing away the conductive polymer layer without damaging the lower 

nanostructures. 
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Fig. 2 Atomic force microscope (AFM) observation of conformal soft coating. Top view AFM images of a 

representative square hole (600 nm square) array sample patterned by e-beam lithography (a) before and (b) 

after aquaSAVE soft-coating. AFM profile images reveal similar profile-shape and ~360 nm thickness and 

~350 nm of hole depth (c) before and (d) after aquaSAVE coating, respectively. The non-square shape in 

(d) is attributed to mismatch in stitching the horizontal scan lines as often occurs in AFM.  

The higher resolution limits of the aquaSAVE coating was further examined over finer grating patterns 

formed in (2D) square arrays of 80-120 nm diameter round holes spaced with 400 nm X- and Y- periodicity 

on single-layer ZEP resist. Figure 3 shows low (a-d) and high (e-h) resolution SEM images of the uncoated 

resist grating (Fig. 3a and 3e), the soft-coated grating (Fig. 3b and 3f), and the grating after removal of the 

soft coating (Fig. 3c and 3g).  One notes a significant reduction of the charging effects in Fig. 3a and 3e 

with the aquaSAVE coating (Fig. 3b and 3f) that enables highly resolved imaging of the holes. Close 

inspection (Fig. 3f) reveals a charging effect that is highly localized (~10 nm) and seen to amplify the 

imaging contrast at the edges of the hole perimeter.  The reversibility of the coating process is noted by the 

return of the large-area charging effect in Fig. 3c and 3g, recorded after removal of the soft coating. The 

underlying grating could be further processed (Fig. 4 below) without any observable consequences arising 

from the aquaSAVE coating steps.  A comparison of the soft coating (Fig. 3b and 3f) with a traditional Au 

coating (~20 nm) on the same grating structure (Fig. 3d and 3h) shows identical nano-structural features 

were resolved with similar precision, for example, the ~40 nm gap of the crack seen in this damaged film.  

Hence, the aquaSAVE offered a reversible conformal coating of good conductivity to enable high 

resolution SEM imaging of the dielectric nano-gratings at low 5 kV voltage. 

    

 

 Fig. 3 SEM pictures of nanostructured e-beam resist (ZEP) at low (a-d) and high (e-h) resolution, 

recorded as formed (a, e), with a 20 nm aquaSAVE coating (b, f), after removal of the aquaSAVE 

coating (c, g), and with a Au coating (d, h). SEM voltage of 5 kV was used for all images except for 

the 10 kV value for (d).  
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Dual-layered grating structures (Fig. 4) were best formed with the negative-tone ma-N resist as noted 

above. A first layer of ma-N resist with a pattern of variable 2.5 and 1 µm width lines was e-beam 

fabricated and coated with aquaSAVE for the SEM imaging in Fig. 4a.  After removal of the aquaSAVE, 

the grating was coated with the SiO2 isolation layer and a single-layer coating of ma-N resist.  Orthogonally 

oriented lines were patterned only into the top layer by e-beam, producing the SEM image in Fig. 4b after 

coating with aquaSAVE. Bumps were clearly visible at the overlapping lines in the SEM image (white 

arrow in Fig. 4b) and were verified by AFM to protrude by 50±5 nm for the narrowest crossing lines (1 µm 

width) as seen in Fig. 4c.  To form a more uniform grating thickness, the 2
nd

 resist layer was fully removed 

by acetone immersion to recover the original silica-coated first-layer resist as verified by the SEM image of 

Fig. 4d.  Two sequential spin coatings of ma-N resist were deposited and processed by the same e-beam 

pattern, generating the more uniform double layer as noted by the SEM image in Fig. 4e.   The crossed line 

gratings are seen by AFM in Fig. 4f to have produced three distinct layers, all with uniform layer 

thicknessess of 0, 350 nm and 680 nm to within ±5 nm variation. The formation of such gratings was 

verified to small grating periods of 400 nm while the thickness of individual grating layers could be varied 

in the spin coating steps to enable high-resolution and tunable phase level design of 2D 3-level phase 

masks. 

 

 
 

 

 

 

 

 

3. A multi-level nano-grating phase mask: Design and optical performance 

 

A 3-level phase mask design (Fig. 4f) was sought for holographic formation of 3D photonic crystal 

templates in photoresist with the potential for generating a 3D complete PBG in the telecommunication 

window around 1.5 µm wavelength.  For inversion in high refractive index material such as silicon, an 

optimal c/a ratio in the range of 1.0 to 1.7 has been found in calculation [19] to provide wide band gaps for 

the case of diamond-like symmetry. PBG modeling with the plane wave expansion method [20] typically 

centers the stopband in this diamond-like case at a/λPBG≈0.4.  This imposes a phase mask design with 

transverse period of a≈600 nm. When targeting a central c/a ratio of ~1.5 together with this small grating 

period, one requires a large illumination wavelength of ~886 nm that generates large diffraction angles of 

67.4° in a typical photoresist (SU-8, n=1.6).  For practical purposes, our design is shifted to a more 

practically available wavelength of 800 nm from a Ti:Sapphire laser.    

Fig. 4 SEM images of nanostructured e-beam resist (ma-N) showing (a,d) parallel 1D lines after 

coating with a 40 nm SiO2 isolation layer and conductive polymer (aquaSave; 20 nm) and (b) crossed 

doubled-layered lines with single spin (b,c) and doubled (e,f) spin coatings of resist to form the 

second layer.  Acetone washing of the sample in (b) recovered (d) the original first nanostructure 

layer, to permit re-processing with a double spin-coating to present a (d) more uniform top surface 

cross-line structure (compare white arrows in (b) and (e)). AFM profiles of samples (b) and (e) 

revealed surface variation of (c) ~50 nm and (f) < 10 nm, respectively. The scale bar is 5 µm.  
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A major challenge in the phase mask design was in overcoming the inherently low first-order 

diffraction efficiency available from this combination of sub-wavelength grating period (a/λ=600 nm/800 

nm) and modest refractive index contrast (∆n=n-1=0.6) for ma-N resist and air phase mask. Theoretical 

calculation of 3D isointensity patterns were systematically applied for various grating patterns based on 

finite-difference time domain (FDTD) calculations of diffraction efficiency of the 0
th

 order (0°) and four 

primary 1
st
 order beams (67.4°) tilted azimuthally in symmetric ±X and ±Y directions. The interference 

intensity contrast generated by the phase mask was first examined as a function of the 0
th

 order intensity for 

the case of symmetric diffraction with equal efficiency amongst the four 1
st
 orders, and plotted in Fig. 5 for 

the cases of 0 (red) and π/2 (blue) phase shifts between the X- and Y-axis orthogonal orders. The 

interference contrast follows similar trends for both phase shift cases, with large contrast of ≥0.83 found 

once the 0
th

 order intensity falls below 80%. Bicontinuous 3D periodic structures are anticipated by the 3D 

isointensity patterns as shown in the center-left and center-right inset images for the respective BCT and 

diamond-like cases that arise from 0 and π/2 phase shifts, respectively.  Lower 0
th

 order intensity will lower 

the axial contrast (vertically), eventually leading to the 2D-periodic structure shown as the left-most inset 

image for the extreme case of 0% intensity of the 0
th

 order beam.  In the other direction, higher 0
th

 order 

intensity (>80%) reduces the interference contrast for all 3D directions, eventually leading to formation of a 

uniform solid structure as shown by the right-most image for both phase shift cases.   At intermediate 

values of phase shift, for example, the values of π/8, π/4 and 3π/8 phase shift plotted (purple circle) at 80% 

of 0
th

 order intensity, the interference contrast was found to lie between the BCT (red) and diamond-like 

(blue) data curves. 

Practical limits in the present phase mask design lead to very low 1
st
 order diffraction efficiencies that 

only reach a maximum of 7% and 5% for the 0 and π/2 phase shift cases, respectively, according to FDTD 

modeling. This restricts the practical range for phase mask exposure to 0
th
 order intensities above 72% 

(solid blue dot) and 80% (solid red dot), respectively in Fig. 5.  However, sufficient 3D interference 

contrasts of greater than 0.5 are still available for 1
st
 order diffraction efficiencies of 0.75% and 1.5% for 0 

and π/2 phase shift cases, respectively.  The remaining challenge is to optimize the thickness and line-

widths of the gratings in the dual phase mask layers for both large and symmetric efficiencies on the X- and 

Y-axes.   

As a starting point of phase mask design shown conceptually in Fig. 6a inset, the full thickness (Hy) of 

the two phase mask layers of ma-N resist were set to λ/[2(n-1)]=667 nm to provide a π phase optical delay 

between the top and bottom grating surfaces that typically maximizes the 1
st
 order diffraction efficiency for 

our 800 nm source.  After several iterations of balancing the orthogonal diffraction efficiencies, the X and 

Y oriented grating line thicknesses of Hx and Hy, respectively, were fixed at 350 nm and 700 nm, 

respectively, and followed by FDTD calculation of 1
st
 order diffraction efficiencies.  Figure 6a plots the X- 

(blue) and Y-(red) diffraction efficiency generated by the thicker (Hx) and thinner (Hy) gratings, 

respectively, as a function of identical Wx=Wy grating line widths. One notes a high X-Y axis asymmetry in 

these 1
st
 order efficiencies with a peak efficiency of 6.4% on the Y axis (red) for grating line width of 

Wx=Wy=200 nm.  However, a weaker symmetric efficacy of 2.85% is noted at the blue-red crossing point 

for grating line widths of Wx=Wy=295 nm. The diffraction efficiencies of the positive and negative 1
st
 

orders are identical owing to the grating symmetry. 
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To examine for a higher symmetric diffraction efficiency, the grating width Wx was optimized (red 

square) for each value of Wy to generate the peak symmetric diffraction efficiency plotted (black diamond) 

in Fig. 6b as a function of the grating bar width Wy. The hatched zone eliminates impractical phase mask 

designs where high aspect ratio grating lines of Hx/Wx≥1.75 cannot be reproducibly generated in the 

present resist. Hence, an optimal phase mask design is identified for grating line widths of Wy=250 nm and 

Wx=280 nm to provide a balanced diffraction efficiency of 3.6%, in contrast with the lower 2.85% value 

found for the case of symmetric grating line widths of Wx=Wy=295 nm in Fig. 6a.  

 

 

 

 

Fig. 6 (a) Diffraction efficiency of X- and Y-diffracted 1st order beams of 800 nm wavelength, 

calculated by FDTD through a doubled-layer cross-grating phase mask (image inset) of 600 nm 

period, and plotted as a function of symmetric grating line widths such that Wx=Wy. (b) Similar 

diffraction calculation on the orthogonal X- and Y- 1st order beams, plotted as a function of Wy 

grating width and showing the optimal grating line width of Wx for each Wy value that produces 

symmetric X- and Y- diffraction efficiency.  The hatched zone requires unusually high aspect ratio 

(Hx/Wx≥1.75) grating lines. The phase mask layers (ma-N, n=1.6) were Hx=700 nm and Hy=350 nm 

thick. 

Fig. 5 Intensity contrast of the 3D interference pattern (0th, and four equal intensity ±X and ±Y 1st 

order beams) generated holographically, plotted as a function of normalized 0th order intensity for 0 

(blue) and π/2 (red) phase shift in the  orthogonal 1st order diffraction beams. The purple points 

(from top to down) result from orthogonal phase shifts of π/8 to π/4 and 3π/8.  The pink star is 

simulated for the 3-level phase mask of Fig. 7d. The four inset images are representative isointensity 

surfaces for the case of (left) 2D structure formed with zero intensity of 0th order beam, (middle left) 

3D BCT structure formed with in-phase orthogonal diffracted beams, (middle right) 3D diamond-like 

structure formed with π/2 phase shift of orthogonal diffracted beams, and (right) uniform intensity in 

the limit of 100% intensity of the 0th order diffracted beam. 
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Various single and two-layered phase masks were fabricated with the e-beam patterning procedures of 

section 2. The design schematic of binary and 3-level masks in Fig. 7a and 7b, respectively, resulted in the 

nanostructured e-beam resist shown by the SEM images in Fig. 7c and 7d, respectively. The 2D square 

array of holes in Fig. 7c was formed in a single-layer of 360 nm thick ZEP resist, while the two crossed 

linear gratings in Fig. 7d were formed with ≤50% duty cycle in two separate ma-N resist layers. An AFM 

image of this surface in Fig. 7e reveals phase mask layers with thicknesses of Hy=350 nm and Hx=700 nm. 

Single-layer masks such as the one shown in Fig. 7c were evaluated for their diffraction efficiency with 

either an 800 nm femtosecond laser source (Spectra-Physics, Spitfire Pro 40F) or a 795 nm cw laser diode 

(Vixar Inc., custom package). Symmetric efficiencies meeting up to the theoretical maximum predicted at 

5.4% were observed for the 1
st
 orders in X- and Y-axes when Wx=Wy=250 nm.  Dual layered phase masks 

such as in Fig. 7d were fabricated with a range of Wx and Wy values from 250 nm to 400 nm, producing 

symmetric and asymmetric 1
st
 order diffraction efficiencies in the range of 2.7% to 3.6%. The highest 

symmetric efficiencies of 3.50% and 3.48% were measured for the Y- and X-axis 1
st
 orders, respectively, 

for samples with Wy and Wx ranging within 270±20 nm and 290±10 nm, respectively.  These values 

correspond well with the nearly optimal symmetric diffraction efficiency of 3.6% found theoretically for 

phase mask line widths of Wy=250 nm and Wx=290 nm as plotted in Fig. 6b for 600 nm period and 800 nm 

wavelength.   

 To evaluate the potential of the present 3-level phase mask for patterning photonic crystal templates, 

isointensity patterns were calculated for the binary and 3-level phase masks for the case of 800 nm 

wavelength exposure and symmetric 1
st
 order diffraction efficiencies of 4.0 and 3.50%.  The results shown 

in Fig. 7f and 7g for the respective binary and 3-level phase masks, show similar structural periodicities of 

600 nm laterally and 1.13 um axially. After accounting for axial shrinkage typically observed at ~35% in 

SU-8 photoresist [21-23], one anticipates generating a c/a ratio of ~1.22 with the phase mask.  The 3D 

symmetry of the isointensity patterns follow the expectation of BCT-like (Fig. 7f) for the binary mask and 

diamond-like tetragonal (Fig. 7g) for the multi-level mask.  A higher magnified view of such 3D symmetry 

is shown in the inset pictures of Fig. 7f and 7g for the case of inversion of the photoresist template with a 

high index material such as silicon (n=3.45).  Filling fractions of 0.55 and 0.34, respectively, were selected 

for optimal balancing of the 3D bicontinuity and generating the widest PBG.  

A plane expansion method [20] was applied to the ideal inverted silicon nanostructure shown in Fig. 7f 

(inset) and 7g (inset) to produce the photonic band dispersion diagrams in Fig 7h and 7i, respectively. The 

BCT-like structure produced with the binary mask does not support a complete photonic band gap (Fig. 

7h), generating only small directional stopbands such as in the Γ-Z direction.  In contrast, the diamond-like 

structure produced with the multi-level mask presents a complete photonic band gap as indicated by the 

gray-colored zone in Fig. 7i. The photonic band gap is omni-directional, 8.2% wide and centered at 

a/λ=0.3866, which corresponds to a central stop band position at 1580 nm, close to the 1500 nm 

wavelength we initially targeted for the telecommunication band. 

In order to verify the holographic fabrication of such 3D PBG templates, the presently optimized phase 

mask devices were exposed by a 800-nm femtosecond laser into thick photoresist (40 µm of unmodified 

SU-8, MicroChem) to drive two-photon absorption.  However, a low laser coherence length of 3.5 µm 

precluded periodic structuring through the full 40-m thickness of the resist and the phase masks were 

therefore tested with a non-optimal wavelength of 514.5 nm, provided by an Argon ion cw laser (Coherent, 

Innova Sabre MotoFred). For the dual layer phase mask, the top resist layer was reduced from 350 to 220 

nm thickness (Hy-Hx) in order to provide the π/2 phase shift required on the X- and Y-oriented diffraction 

beams with this 514.5 nm source. To thin the layer, diluted ma-N resist was spun at a higher speed (6000 

rpm/s) and a longer period of time (60 s) and repeated to planarize the top surface. Following previously 

optimized procedures, the photoresist was modified with 0.3% weight HNu-470 (Spectra Group Ltd.) 

photo-initiator and 2.5% OPPI co-initiator (Spectra Group Ltd.) [16, 23], exposed at ~400 mW/cm
2
 

uniform intensity for 5-20 s, soft-baked and post-baked over a temperature ramp of 65 
0
C and 95 

0
C in a 

period of 1 to 10 min, and immersed in SU-8 developer (MicroChem) for 6 to 10 min at room temperature.  

3D photonic nanostructures were observed to be generated fully through the photoresist thickness, for 

example, as shown in the SEM top view images of Fig. 7j and 7k for the respective binary and double-
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layered phase mask cases. The 3D nanostructures in Fig. 7j and 7k show the expected BCT and diamond-

like woodpile symmetry, respectively, evidenced by respective square symmetry (Fig. 7j) and vertically 

offset X- and Y- oriented bars (Fig. 7k) that were generated by the 0 and π/2 phase shift differences in the 

respective phase mask layers.  The inset of Fig. 7k shows a well-matched isointensity surface calculated for 

the present exposure conditions of symmetric 3.5% efficiencies of the individual first order beams 

generated by the incident 514 nm light. 

Figure 7l (blue line) shows the normalized Γ-Z transmission that was measured through the sample of 

Fig. 7k to have formed a moderately strong stopband near 1.58 µm wavelength with 60 nm width 

(FWHM). The spectrum matches with the FDTD calculation (Fig. 7l, red line) that was inferred from the 

3D nanostructure shown in Fig. 7k, predicting a stronger Γ-Z directional stopband with slightly wider width 

of 80 nm (FWHM). The present crystal structure will not support a complete PBG after inversion with 

silicon owing to the shorter exposure wavelength of 514.5 nm that imposed a higher 3D anisotropy 

(c/a≈3.4) in the 3D periodic structure.  Nevertheless, the results demonstrated the valuable principles of the 

multi-level phase mask design and fabrication that may optimize 3D holographic exposure and produce 

wide stopband photonic crystal media. 

 

3. Discussion and conclusion 

 

In this work, the concept of dual-layer electron beam lithography (Fig. 1) was introduced to develop a 

multilevel phase mask from e-beam resist (Fig. 7d) that could offer high resolution grating features with 

phase offset control between orthogonal diffraction beams.   The design of the mask was aimed at 

producing 3D nanostructure templates with potentially a wide complete photonic band gap in the 

telecommunication band. To this end, the resist layer thicknesses and grating widths were optimized (Fig. 5 

and 6) for high and symmetric diffraction efficiencies on orthogonal diffraction orders and predicated to 

form high contrast 3D nanostructures with only modest 1
st
 order diffraction efficiencies of ~4% (Fig. 6b) as 

calculated by FDTD.  This low efficiency was found sufficient to template 3D photonics crystal structures 

according to isointensity modeling (Fig.7f and 7g). The e-beam generated masks were exposed by Argon 

ion radiation to capture 3D photonic bicontinuous nanostructures in photoresist (Fig. 7j and 7k) and yield a 

measured Γ-Z directional stopband of 5.2% width (Fig. 7l). A plane wave expansion calculation for an 800 

nm source revealed that a subsequent inversion of the 3D photonic structure with π/2 vertical phase shift 

into silicon material would open a complete photonic band gap with 8.2% size (Fig. 7i).  Collectively, the 

numerical and experimental results have presented a new approach for flexible design and fabrication of 

high resolution multi-level grating masks with phase shift control.  

Transferring such layered resist patterns into glass by etching [14] would improve the robustness of the 

phase mask surface. The selection of optical substrates with higher refractive index, for example, 

chalcogenide glass (n=2.45~3.2) [24] or SiNx (n≈2) [25] films, would significantly improve the diffraction 

efficiency of the gratings, presently limited to individual 1
st
 order diffraction efficiency of ~6% (Fig. 6a) in 

the e-beam resist.  Such high-index sub-wavelength phase masks would generate stronger interference 

contrast (i.e. <80% 0
th

 order diffraction in Fig. 5) and broaden the laser exposure window for opening bi-

continuous 3D nanostructure during holographic lithography. Alternatively, the formation of additional 

grating layers on Talbot spaced planes may also be considered here to enhance the diffraction efficiency 

when constrained by low-index contrast gratings in this sub-wavelength limit [26]. 

The formation of 3D PC templates with diamond-like symmetry (Fig. 7k) clearly demonstrates the flexible 

utility of the e-beam written phase masks for encoding the diamond-like symmetry directly into the grating 

layer design.  One bypasses the limitations of binary phase masks [4, 15] when applied in a single exposure 

step [Fig. 7j] or the limited phase shift control in multi-step or multi-mask holographic exposures [3, 5, 27] 

in controlling the symmetry of the interference light pattern.  Further, e-beam lithography offers more 

consistent and higher resolution patterning than available by 3D laser direct-writing of similar diffractive 

optical elements [11, 14, 15, 28]. 

In conclusion, three-level nano-grating phase masks have been fabricated in electron-beam resist (ma-

N) to meet with the requirement for holographic generation of diamond-like 3D nanostructure in SU-8 
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photoresist in a single exposure step. A multi-level 2D phase mask has provided a 600 nm period, first 

order diffraction efficiency of up to 3.5% for 800 nm wavelength illumination light that matched with the 

phase mask design value. A reversible soft-coating method (aquaSAVE) enabled SEM inspection and 

verification of each insulating grating layer. A thin SiO2 layer was used to isolate the grating layers and 

multiple spin-coating steps served to planarize the final resist layer. Holographic lithography in SU-8 

photoresist provided 3D periodic structure with diamond-like symmetry, verifying the π/2 phase shift 

generated in the orthogonal diffracted beams from the two grating layers. A simulation of 800 nm exposure 

of the phase mask was found to provide an anticipated 8.2% complete PBG when inverted in silicon.  The 

e-beam patterning method is extensible to assembling multiple layers of nanophotonic structure for 

generating new types of diffractive optical elements.    
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Fig. 7 Comparison of (a) a binary and (b) a three-level phase mask design and SEM images (c) 

and (d), respectively, of the associated structures formed by e-beam lithography in ma-N resist. 

When these 600 nm period masks are illuminated with 800 nm wavelength light to expose 

photoresist, respective (f) BCT-like and (g) diamond-like 3D symmetry structures are expected to 

form according to isointensity calculations. If inverted with a high index material such as Si (inset 

images), bandgap, photonic bandgap dispersion calculations reveal formation of an (h) incomplete 

photonic and (i) a complete photonic band gap (8.2% width), respectively. The positions of the 

high-symmetry points in the reciprocal lattice for both (h) and (i) were shown in the inset of (i). 

SEM images (j) and (k) of SU-8 photoresist exposed by 514.5 nm light through the masks in (c) 

and (d), respectively, revealing the expect BCT and diamond-like structural symmetry. The 

structure in (k) is seen to be well matched with the simulated isointensity (inset). (h) The 

measured (blue) and the FDTD-simulated (red) normal incidence spectra for transmission through 

the photonic crystal template in (k). 
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