# Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/nanoscale

# REVIEW

# Nano/Micromotors for Security/Defense Applications. A Review

Cite this: DOI: 10.1039/x0xx00000x

Virendra V. Singh, Joseph Wang\*

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

The new capabilities of man-made micro/nanomotors open up considerable opportunity for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for accelerated removal of chemical warfare agents. A wide range of proof-of-concept motorbased concepts, including the detection and destruction of anthrax spores, an 'On-Off' nerveagent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerate such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.

## 1. Introduction

The rapid progress in nanotechnology has led to the development of powerful synthetic micromotors that convert energy into movement and able to perform advanced tasks at the micro- and nano-scales.<sup>1-6</sup> Such use of nano/microscale motors to power tiny machines is an exciting research area due to a wide range of potential applications. These micromotors move liquids by converting different sources of energy into mechanical force and motion and represent a major step towards the development of practical nanomachines. Man-made nano/microscale motors, based on variety of propulsion mechanisms, have thus been developed in recent years.<sup>1</sup> These include chemically-powered micro/nanomotors that harvest their energy from the surrounding fuel, and fuel-free motors powered by external stimuli (e.g., magnetic and acoustic fields). Modern artificial micromotors display high speed and power, along with precise motion control, cargo-towing and selfmixing abilities, chemotactic and collective behaviors, and facile surface modification.<sup>1-6</sup> Multi-functional micromotors that incorporate different modalities within a single nanovehicle have been described. The new capabilities of man-made micromotors have opened a new horizon for the defense community due to their diverse potential applications, as indicated from a variety of recent proof-of-concept demonstrations.7-12

The continuous threat of exposure to chemical and biological warfare agents on both the battlefield and through terrorist attacks has led to a recent surge in research aimed at the

detection and decontamination of these highly toxic compounds. Scientists are thus devoting considerable efforts to develop new efficient approaches for detecting and eliminating weapons of mass destruction (WMD). Chemical and biological warfare agent (CBWA) have been used as WMD because of their proclivity to cause morbidity and mortality in large numbers.<sup>13,14</sup> CBWA agents dispersed as a gas, liquid or aerosol can cause large-scale mortality, morbidity, and incapacitate a large number of people in the shortest possible time.<sup>13,14</sup> Taking recent technological advances into consideration, easy access to raw materials, and the ready availability of technical information it is not difficult for terrorists to use chemical warfare agents (CWA) to achieve their goals.<sup>13-15</sup> As a consequence, intense research efforts have been devoted to develop novel methodologies for detecting and destroying WMD. For example, surface acoustic wave devices,<sup>16</sup> enzymatic assays,<sup>17</sup> electrochemical sensors,<sup>18</sup> interferometry<sup>19</sup> and gas chromatography-mass spectrometry<sup>20</sup> have been developed for WMD detection. However, each of these methods present at least one of the following limitations: slow responses, limited selectivity and false positive readings, low sensitivity, operational complexity, non-portability, and difficulties in real-time monitoring. Current methods for the decontamination of CWA involve the use of strong oxidants,<sup>21</sup> enzymatic biodegradation,<sup>22</sup> atmospheric pressure plasma,<sup>23</sup> photocatalytic,<sup>24</sup> and incineration methods.<sup>25</sup> These procedures have their own drawbacks, such as lack of stability, strong

environmental impact, and high temperature, which make them unsuitable for large scale field-based detoxification of CWA. Thus, there are urgent needs to develop a rapid and reliable detection and screening methods for chem-bio threats to promote timely medical treatment and effective CBWA decontamination to reduce the mortality rate.

Recent advances in micro/nanoscale machines indicate their potential to address events that threaten our security. New nanomotor-based approaches for "on-the-fly" detection separations measurements and 'capture-transport-release' provide an efficient approach for detecting and isolating CBWA from raw samples. Autonomous mobile nanomachines hold considerable promise for monitoring inaccessible locations or hostile environments and for using chemotactic search strategies to trace plumes of chemical threats to their source. Changes in the swimming behavior in the presence of hazardous chemicals could offer direct visualization of potential threats.<sup>26-28</sup> The coupling of autonomous selfpropelled micro platforms with advanced reactive materials or specific surface functionalization has provided new opportunities towards efficient motion-based detoxification processes. These micromotors extend the reach of the active reactants throughout the solution via mixing and motion and reduced lead to greatly reaction times. Such micro/nanomachine-based detection and neutralization platforms could address some of the major obstacles associated with traditional methodologies used in the defense sector. The many recent proof-of-concept experiments exemplify the versatility and capabilities of nanomachines in the defense arena and are indicative of their considerable potential in a wide range of security applications.

This article reviews recent advances in using modern micro/nanoscale motors for variety of defense applications and highlights the opportunities and challenges of this important field. Particular attention will be given to new motion-based protocols for effective detection and isolation of chem-bio threats and to 'on-the-fly' procedures for enhanced removal or detoxification of CBWA. Our goal is to educate the nanotechnology community about the opportunities in the defense arena and to update the security sector about the potential of nanoscale machines for diverse defense applications. As will be illustrated below, the new capabilities and functionality of man-made micro/nanoscale machines open **Vocabulary** 

up the door for powerful mobile platforms for countering potential threats in connection to diverse security applications.

# 2. Chemical and biological warfare agents 2.1. Classification

CWA possess different characteristics and belong to various classes of compounds with pronounced physiochemical, physiological, and chemical properties. The CWA can be classified as non-persistent or persistent.<sup>13,14</sup> Blood or choking agents fall into the category of non-persistent CWA due to their high volatility, while nerve agents, blister agents, or arsenicals, come under the category of persistent CWA.<sup>13,14</sup> In this review. we will discuss mainly four types of CWA (refer to Table 1 and Figure 1). Due to the high toxicity of CWA, researchers have been utilizing CWA simulants, which are less toxic than the actual CWA agent, to examine, study, and understand the chemical reactivity of certain functional groups.<sup>29</sup> A simulant is considered ideal if it mimics key chemical and physical properties of the chemical agent without its associated toxicological properties.<sup>29</sup> A number of compounds have been used as CWA simulants since no specific compound is ideal because a single simulant cannot adequately represent all properties of a given CWA.



## Fig. 1 Structure of different CWA.

| Biological warfare | Viruses, bacteria, other microorganisms, or toxins derived from living organisms that        |  |  |
|--------------------|----------------------------------------------------------------------------------------------|--|--|
| agent              | cause death or disease in humans, animals or plants.                                         |  |  |
| Blood agents       | Agents that inhibit certain specific enzymes particularly cytochrome oxidase and influence   |  |  |
| _                  | various metabolic processes.                                                                 |  |  |
| Blister agent      | Blister agents, known also as vesicants, and have ability to cause several chemical burns    |  |  |
| _                  | resulting in large, painful water blisters.                                                  |  |  |
| Bubble propulsion  | A force causing movement which results from bubble detachment.                               |  |  |
| Catalytic motors   | Motors powered by catalytic reactions of a fuel.                                             |  |  |
| Chemical warfare   | Chemical substances which are intended for use in warfare to kill, seriously injure or       |  |  |
| agent              | incapacitate people.                                                                         |  |  |
| Choking agent      | Agents that injure an individual mainly in the respiratory tract and cause death due to lack |  |  |
|                    | of oxygen.                                                                                   |  |  |
| Decontamination    | The process of removing, neutralizing, or destroying harmful substances.                     |  |  |
| Janus particle     | Two faced microparticle.                                                                     |  |  |
| Nanomachine        | A nanoscale device that performs a task.                                                     |  |  |
| Nanomotor          | A nanoscale device capable of converting energy into movement and forces.                    |  |  |

| Nanoremediation | Use of reactive nanomaterials for transformation and detoxification of pollutants.   |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|--|
| Nerve agent     | Agents are organophosphorus (OP) compounds that bind irreversibly to the enzyme      |  |  |  |
|                 | acetylcholinesterase.                                                                |  |  |  |
| Propulsion      | A force causing movement.                                                            |  |  |  |
| Simulant        | A compound or substance which mimics the chemistry and reactivity of the compound of |  |  |  |
|                 | interest but less toxic                                                              |  |  |  |

## Table 1 Types of chemical warfare agents

| Agent type           | Effect                                                                          | Examples                                              |
|----------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|
| Nerve                | Binds irreversibly to acetylcholinesterase inhibiting acetylcholine regulation. | G Series: Tabun, Sarin and<br>Soman.<br>V Series: VX. |
| Blister or vesicant  | Produces blistering of the skin and affects mucous membranes and eyes.          | Sulfur mustard and nitrogen mustard.                  |
| Choking or pulmonary | Damages respiratory track and lungs.                                            | Chlorine and phosgene.                                |
| Asphyxiant or blood  | Interferes with the adsorption of oxygen into the bloodstream.                  | Hydrogen cyanide.                                     |
| Tear or lachrymatory | Induces tearing causing irritation to the eyes and skin.                        | Tear gas.                                             |
| Incapacitating       | Produces mental or physiological effects preventing normal activity.            | Psychedelic agent BZ.                                 |

Pathogenic microorganisms, such as bacteria cells, bacterial spores, viruses, plants, and algae that produce toxins, are considered as biological warfare agents (BWA) if the toxins are extremely potent, or capable of being dispersed to incapacitate or kill thousands of humans.<sup>30</sup> The U.S. Centers for Disease Control and Prevention (CDC) has categorized many biological agents into three classes, A, B, and C, with A being of the highest priority. Category A agents, such as

*Bacillus anthracis* and *Clostridium botulinum*, are easily disseminated and may result in high mortality rates. Indeed, anthrax, the disease caused by *Bacillus anthracis*, was most recently used by bioterrorists in the United States in 2001 and remains one of the most likely candidates for a biological assault. Refer to Table 2 for more details about types of BWA, routes of infection and their possible release mechanism.

## Table 2 Types of Biological warfare agents

| Disease/Agent          | Stage    | Route of Infection       | Possible release             |
|------------------------|----------|--------------------------|------------------------------|
| Anthrax                | Spores   | Skin wounds, inhalation, | Spores as aerosol            |
| Bacillus anthracis     |          | ingestion                |                              |
| Plague                 | Bacteria | Fleas                    | Aerosolization or release of |
| Yersinia pestis        |          | Aerosol                  | infected fleas               |
| Tularaemia             | Bacteria | Aerosol                  | Aerosolization of the        |
| Francisella tularensis |          |                          | bacteria                     |
| Glanders               | Bacteria | Aerosol                  | Aerosolization of the        |
| Burkholderia mallei    |          |                          | bacteria                     |
| Cholera                | Bacteria | Oral                     | Contamination of food and    |
| Vibrio cholerae        |          |                          | water sources                |
| Small Pox              | Virus    | Aerosol                  | Aerosolization of virus      |
| Variola major          |          |                          |                              |
| Ebola                  | Virus    | Aerosol                  | Aerosolization of virus      |
| Haemorrhagic Fever     |          |                          |                              |

## 2.2. Present Defense requirements

The use of CBWA remains a major threat despite the chemical weapon convention (CWC) and biological weapon convention (BWC) that prohibit their use. The terrible events of 1995 in the Tokyo subway and the post-September 11 anthrax attacks in the United States revealed the ease with which these weapons can be utilized. As a result of this continuous threat, there are tremendous demands for innovative field-portable tools capable of detecting and destroying CBWA in a faster,

simpler, and reliable manner at the site of terrorism, with the ultimate goal of finding defensive measures against these agents. For example, a rapid and sensitive detection of CBWA could provide an early alarm of their release, hence minimizing further spread and civilian casualties. CBWA need to be detected and identified and isolated at extremely low concentrations in complex, ever-changing backgrounds in near real time. Clearly, existing sensing and monitoring systems do not meet the needs of the military or civilian sectors for the purpose of "detect to warn". They suffer from relatively poor sensitivity, false positives, and lengthy response times. On-site efficient decontamination and rapid elimination of CBWA reduce the chances of their spread and cross contamination.

# 3. Propulsion of Micromotors

The remarkable performance of biomotors, with a variety of locomotive strategies, has provided an inspiration for the development of man-made nanoswimmers, operating on locally supplied fuels and performing various tasks. The propulsion of these tiny artificial micromotors through fluid environments is one of the most exciting fields of nanotechnology. A variety of fueldriven and fuel-free microscale motors offers great promise for different security applications. Artificial micromotors harnessing different sources of energy for their locomotion have thus been different sources of energy for their focomotion have thus been described, including chemical energy,<sup>31,45</sup> surface tension force,<sup>46,47</sup> Marangoni effect,<sup>48,49</sup>self-electrophoresis,<sup>50</sup> magnetic field photonic<sup>51-55</sup> or acoustic<sup>56</sup> or external electric field,<sup>57</sup> self thermophoreis,<sup>58,59</sup> and living motile cell.<sup>60,61</sup> Table 3 provides a general summary of chemically- powered micromotors along with the different types of catalyst/metal used for their propulsion. The majority of nanovehicles used so far for defense applications are based on fuel-powered catalytic motors and are mass produced using the template electrodeposition strategy. Two classes of mechanisms, phoretic and bubble thrust, are largely responsible for the propulsion of such catalytic micro- and nanomotors. In phoretic mechanisms, the catalytic reaction results in a gradient (concentration, electrical, temperature) in the vicinity of the motor. and this gradient induces the motion. For example, bimetallic nanorods (Au/Pt) are chemically propelled in aqueous solutions by the catalytic decomposition of hydrogen peroxide which leads to an internal flow of electrons from one end to the other end of the nanowire, along with migration of protons in the double layer surrounding the wires.<sup>62</sup> Mallouk *et al.* found that the speed of bimetallic nanorod depends on the mixed potential of individual catalytic metals.<sup>63</sup> These nanowire motors operate only in low ionic-strength media. The bubble propulsion mechanism involves the generation of gas by the catalytic decomposition of the fuel which leads to an efficient autonomous motion.<sup>11,31-33,64</sup> For example, tubular microengines, rely on the decomposition of hydrogen peroxide at the inner Pt layer to generate an oxygen bubble thrust. Such microengines have been widely used for biodefense applications owing to their compatibility with diverse real environmental and clinical samples. Figures 2 and 3 provide general summaries of the different types of micromotors that have been developed for use in the defense sector.

# 4. Security Monitoring using Nanomotors

Recent proof-of-concept studies demonstrated the versatility of functionalized micromotors in defense monitoring applications. Such applications also benefit from the ability of these tiny submarines to penetrate otherwise inaccessible locations, and be deployed and function in remote areas. Such tiny machines add a new dimension based on motion assisted detection and isolation processes, leading to new sensing protocols, and have the potential to reduce response time. Here we outline recent advances in the defense/security field.

Page 4 of 13



Fig. 2 Micromotors used for defense applications.



Fig. 3 A comprehensive account of micromotors used in defense applications.

**Table 3** Summary of different types of chemically-powered micromotors based on different catalysts, fuels and propulsion mechanisms.

| Chemically<br>powered             | Type of<br>catalyst/metal      | Fuel                                             | Propulsion<br>mechanism | Ref     |
|-----------------------------------|--------------------------------|--------------------------------------------------|-------------------------|---------|
| micromotor                        |                                |                                                  |                         |         |
| Tubular                           | Catalase                       | H <sub>2</sub> O <sub>2</sub>                    | Bubble propulsion       | 31,32   |
| Tubular                           | Pt/ Pt<br>nanoparticle-<br>CNT | H <sub>2</sub> O <sub>2</sub>                    | Bubble propulsion       | 11/33   |
| Microparticle                     | Mn                             | H <sub>2</sub> O <sub>2</sub>                    | Bubble propulsion       | 34      |
| Microparticle/Janus<br>micromotor | Ag                             | H <sub>2</sub> O <sub>2</sub>                    | Bubble propulsion       | 34,35   |
| Tubular                           | TiO <sub>2</sub>               | H <sub>2</sub> O <sub>2</sub>                    | Light induced           | 36      |
| Tubular                           | Zn                             | Acidic media                                     | Bubble propulsion       | 37      |
| Janus                             | Pt black/Pt                    | NaBH <sub>4</sub> /H <sub>2</sub> O <sub>2</sub> | Bubble propulsion       | 6/38    |
| Janus capsule                     | Pt nanoparticle                | H <sub>2</sub> O <sub>2</sub>                    | Bubble propulsion       | 39      |
| Janus                             | Al and Pd                      | Strong acidic                                    | Bubble propulsion       | 40, 41  |
| microspheres/micro                |                                | and alkaline                                     |                         |         |
| particle                          |                                | medium/ H <sub>2</sub> O <sub>2</sub>            |                         |         |
| Janus micromotor                  | Ir                             | Hydrazine                                        | Osmotic effect          | 42      |
|                                   |                                | $(N_2H_4)$                                       |                         |         |
| Microparticle                     | Mg                             | Water                                            | Bubble propulsion       | 43      |
|                                   |                                | containing                                       |                         |         |
|                                   |                                | chloride                                         |                         |         |
| Alloy microsphere                 | Al alloy                       | Water                                            | Bubble propulsion       | 44      |
| Nanorods                          | Au–SiO <sub>2</sub>            | NaBH <sub>4</sub> , KBH <sub>4</sub>             | Bubble propulsion       | 45      |
|                                   |                                | and H <sub>2</sub> O <sub>2</sub>                |                         |         |
| Metal-organic                     | -                              | -                                                | surface-tension         | 46, 47  |
| tramework/camphor                 |                                |                                                  | gradient                |         |
| disk                              |                                |                                                  |                         | 40.40   |
| Polymer gel                       | -                              | -                                                | Marangoni effect        | 48, 49  |
| Copper–platinum                   | -                              | $Br_2$ and $I_2$                                 | Self -electrophoresis   | 50      |
| (Cu–Pt) rod                       | A . D/ D                       |                                                  |                         | (0. (2) |
| Platinun-gold or                  | Au, Pt, Ru                     | $H_2O_2$                                         | Self -electrophoresis   | 62, 63  |
| ruthenium-gold                    |                                |                                                  |                         |         |
| bimetallic rods                   |                                |                                                  |                         |         |

# 4.1. Isolation and Detection of CBWA

In CBWA scenarios, the major objective of detection is to warn about sudden changes and incoming threats, to establish adequate protective measures (protective masks and clothing as well as medical treatment) the mapping of contamination area and to start decontamination processes. Therefore, the development of a reliable on-site detection system for these agents is a prime objective worldwide. Hand held on-site detection systems for the detection of CWA work on the principle of ion mobility spectrometry, flame photometry, infrared spectroscopy, flame ionization, Raman spectroscopy fluorogenic, colorimetric, and enzymatic methods.<sup>65-72</sup> Some of these methods are expensive and complex, suffer from limited specificity (and related false alarms), and from a slow response time. Environmental conditions like temperature, pressure, and humidity may also have a significant effect on the performance of these detectors.<sup>65-72</sup> The micromotor sensing strategy adds unique features to the arsenal of CBWA

detection schemes based on its distinct 'on-the-move' target isolation and solution-mixing capabilities, accessibility to remote locations and fast target-receptor interactions. In particular, this strategy relies on the continuous movement of receptor-modified microengines through complex samples in connection to diverse biomolecular interactions. Such movement of the receptor through a complex sample leads to a new approach for bioaffinity assays and bioseparations that addresses the limitations associated with the slow analyte transport under quiescent conditions used in such microassays and represents a fundamentally new paradigm in biosensing. The cargo-towing force of modern nanomotors indicates great promise for loading and transporting nanosensors to remote locations. The self-propulsion capability coupled with advanced fabrication technologies used for creating these micromotors has opened up new sensing opportunities and

bioanalytical applications and has shown to be extremely effective in accelerating target-receptor interactions and detection in complex matrices.

# 4.2. Functionalized Micromotors for Selective Capture, Isolation and Detection of BWA

Among BWA, Bacilus anthracis (B. anthracis), a grampositive, represents one of a multitude of possibilities exploitable by military or terrorists and have led to urgent needs for rapid, sensitive, and cost-effective detection and neutralization methods.<sup>67-74</sup> The ability of sporulation and resistance of the spores to harsh environmental conditions (like heat and humidity, disinfectants, and UV radiation) makes anthrax the most important BWA.75,76 Common methodology of decontamination includes bleach, chlorine dioxide, and hydrogen peroxide treatment for the inactivation of *B. anthracis* cells.<sup>77-79</sup> In order to address drawbacks associated with existing technologies, Wang group<sup>80</sup> reported a micromotor-based approach for the rapid screening, detection, and destruction of anthrax spore simulant from environmental samples. The 'on-the-fly' spore screening protocol relies on the movement of anti-B. globigii antibodyfunctionalized micromotors in a mixed contaminated solution of B. globigii, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Figure 4 shows the 'on-the-fly' spore detection protocol which relies on the movement of an anti-B. globigii antibody-functionalized micromotors in a contaminated solution to recognize, capture and transport single and multiple spores.



**Fig. 4** Functionalized micromotor based isolation, separation and destruction of anthrax spores: (A) schematic illustration of the functionalized micromotors showing capture and isolation of *B. globigii* spore; (a-c) microscopic images illustrating the magnetically-guided functionalized microengines in an aqueous solution transporting target; scale bar  $20\mu$ m. (B) Sketch of multiple micromotors for the accelerated destruction of spore. (Reproduced with permission from Ref. 80.)

The new functionalized micromotors allow for a label-free visual identification of the presence of the threat, while the micromotor-induced mixing accelerates the antibody-binding as well as the spore destruction processes. Unmodified micromotors were successfully used for accelerating the mixing of mild quiescent oxidizing solutions with the concomitant acceleration of cell damage. The self-propulsion capability of micromotors induced efficient fluid mixing, at the microscale level and this mixing was shown to be extremely effective in accelerating both spore-receptor interactions and detection. This micromotor-based approach thus offers considerable promise for the development of effective systems

that not only alert about the presence of a biological target but also mitigate such threats.



Fig. 5 Lectin-modified microengines for bacteria isolation. (A) the selective pick-up, transport, and release of the target bacteria by a ConA-modified microengines, (B) microscopic images, before, during, and after interaction of the modified microengine with negative control (a-c) and target (d-f) cells. Scale bar  $8\mu$ m. (Reproduced with permission from Ref. 81.)

The selective isolation of biological threat targets from untreated complex matrices holds considerable promise for the identification of various pathogens in order to combat terrorism and one of the most challenging requirements for security monitoring. In particular, receptor-modified tubular microengines offer selective isolation of biological targets from complex untreated samples by capturing and transporting them to a clean environment, thus avoiding laborious sample preparation steps. Such ability to move the receptor through the contaminated sample is unique compared to traditional detection methods using culture techniques, microscopy, luminescence, enzyme-linked immunosorbent assay (ELISA), and/or the polymerase chain reaction (PCR). Campuzano et al. <sup>81</sup> demonstrated a nanomotor-based efficient bacterial isolation platform involving the movement of ConA (lectin extracted from Canavalia ensiformis) functionalized microengines to isolate pathogenic bacteria from complex environmental samples. Figure 5 illustrates the selective bacteria isolation, loading and unloading strategy (catch and release) toward their subsequent reuse, along with efficient and simultaneous transport of drug nanocarriers. Controlled release of the captured bacteria from a moving microengine was achieved using a low-pH glycine solution able to dissociate the lectinbacteria complex. Such ability to isolate and unload target bacteria is essential for identifying pathogenic bacteria serotypes.



**Fig. 6** Ultrasound-propelled magnetically-guided receptorfunctionalized nanowire motor for selective capture and transport of biological targets. Capture and transport of (B) *E*.

*coli* bacteria by a lectin-modified nanomotor and of (C) *S. aureus* by a Con A-modified ultrasound-propelled nanomotors. (Reproduced with permission from 82.)

Wang *et al.*<sup>82</sup> showed a multifunctional nano-motor with three segments (Au–Ni–Au), which was propelled by ultrasound and guided by the magnetic field using Ni segment. A concavity was also adopted at the end of the Au segment by the sphere lithography technique to achieve shape asymmetry. Modification of the nanomotor gold surface by using thiol chemistry facilitates functionalization of lectin and antiprotein A antibody bioreceptors which allows capture and transport of *E. coli* and *S. aureus* bacteria, respectively in complex media (Figure 6). The practical utility of this fuel-free micromotors was illustrated by the isolation and separation of the biological targets *E. coli* and *S. aureus* using ConA and antiprotein A antibody-functionalized micromotors, respectively.

An attractive microchip immunoassay protocols, based on the movement of antibody-functionalized tubular microengines within microchannel networks, was developed by Wang's team.<sup>83</sup> The outermost PEDOT-carboxy layer of the tubular microengine was used to anchor the antibody through the EDC/NHS chemistry (Figure 7). An anti-protein-A modified microengine was used for the selective capture, transport and convenient label-free optical detection of a *Staphylococcus aureus* target bacteria (containing protein A in its cell wall) in the presence of a large excess of non-target (*Saccharomyces cerevisiae*) cells. The autonomous transport of antibody-functionalized tubular microengines leads to 'on-the-fly' capture and isolation of the target proteins. All the capture-



**Fig. 7** Design of tubular polymer/metal tubular microengine and its functionalization with antibody using carboxy surface functionalities using EDC/NHS coupling. (Reproduced with permission from Ref. 83.)

transport-tag-transport steps involved in the immunoassay protocol were carried out in the microfluidic device, hence replacing the common capture-wash-tag-wash sequence of traditional sandwich immunoassays (e.g., ELISA bioassays well plates). Such motor-based microchip operation obviates the need for multiple wash steps and results in a simplified immunoassay protocol, and holds considerable promise for diverse defense applications of lab-on-a-chip systems.

# 4.3. Micromotor-based "On-Off" Detection of Nerve Agents

Nerve agents are highly toxic compounds that irreversibly block the enzyme acetylcholinesterase, causing death through the paralysis of respiratory muscles. Recently, Singh *et al*<sup>84</sup> have reported a dye-coated micromotor based "on-the-fly" fluorescent "On-Off" strategy for the rapid



**Fig. 8** Micromotor based 'on-the-fly' fluorescent "On–Off" detection of nerve agents. The fluorescent intensity of mobile versus static FLA coated silica-NH<sub>2</sub> particles before and after exposure to DCP is demonstrated. (A) SEM and EDX images illustrating the distribution of Si, dye, and Pt, (B) tracking line illustrating micromotor movement, and (C) fluorescence intensity of micromotor before and after exposure of nerve agent. (Reproduced with permission from Ref. 84.)

detection of sarin and soman related threats within seconds (Figure 8). The resulting dye-coated micromotors display immediate fluorescence quenching compared to their static counterparts which reflects the crucial role of the micromotor movement in the contaminated solution for the rapid screening of nerve agents. The self-propulsion capability of multiple surface modified micromotors results in a continuous and noninvasive mixing (without agitation), which increases the likelihood of collisions with the target and leads to an increase in the rate of reaction. The fluorescence quenching of micromotors has been attributed to the interruption of the fluorophore's conjugation upon the release of HCl by-product generated in the DCP-FLA phosphoramidation reaction. These micromotors are very selective to reactive nerve agent simulants compared to non-reactive simulants. Compared to common nerve agent detection methodologies, this "On-Off" micromotor-based screening methodology offers real time and field deployable detection in many environmental matrices. Table 4 provides a detailed list of current micromotor efforts towards CBWA detection.

| Target          | Type of    | Propulsion  | Receptor                | Ref. |
|-----------------|------------|-------------|-------------------------|------|
|                 | motor      | Mechanism   |                         |      |
| Anthrax spore   | Tubular    | Bubble      | anti- <i>B.globigii</i> | 80   |
| B. Globigii     | micromotor | propulsion  | antibody                |      |
| Bacteria        | Tubular    | Bubble      | Lectin                  | 81   |
| E. Coli         | micromotor | propulsion  |                         |      |
| Bacteria        | Nanowire   | Ultra sound | Lectin                  | 82   |
| E. Coli         |            |             |                         |      |
| Bacteria        | Tubular    | Bubble      | anti-protein-A          | 83   |
| Staphylococcus  | micromotor | propulsion  |                         |      |
| aureus          |            |             |                         |      |
| CWA simulant    | Janus      | Bubble      | NA                      | 84   |
| Diethyl         | micromotor | propulsion  |                         |      |
| chlorophospahte |            |             |                         |      |

# **Table 4 Nanomotor-based Security Detection**

# 5. Motor-based Detoxification of CBWA

5.1. Decontamination. The danger of stockpiled CWA in remote and hostile locations across the globe requires new strategies for decommissioning such sites. Current detoxification protocols require large amounts of reagent solutions, adverse conditions, extended time periods and controlled mechanical agitation. Scientists have thus devoted considerable efforts to develop more efficient approaches for eliminating weapons of mass destruction. Self-propelled micromotors, based on different reactive materials, have shown considerable promise for accelerating detoxification processes, creating a new dimension in handling weapons of mass destruction.85,86 Decontamination is the conversion of toxic chemicals into harmless products either by destruction or by detoxification. From a methodological point of view, there are four basic methods of decontamination, namely mechanical, physical, chemical and enzymatic decontamination. The former uses mechanical forces to detoxify and works best on large regular surfaces that are readily accessible, while the enzymatic method involves biocatalysts to degrade CWA. Chemical decontamination includes reactive compounds involved in either hydrolysis or elimination or oxidation reactions with enhanced rates to neutralize these completely into non-toxic products. Physical methods include adsorption procedures, washing operations, filtration or dilutions. Recently developed reactive or functionalized micromotors offer attractive CWA physical and chemical decontamination capabilities in environmental matrices, as illustrated and discussed in the following sections. Such use of self-propelled reactive micromachines accelerates the detoxification processes, enhances the decontamination efficiency and lowers the required levels of the decontaminating agents, thus facilitating the on-site elimination of chemical-agent stockpiles. These micromotors method could be deployable in remote locations where standard detoxification strategies are not feasible.

# 5.1.1. Motor-based Physical Decontamination

The effective movement of micromotor-based remediation platform through polluted water systems can lead to new highly efficient 'move and destroy' remediation protocols.

# Removal of CWA using self-propelled activated-carbon micromotors

The coupling the high adsorption capacity of activated carbon with the rapid movement of these catalytic Janus micromotors, has led to a moving adsorptive filter.<sup>87</sup> The resulting selfpropelled activated-carbon micromotors offered highly efficient and greatly accelerated removal of organics such as 2,4-dinitrotolune, rhodamine 6G, and methyl-paraoxon, as well as heavy metals (e.g., Pb). Such autonomous and directional propulsion was achieved by coating the activated-carbon microparticles with a catalytic Pt hemispheric layer (Figure 9). The continuous movement of multiple activated carbon/Pt micromotors across contaminated samples, along with the high-density tail of microbubbles (Figure 9, D,E), resulted in a greatly enhanced fluid dynamics and significantly higher water purification efficiency along with shorter cleanup times compared to non-mobile (static) activated carbon particles. These newly developed Janus micromotors can reach large areas of a contaminated sample, while accelerating the decontamination process without external mixing force.



**Fig. 9** Activated-carbon/Pt Janus micromotor and its 'on-thefly' decontamination use. (A) Schematic of the activated carbon/Pt Janus micromotor and its 'on-the-fly' decontamination (B and C) SEM and EDX images for motor

characterization, and (D, E) propulsion behavior of Janus micromotor. (Reproduced with permission from Ref. 87.) **5.1.2. Motor-based Chemical Decontamination** 

Nanoscale

# **Micromotor-Based Detoxification of Chemical Threats**

Effective decontamination of CWA stockpiles requires large quantities of decontaminating reagents, long reaction times, and controlled mechanical agitation, which are extremely challenging in remote field conditions. The destruction of CWA thus requires its transportation to the facilities for remediation. Such transportation poses additional risk for accidents, especially in densely populated areas. Recently developed micromotors-based decontamination protocols (discussed in this review) have the potential to facilitate the detoxification of chemical threats in remote field conditions. Orozco *et al.*<sup>88</sup> demonstrated an attractive approach for accelerated detoxification of CWA using collective hydrodynamic movement of the micromotors across the remediating solution (Figure 10).



**Fig. 10** Micromotor-based accelerated oxidative detoxification of chemical threats under mild conditions through a selfmixing associated with the motor movement and bubble generation. (A) Schematic representation of micromotor based decontamination of paraoxon; (B) reaction scheme showing the involvement of OOH<sup>-</sup> nucleophiles and (C) absorption spectra of p-NP, degradation product of methyl paraoxon with and without micromotor treatment. (Reproduced with permission from Ref. 88.)

Taking advantages from the use of hydrogen peroxide as the detoxification reagent and motor fuel, this accelerated decontamination of CWA was achieved by the greatly enhanced fluid dynamic (self-mixing) and strong OOH-nucleophile formation associated with the collective movement and corresponding bubble generation. The new micromotor decontamination strategy obviates the need of externally powered stirring devices and is expected to enhance the efficiency and speed of decontamination reactions of a broad range of CWA, particularly in field applications.

Photocatalytic destruction is one of the promising techniques for the mineralization of CWA as it does not require harsh reagents, making it one of the most efficient and environmentally friendly process. Current photocatalytic destruction methodologies for CWA rely on quiescent solutions which make the process less efficient due to the accumulation of intermediate species on the catalyst surface. Catalytic micromotors can enhance these reactions in the presence of reactive oxygen species. *Li et al.*<sup>89</sup> combined the

photocatalytic activity of TiO<sub>2</sub> with environmentally-friendly water-powered propulsion of magnesium-based Janus microspheres. The TiO<sub>2</sub>/Mg microspheres act as photocatalytic platform that propel autonomously in natural contaminated water, obviate the need of peroxide fuel, and lead to rapid photocatalytic degradation of CWA. As illustrated in Figure 11, the presence of the  $TiO_2$  coating, with a small spherical opening of Mg, enables a controlled reaction process and gradual dissolution of the Mg core, leading to a prolonged motor lifetime. UV-irradiated TiO2/Mg micromotors showed 96% degradation of methyl paraoxon (MP) and bis (4nitrophenyl phosphate) within 10 min (Figure 11). In contrast, only a negligible removal of this organophosphorus compound is observed in control experiments, which indicates the crucial role of the TiO<sub>2</sub> photoactive layer and the efficient fluid transport which enables effective in situ self-cleaning of the TiO<sub>2</sub> surface from adsorbed species, i.e., retention of the photocatalytic activity.



Fig. 11 Micromotor based on-the-fly photocatalytic degradation of CBWA via photoactive  $TiO_2/Mg$  motors: (A) SEM and EDX images of titania micromotor with its different components; (B, C) absorbance spectra of p-NP, degradation product of paraoxon and bis-(4-nitrophenyl phosphate), respectively, with and without micromotor treatment, and (D) statistical plot showing the spore destruction efficiency with the micromotors and different control experiments. (Reproduced with permission from Ref. 89.)

The feasibility of these micromotors was also demonstrated toward the inactivation of *B. globigii* spores, a surrogate species of *B. anthracis* spores. The inherent autonomous movement of  $TiO_2/Mg$  micromotors under UV radiation showed significant (86%) damage of the spores compared to less than 10% in control experiments, reflecting the efficient anti-spore activity of the photocatalytic micromotors.



**Fig. 12** Zeolite micromotors with effective "on-the-move" CWA degradation and antibacterial activity. (A, B) SEM and EDX images showing the different components of sodium- and silver-exchanged zeolite, respectively, (C) absorbance spectra illustrating the efficiency of micromotor-based decontamination of CWA with control experiments, and (D) statistical plot showing the *E. coli* killing capability of micromotor. (Reproduced with permission from Ref 90.)

Many adsorbent materials have been used for the removal of CWA. However, due to lack of reactivity even after several days such adsorbents may lead to secondary contamination to the environment. To overcome the drawback, Singh et al.<sup>90</sup> reactive-cubic-zeolite-based multifunctional developed micromotors (Ag-Z) (Figure 12) by incorporating silver ions  $(Ag^{+})$  into aluminosilicate zeolite framework. To impart autonomous and directional propulsion, the zeolite cubic particles were coated with a catalytic Ag layer. The continuous movement of multiple zeolite micromotors and the highdensity bubble tail resulted in a greatly enhanced fluid dynamics that led to high (90%) decontamination efficiency within short time compared to its static zeolite counterparts. The presence of  $Ag^+$  in zeolite matrix facilitated the rapid hydrolysis of CWA by strong binding of CWA with Ag<sup>+</sup> ion. The same zeolite micromotors were also used successfully for the cytotoxicity against E. coli bacteria in order to address potential bacteria infectious. Silver-modified zeolite thus displayed a remarkable antimicrobial capability and led to 87.4% killing within 6 min, reflecting the efficient and frequent interaction of zeolite motors with bacteria. Due to the extremely low costs of zeolite and their non-harmful nature, these micromotors can be considered as "disposable micromachines" that obviate the risk of secondary environmental contamination.

## 5.1.3. Motor-based Enzymatic Decontamination

In another bio-detoxification studies, Kiristi *et al.*<sup>91</sup> fabricated a lysozyme-modified fuel-free nanomotors for effective and rapid killing of Gram positive *Micrococcus lysodeikticus* bacteria. In this study, antibacterial property of lysozyme was coupled with the rapid movement of the nanomotors which promoted enzyme-bacteria interactions and prevented surface aggregation of dead bacteria, resulting in a greatly enhanced bacteria-killing capability.



**Fig. 13** Fuel-free lysozyme-nanowire based killing of bacteria: (A) SEM images of the Au micromotor and of its (B) nanoporous Au segment; scale bars: 300 and 50 nm, respectively. (C) Bacteria killing efficiency of US-driven lysozyme-immobilized p-AuNW motors using a) only US without AuNWs, b) non-functionalized p-AuNWs, c) static lysozyme-modified p-AuNWs, d) lysozyme-modified non-porous AuNWs, e) lysozyme-modified p-AuNWs. (Reproduced with permission from Ref 91.)

Figure 13 illustrates SEM images of the p-AuNWs with a 2 µm length and diameter of 200 nm and its corresponding bacterial killing efficiency. In this study, large surface area porous gold was introduced to the nanomotor body (Fig. 13 B) in order to achieve higher loading of enzyme. The motion of multiple lysozyme-loaded US-driven porous nanomotors in bacterialcontaminated samples, and the corresponding fluid mixing, greatly enhanced the bacterial killing capability, leading to ~30 fold enhancement compared to static micromotors. This study was successfully applied for the killing of Gram positive (84%) killing) and Gram negative bacteria. The favorable capabilities of these fuel-free US-driven functionalized antibacterial nanoswimmers along with the biocompatibility of acoustic waves make them extremely attractive for combating infectious diseases while offering defense against bacterial infections. Table 5 summarizes the research efforts directed towards micromotor-based detoxification platforms for CBWA.

| Type of motor         | Target CBWA                  | Decontamination Mechanism       | References |
|-----------------------|------------------------------|---------------------------------|------------|
| Janus (activated      | Paraoxon                     | Adsorption                      | 87         |
| carbon/Pt) micromotor |                              |                                 |            |
| Tubular (PEDOT/Pt)    | Paraoxon                     | Chemical decontamination; motor | 88         |
| micromotor            |                              | induced mixing                  |            |
| Titania/Mg            | Paraoxon and B. Globigii     | Photochemical decontamination   | 89         |
| microsphere           |                              |                                 |            |
| Zeolite/Ag Janus      | Diethyl chlorophospahte and  | Silver-assisted decontamination | 90         |
| microparticles        | E.coli                       |                                 |            |
| Lysozyme modified     | M. lysodeikticus and E. coli | Enzymatic cleavage              | 91         |
| nanowire              |                              |                                 |            |

#### Table 5 Micro/Nanomotors-based CBWA Detoxification

# 6. Conclusions

This review has discussed recent advances in man-made micromotors that have enabled new defense opportunities. Particular emphasis has been given to the ability of artificial micromotors to enhance the detection and elimination of WMD. Considerable progress has been made over the past decade in designing a variety of micro/nanomotors for variety of security applications. The versatility of the micromotorbased remediation platforms have been shown to enhance the efficiency of detoxification processes of a wide range of chemical and biological threats in diverse matrices. Functionalized micromotors have been shown extremely useful for the detection and separation of biological threats, and to response to the presence of hazardous chemicals by changes in their swimming behavior. Synthetic micro/nanomotors have thus opened a new horizon for the biodefense community due to their diverse practical applications. While major progress has been accomplished over the past decade, significant efforts are required to translate these micromotor-based proof-ofconcept studies into large-scale field-deployable security applications. Our group is currently developing macroscale motors that cover large areas, towards large-scale security operations.92 The current reliance of catalytic micro/nanomotors on the common hydrogen peroxide fuel greatly hinders practical security applications of catalytic micromotors. New innovations of materials science at the nanoscale will lead to tiny micromotors based on alternative fuels, different propulsion mechanisms, advanced reactive materials, capable to perform multiple tasks in a smarter and greener way. As future nanomachines become more functional and sophisticated they are expected to perform more demanding security operations. For example, the cargo-towing force of modern nanomotors along with their advanced motion control could eventually be used to collect and bring back sample residues in connection to site verification and monitoring activities. Future efforts could also lead to the use of the chemical threat as the fuel to use of chemotaxis to follow its concentration gradients. Further development of such nano/micromotor based systems and protocols are expected to have a profound impact on the ability to respond rapidly and effectively to events which threaten national security.

With key challenges, proper attention to these micro/nanomotors could be used for a wide range of important security applications. New technological breakthroughs will lead to rapid translation of the micromotor research activity into practical defense applications in realistic environments. Given the cutting-edge research in the field of man-made micro/nanoscale machines, we anticipate exciting new ideas and defense applications in the near future, and expect that the micromotor field will have an important role in future efforts to counter major security threats. We thus hope that the present review will stimulate extensive research efforts in the important field of micromotor based chem-biodefense.

## Acknowledgments

This work received support from the Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense (grants nos. HDTRA1-13-1-0002 and HDTRA1-14-1-0064). We thank Dr. Brian Pate (DTRA) for his useful suggestions and inputs.

## Notes and references

Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093 (USA). E-mail: <u>josephwang@ucsd.edu</u>



#### Virendra Vikram Singh

Virendra V. Singh received his Ph.D. from Jiwaji University, Gwalior, India in 2011. He joined the Defence Research and Development Organization (DRDO), India in 2009, as Scientist. In 2014 he joined the research group of Prof. Joseph Wang at the University of California, San Diego as a Postdoctoral researcher. His current research interests include self-propelled micro/nanomotors, fabrication of reactive micromotors for remediation applications, and development of electrochemical detection systems based on conducting polymers, graphene nanomaterials, and ionic liquids.





# Joseph Wang

Joseph Wang is a Distinguished Professor, SAIC Endowed Chair and Chair of NanoEngineering at University of California San Diego (UCSD), USA. After holding a Regents Professor position at NMSU he moved to ASU where he served as the Director of the Center for Bioelectronics and Biosensors (Biodesign Institute). He joined the UCSD NanoEngineering Dept. in 2008. The research interests of Dr. Wang include the development of nanomotors and nanorobots, bioelectronics and biosensors, and wearable devices. He has authored over 960 research papers, 10 books, 12 patents, and 35 chapters (H Index 109).

## **References:**

- J. Wang, Nanomachines: Fundamentals and Applications, Wiley-VCH, Weinheim, Germany 2013, ISBN 978–3–527– 33120–8.
- W. Gao, D. Kagan, O. S. Pak, C. Clawson, S. Campuzano, E. Chuluun-Erdene, E. Shipton, E. E. Fullerton, L. Zhang, E. Lauga and J. Wang, *Small*, 2012, 8, 460.
- 3 D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick and A. Sen, *Nanoscale*, 2013, 5, 1273.
- 4 J. Wang and W. Gao, *ACS Nano*, 2012, **6**, 5745.
- 5 M. Guix, C. Carmen, C. C. Mayorga-Martinez and A. Merkoçi, *Chem. Rev.*, 2014, **114**, 6285.
- 6 H. Wang and M. Pumera, Chem. Rev., 2015, 115, 8704.
- 7 E. Morales-Narváez, M. Guix, M. Medina-Sánchez, C. C. Mayorga-Martinez and A. Merkoçi, *Small*, 2014, 10, 2542.
- 8 S. Campuzano, D. Kagan, J. Orozco and J. Wang, *Analyst*, 2011, **136**, 4621.
- 9 X. Yu, Y. Li, Y. J. Wu and H. Ju, Anal. Chem., 2014, 86, 4501.
- S. Balasubramanian, D. Kagan, C. M. J. Hu, S. Campuzano, M. J. L. Castañon, N. Lim, D.Y. Kang, M. Zimmerman, L. Zhang and J. Wang, *Angew. Chem. Int. Ed.*, 2011, 50, 4161.
- L. Soler, V. Magdanz, V. M. Fomin, S. Sanchez and O. G. Schmidt, ACS Nano, 2013, 7, 9611.
- 12 J. G. S. Moo and M. Pumera, Chem. Eur. J., 2015, 21, 58.
- J. A. F. Compton, *Military chemical and biological agents*. Caldwell, NJ: The Telford Press, 1988.
- 14 D. H. Ellison, Handbook of chemical and biological warfare agents. Washington: CRC Press, 2000.
- 15 M. M. Wagner, V. Dato, J. N. Dowling and M. Allswede, J. Biomed. Info., 2003, 36, 177.
- 16 Y. Yang, H. F. Hi and T. Thundat, J. Am. Chem. Soc., 2003, 125, 1124.
- 17 A. J. Russel, J. A. Berberich, G. F. Drevon and R. R. Koepsel, Annu. Rev. Biomed. Eng., 2003, 5, 1.

- 18 D. Yu, J. Volponi, S. Chhabra, C. J. Brinker, A. Mulchandani and A. K. Singh, *Biosens. Bioelectron.*, 2005, 20, 1433.
- 19 H. Sohn, S. Letant, M. J. Sailor and W. C. Trogler, J. Am. Chem. Soc., 2000, 122, 5399.
- 20 W. E. Steiner, S. J. Klopsch, W. A. English, B. H. Clowersm and H. H. Hill, *Anal. Chem.*, 2005, 77, 4792.
- 21 R. D. Albright, Cleanup of Chemical and Explosive Munitions, William Andrew, Norwich 2008.
- 22 D. E. Wilcox, Chem. Rev., 1996, 96, 2435.
- 23 D. B. Kim, B. Gweon, S. Y. Moon and W. Choe, *Curr. Appl. Phys.* 2009, 9, 1093.
- 24 A. V. Vorontsov, A. A. Panchenko, E. N. Savinov, C. Lion and P. G. Smirniotis, *Environ. Sci. Technol.* 2002, 36, 5261.
- 25 National Research Council Review and Evaluation of Alternative Chemical Disposal Techniques, National Academy Press, Washington, DC1996.
- 26 B. Ezhilan, W. Gao, A. Pei, I. Rozen, R. Dong, B. Jurado-Sanchez, J. Wang and D. Sanitillan, *Nanoscale*, 2015, 7, 7833.
- 27 D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K. Manesh, G. Flechsig and J. Wang, J. Am. Chem. Soc., 2009, 131, 12082.
- 28 J. Orozco, W. Gao, V. Garcia, M. D'Agostino, A. Cortes and J. Wang, ACS Nano, 2013, 7, 818.
- 29 Y.C. Yang, J. A. Baker and J. R. Ward, *Chem. Rev.*, 1992, 92, 1729.
- 30 R. M. Atlas, Annu Rev Microbiol, 2002, 56, 167.
- 31 J. Orozco, V. García-Gradilla, M. D'Agostino, W. Gao, A. Cortés and J. Wang, ACS Nano, 2013, 7, 818.
- 32 S. Sanchez, A. A. Solovev, Y. Mei and O. G. Schmidt, J. Am. Chem. Soc., 2010, 132, 13144.
- 33 Y. Li, J. Wu, Y. Xie and H. Ju, Chem. Commun., 2015, 51, 6325.
- 34 H. Wang, G. Zhao and M. Pumera, J. Am. Chem. Soc. 2014, 136, 2719.
- 35 M. Yongfeng, H. Gaoshan, A. A. Solovev, E. Bermúdez Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu and O. G. Schmidt, *Adv. Mat.*, 2008, **20**, 4085.
- 36 F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma and J. Guan, Small, 2015, 11, 2564.
- 37 W. Gao, A. Uygun and J. Wang, J. Am. Chem. Soc., 2012, 134, 897.
- 38 G. Zhao and M. Pumera, *Nanoscale*, 2014, **6**, 11177.
- 39 Y. Wu, Z. Wu, X. Lin, Q. He and J. Li, ACS nano, 2012, 6, 10910.
- 40 W. Gao, M. D'Agostino, V. Garcia-Gradilla, J. Orozco and J. Wang, Small, 2013, 9, 467.
- 41 A. Agrawal, K. K. Dey, A. Paul, S. Basu and A. Chattopadhyay, *J. Phys. Chem. C*, 2008, **112**, 2797.
- 42 W. Gao, A. Pei, R. Dong and J. Wang, J. Am. Chem. Soc., 2014, **136**, 2276.
- 43 W. Gao, X. Feng, A. Pei, Y. Gu , J. Li and J. Wang, Nanoscale, 2013, 5, 4696.
- 44 W. Gao, A. Pei and J. Wang, ACS Nano, 2012, 6, 8432.
- 45 Y. S. Wang, H. Xia, C. Lv, L. Wang, W. F. Dong, J. Feng H. B. Sun, *Nanoscale*, 2015, 7, 11951.

# Page 13 of 13

## Nanoscale

- 46 Y. Ikezoe, G. Washino, T. Uemura, S. Kitagawa and H. Matsui, *Nature Materials*, 2012, 11, 1081.
- 47 S. Nakata and M. Murakami, Langmuir, 2010, 26, 2414.
- 48 J. P. Gong, S. Matsumoto, M. Uchida, N. Isogai and Y. Osada, J. Phys. Chem., 1996, 100, 11092.
- 49 J. Orozco, D. Vilela, G. Valdés-Ramírez, Y. Fedorak, A. Escarpa, R. Vazquez-Duhalt and J. Wang, *Chem. Eur. J.*, 2014, 20, 2866.
- 50 R. Liu, A. Sen, J. Am. Chem. Soc., 2011, 133, 20064.
- 51 W. Gao , X. Feng , A. Pei , C. R. Kane , R. Tam , C. Hennessy and J. Wang, *Nano Lett.*, 2014, **14**, 305.
- 52 S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón and B. J. Nelson, *Adv. Mater.*, 2012, **24**, 811.
- 53 K. E. Peyer, L. Zhang and B. J. Nelson, *Nanoscale*, 2013, 5, 1259.
- 54 W. Gao, S. Sattayasamitsathit, K. M. Manesh , D. Weihs and J. Wang, *J. Am. Chem. Soc.*, 2010, **132**, 14403.
- 55 A. Ghosh, P. Fischer, Nano Lett., 2009, 9, 2243,
- 56 Z. Wu, T. Li, W. Gao, T. Xu, B. Jurado-Sánchez, J. Li, W. Gao, Q. He, L. Zhang and J. Wang, *Adv. Funct. Mater.* 2015, 25, 3881.
- P. C. Marzal, S. Sattayasamitsathit, S. Balasubramanian, J. R. Windmiller, C. Dao, and J. Wang, *Nat. Commun.*, 2011, 2, 1.
- 58 H. R. Jiang, N. Yoshinaga and M. Sano, *Phys. Rev. Lett.*, 2010, **105**, 268302.
- 59 L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O. G. Schmidt and G. Cuniberti, ACS Nano, 2013, 7, 1360.
- 60 R. Fernandes, M. Zuniga, F. R. Sassine, M. Karakoy and D. H. Gracias, *Small*, 2011, 7, 588.
- 61 V. Magdanz, S. Sanchez and O G. Schmidt, Adv. Mater., 2013, 25, 6581.
- W. F. Paxton, A. Sen and T. E. Mallouk, *Chem.Eur. J.*, 2005, 11, 6462.
- 63 Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen, T. E. Mallouk, *Langmuir*, 2006, 22, 10451.
- 64 W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Y. Cao, T. E. Mallouk, P. E. Lammert and V. H. Crespi, J. Am. Chem. Soc., 2004, 126, 13424.
- 65 N. R. Brletich, M. J. Waters, G. W. Bowen, M. F. Tracy, Worldwide Chemical Detection Equipment Handbook, Chemical and Biological Defense Information Analysis Center, Aberdeen, MD, 1995.
- 66 S. W. Zhang and T. M. Swager, J. Am. Chem. Soc., 2003, 125, 340.
- 67 T. J. Dale, J. Rebek, Jr., J. Am. Chem. Soc., 2006, 128, 4500.
- 68 F. Ilhan, D. S. Tyson and M. A. Meador, Chem. Mater. 2004, 16, 2978.
- 69 S. B. Nagale, T. Sternfeld and D. R. Walt, J. Am. Chem. Soc. 2006, 128, 5041.
- 70 T. J. Dale and J. Rebek Jr., Angew. Chem. Int. Ed., 2009, 48, 7850.
- 71 K. J. Wallace , R. I. Fagbemi , F. J. Folmer-Andersen , J. Morey, V. M. Lynch and E. V. Anslyn , *Chem. Commun.*, 2006, 3886.

- 72 E. R. Menzel , L. W. Menzel and J. R. Schwierking , *Talanta*, 2005, **67**, 383 .
- 73 H. C. Lane, J. L. Montagne and A. S. Fauci, *Nat. Med.*, 2001, 7, 1271.
- 74 N. M. Cirino, K. A. Musser and C. Egan, *Expert Rev. Mol. Diag.*, 2004, 4, 841.
- 75 D. Thavaselvam and R. Vijayaraghavan, J Pharm Bioallied Sci., 2010, 2, 179.
- 76 E. A. S. Whitney, M. E. Beatty, T. H. Taylor, R. Weyant, J. Sobel, M. J. Arduion and D. A. Ashford, *Emerging Infect. Dis.*, 2003, 9, 623.
- 77 G. Wagner and Y. C. Yang, Ind. Eng. Chem. Res., 2002, 41, 1925.
- 78 Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li and P. J. J. Alvarez, *Water Res.*, 2008, 42, 4591.
- 79 M. Lilly, X. Dong, E. McCoy and L. Yang, *Environ. Sci. Technol.*, 2012, 46, 13417.
- 80 J. Orozco, G. Pan, S. Sattayasamitsathit, M. Galarnyk, J. Wang, *Analyst*, 2015, 140, 1421.
- 81 S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao, S. Sattayasamitsathit, J. C. Claussen, A. Merkoci and J. Wang, *Nano Lett.*, 2012, **12**, 396.
- 82 V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay, A. Pourazary, A. Katzenberg, W. Gao, Y. Shen and J. Wang, *ACS Nano*, 2013, 7, 9232.
- 83 M. García, J. Orozco, M. Guix, W. Gao, S. Sattayasamitsathit, A. Escarpa, A. Merkoçi and J. Wang, *Nanoscale*, 2013, 5, 1325.
- 84 V. V. Singh, K. Kaufmann, J. Orozco, J. Li, M. Galarnyk, G. Arya and J. Wang, *Chem. Commun.*, 2015, **51**, 11190.
- 85 W. Gao and J. Wang, *ACS Nano*, 2014, **8**, 3170.
- 86 L. Soler and S. Sánchez, Nanoscale, 2014, 6, 7175.
- 87 B. Jurado-Sanchez , S. Sattayasamitsathit, W. Gao , L. Santos Y. Fedorak , V. V. Singh , J. Orozco, M. Galarnyk , J. Wang , *Small*, 2015, **11**, 499.
- 88 J. Orozco, G. Cheng, D. Vilela, S. Sattayasamitsathit, R. Vazquez-Duhalt, G. Valdes-Ramirez, O. S. Pak, A. Escarpa, C. Kan, J. Wang, *Angew. Chem., Int. Ed.*, 2013, **52**, 13276.
- 89 J. Li, V. V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-Sanchez, Y. Fedorak, J. Wang, *ACS Nano*, 2014, 8, 11118.
- 90 V. V. Singh, B. Jurado-Sánchez, S. Sattayasamitsathit, J. Orozco, J. Li, M. Galarnyk, Y. Fedorak and J. Wang, *Adv. Funct. Mater*, 2015, 25, 2147.
- 91 M. Kiristi, V. V. Singh, B. E. F.de Avila, M. Uygun, F. Soto, D. A. Uygun and J. Wang, ACS Nano, DOI:10.1021/acsnano.5b04142.
- W. Zhu, J. Li, Y. J. Leong, I. Rozen, X. Qu, R. Dong, Z. Wu,
   W. Gao, P. H. Chung, J. Wang and S. Chen, *Adv. Mater.*, 2015, 27, 4411.