This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion†

Fa-tang Li,§a Jingrun Ran,§b Mietek Jaroniec§c and Shi Zhang Qiao§b

Received (in XXX, XXX) Xth XXXXXXXXX 2015, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Design and synthesis of metal oxide nanomaterials is one of the key steps for achieving the highly efficient energy conversion and storage on industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides, which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. Especially, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as the capability for in-situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, conclusions and perspectives are briefly presented.

1. Introduction

With continuously rapid consumption of fossil fuels, the conversion of solar energy to the other consumable forms of energy as well as energy storage have become important issues of the current and future research. To meet the world’s fast-growing energy demand, the development of inexpensive materials for energy conversion and storage is a very important task for large-scale industrial applications. Generally, most of these compounds are metal oxide nanomaterials because of their small size, surface and quantum effects, resulting in the unique properties. There are many strategies for the synthesis of metal oxide nanomaterials; namely, sol–gel, chemical co-precipitation, chemical vapor deposition, mechanical alloying, solvothermal synthesis, microwave heating, and reverse micelle synthesis. However, many of these methods require long reaction time, high external temperature, or special instrumentation. Meanwhile, with continuously increasing deterioration of environment caused by emissions of various pollutants and the inevitable depletion of fossil energy, the green and economic production of materials for reducing pollution and saving energy becomes more and more important issue.

In 1967 Merzhano et al. presented the concept of self-spreading high-temperature synthesis (SHS, also known as combustion synthesis) based on their extensive studies of combustion of condensed substances. This method takes advantage of exothermicity of the self-sustaining chemical reaction itself to drive the reaction. However, for this type of reaction involving solid reagents under combustion conditions, the major drawbacks are difficulties in controlling SHS process and large size of particles. As a result, this method is not suitable for the preparation of complex oxides. Subsequently, Patil et al. further developed this method, known as solution combustion synthesis (SCS), by combining it with wet chemistry.

Solution combustion synthesis employs metal salts, including nitrates, sulfates and carbonates, as oxidants, and fuels as reducing reagents, such as urea, glycine, sucrose, starch, based on the exothermicity of the redox reaction. The released heat of the combustion reaction fulfils the energy requirement for the formation of oxides, resulting in some cases in temperatures that exceed 3000 °C. The most obvious advantage of SCS is its time- and energy-efficiency. Once the mixture of reagents is ignited, the high self-generated energy can convert precursors into the corresponding oxides without requirement of an additional external energy input. Hence, the products are formed in several minutes. Fig. 1 shows a series of pictures illustrating the formation process.

In contrast, other synthesis based on metal hydroxides and/or alkoxides conversion is endothermic, demanding continuous external energy input. Moreover, porous materials have been extensively used for energy storage, catalysis, sensing, adsorption and separation because of their large surface areas available for reactions, interfacial transport, and/or dispersion of active sites. Unlike hydrothermal, electrodeposition, chemical vapour deposition (CVD), and atomic layer deposition (ALD) methods that employ soft or hard templates and require special advanced instruments, SCS can easily afford porous materials due to their inherent characteristics.
Besides two most obvious advantages of the time/energy-efficiency and well-developed porosity, there are other advantages of SCS: (i) simplicity and low cost of instrumentation,18 and the easiness of scaling-up SCS; (ii) possibility of obtaining products with diverse functionality and structures such as metallics, intermetallics, metal-matrix composites, cermet, solid solutions, carbides, nitrides, borides, ceramics, and oxides;19 (iii) possibility of synthesizing ternary or quaternary oxides with high purity, which is very difficult to achieve otherwise because of the complex structures and low rate of solid state reactions; (iv) opportunity of achieving novel performance because some metastable phases can be formed in a short time;20 and (v) in the case of heterogeneous photocatalysts, the materials with high active surface area can be prepared via SCS, which is beneficial for the transfer and separation of charge carriers.21 A homogeneous mixed solution and high reaction temperature ensure the formation of complex oxides. Furthermore, environmentally benign raw materials can be used in this method (unlike, for example, in chemical vapor deposition or molecular beam epitaxy).

This review presents the recent achievements in the SCS processing of various metal oxide nanomaterials and their applications in energy conversion and storage devices, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. Also, a newly developed SCS method, involving self-combustion of ionic liquids, is briefly discussed. A special emphasis is placed on the relationship between the structure of metal oxide nanomaterials and their performance, and on the formation of surface oxygen vacancies in these materials.

2. Fundamentals of solution combustion synthesis

Reaction temperature is a crucial parameter in the synthesis of materials. The combustion temperature can be approximately estimated by the following equation:22

\[
T_c = T_0 + \frac{\Delta H^{0}_f - \Delta H^{0}_p}{C_p} \quad (1)
\]

where \(T_0\) denotes the room temperature, \(\Delta H^{0}_f\) and \(\Delta H^{0}_p\) are the enthalpies of formation of the reactants and products, respectively, and \(C_p\) is the heat capacity of the products at a constant pressure. Nevertheless, the authentic temperature of a combustion reaction is generally much lower than the calculated theoretical \(T_c\) as a result of various factors including the heat evolution of a larger amount of gas, incomplete combustion of fuels, and loss of heat by radiation.23–25 It should be noted that high temperature can result in the shrinkage of pores, which results in the smaller pore volumes, and lower specific surface areas of the products.

Among various metal salts, hydrated nitrates are preferred as metal precursors, because of not only the efficient oxidizing power of \(\text{NO}_3\) groups, but also their lower decomposition temperature and good solubility in water.10 Furthermore, urea (\(\text{CO(NH}_2\text{)}_2\)) and glycine (\(\text{NH}_2\text{CH}_2\text{COOH}\)) are the most common fuels used due to their low cost, good availability, high exothermicity, as well as their high coordination ability toward nitrates. For the purpose of illustration, Fig. 2 shows the coordination structure for \(\text{Fe(NO}_3\text{)}_2/\text{Al(NO}_3\text{)}_3\)-urea system. It is suggested that urea molecules are situated in the second coordination sphere near the carbon atom, while nitrate radicals are in the outer coordination sphere. This structure facilitates the stabilization of reactive nitrates at an ambient atmosphere.10 Varma et al.26 found that the activity of \(\text{NH}_2\text{H}_2\) is higher than that of the \(-\text{OH}\) group, which in turn is more active than \(-\text{COOH}\) based on the studies of iron nitrate with three model fuels. Urea containing two amino groups located at both ends of its chemical structure,27 and glycine with an amino group located at one end of the chain and a carboxylic acid group at the other end,28 are attractive fuels. The presence of \(\text{COOH}\) group in glycine, easily complexing metal ions, explains why it is a more reactive fuel than citric acid (\(\text{HO(C(CH}_2\text{)_2(COOH)}_3\text{)}\)), which possesses only \(-\text{OH}\) and \(-\text{COOH}\).29
state of metal element M. Accordingly, the stoichiometric equilibrium combustion reaction can be expressed by the following equation:30

\[M(NO_3)_2 + \left(\frac{5}{2} - \varphi \right) CO(NH_2)_2 + 15(\varphi - 1)O_2 \rightarrow \]

\[MO_{1/2} + \left(2 - \varphi \right) CO_2(g) + \left(\frac{5}{3} \varphi \right) H_2O(g) + \nu \left(\frac{1 + 5 \varphi}{6} \right) N_2(g) \] (3)

The mixture is stoichiometric when \(\varphi = 1 \), fuel lean when \(\varphi > 1 \) and fuel rich when \(\varphi < 1 \). Equation (3) indicates that an addition of fuel (higher \(\varphi \)) into the system requires more oxygen. When at ambient atmosphere the oxygen supply is insufficient for combustion, the reaction is incomplete, which results in generating carbonaceous products. On the other hand, when the amount of fuel is small, the combustion temperature is low. Hence, the fuel amount is an important factor, which can be adjusted for controlling the degree of crystallinity and physical properties of the resulting materials.31

Also, Eq. 3 shows that a large amount of gaseous products can be generated in the SCS process. For instance, the reaction of Zn(NO\(_3\))\(_2\) and urea with \(\varphi = 1 \) releases nearly 7.7 moles of gas per mole of ZnO.11 The released gas will produce a large number of pores in the oxide and inhibit their agglomeration, leading to a large specific surface area of the resulting material. On the other hand, the gas amount is also related to the \(\varphi \) value, as shown in Eq. (2). In general, higher \(\varphi \) value means larger amount of gaseous products and high combustion temperature. A large volume of the released gases leads to larger porosity and higher surface area, while higher combustion temperature enhances crystallinity and may reduce the surface area. Thus, the surface area represents a balance of two competing factors, the amount of gaseous products and the combustion temperature. It should be also mentioned that very high \(\varphi \) value (excessive amount of fuel) results in the lower combustion temperature and smaller crystallinity of the products because of the uncompleted combustion caused by insufficient amount of oxygen in the atmosphere.31

3. Synthesis of binary metal oxide nanomaterials

3.1 Pristine metal oxide nanomaterials

Simple binary metal oxides including TiO\(_2\), ZnO, Fe\(_2\)O\(_3\), etc. are the often used energy materials due to their low cost, earth-abundant availability, and high efficiency. There is a great interest in developing a large-scale, inexpensive and facile SCS of these oxides instead of other high-cost methods.41

In 1993, Patil’s group reported for the first time the combustion synthesis of anatase TiO\(_2\) and ZrO\(_2\) via the exothermic decomposition of the coordination precursors of MO (N\(_2\)H\(_3\)COO)\(_2\) : 2H\(_2\)O (M = Ti, Zr).32 The MO(N\(_2\)H\(_3\)COO)\(_2\) : 2H\(_2\)O (hydrazine carboxylates) were formed by reacting aqueous solutions of titanium and zirconium oxychlorides (MOCl\(_2\)) with solution of N\(_2\)H\(_3\)COOH in N\(_2\)H\(_4\)H\(_2\)O (N\(_2\)H\(_4\)COON\(_2\)H\(_3\)). Since MOCl\(_2\) aqueous solutions are not commonly used reagents, titanyl nitrate obtained by hydrolysis of titanium isopropoxide has been often employed as precursor for the synthesis of TiO\(_2\).33–35 Fe\(_2\)O\(_3\) is a typical semiconductor with narrow band gap (ca. 2.0-2.2 eV), which responds to visible light and can be used as an effective photocatalyst. Patil et al. also reported for the first time the combustion synthesis of \(\gamma \)-Fe\(_2\)O\(_3\) using malonic acid dihydrazide (C\(_3\)H\(_6\)N\(_2\)O\(_2\)) as a fuel.36 Another important member in iron oxides family, Fe\(_3\)O\(_4\), is formed in the absence of air to avoid the oxidation of Fe\(_2\)O\(_3\) in Fe\(_2\)O\(_3\) to Fe\(_3\)O\(_4\). Mukasyan’s group37 and Deshpande et al.38 reported the preparation of Fe\(_2\)O\(_3\) powders with specific surface area of 50 m\(^2\)/g in argon (oxygen-free) atmosphere. On the other hand, Toniolet al.39 reported that the combustion product of iron nitrate-urea, which is a mixture of \(\gamma \)-Fe\(_2\)O\(_3\) and Fe\(_3\)O\(_4\), Ianos et al.40 verified the influence of air on the formation of iron oxides. They conducted a series of experiments in the absence and presence of air using the same fuels, respectively. The resulting products synthesized in air were mixtures of \(\alpha \)- and \(\gamma \)-Fe\(_2\)O\(_3\), whereas single Fe\(_2\)O\(_3\) was obtained in the absence of air. Furthermore, the phase composition of the product was shown to be less affected by the fuel used, such as sucrose, citric acid, or glucose. On the contrary, Varma’s group41 found that the resulting products were affected not only by atmosphere, but also by the fuel used.

The search for economically feasible routes for the synthesis of metal oxides is of great importance for their potential industrial applications. Al\(_2\)O\(_3\), an “earth abundant” and inexpensive material, has been widely used as a catalyst and catalyst’s support.40–42 Recently, our group has found that the partially amorphous Al\(_2\)O\(_3\) obtained by combustion method showed photocatalytic activity under ultraviolet (UV) light43 owing to its shorter Al-O bond length,44 which makes it a potential energy material. The ratio of amorphous and crystalline phases in this material can be controlled by adjusting the fuel amount. Zhuravlev et al.45 studied the influence of various fuels on the morphology of Al\(_2\)O\(_3\). They found that the agglomerates of Al\(_2\)O\(_3\) particles obtained in the presence of glycine have a friable structure; while Al\(_2\)O\(_3\) aggregates obtained in the presence of urea are denser, larger and more durable without visible cellular structure.

Other energy materials including WO\(_3\),45–46 ZnO,47,48 CoO,49–51 SnO\(_2\),52 and ZrO\(_2\)53 have been also prepared via SCS, showing an extensive applicability of this route for the preparation of binary metal oxides.

On the other hand, it is well known that the morphology plays an important role in the performance of materials. There are several reports on the preparation of nanomaterials with special morphology via SCS. For instance, Kanatzidis et al.51 fabricated diverse electronic metal oxide films (In\(_2\)O\(_3\), and Zn–Sn–O, In–Zn–O, In–Sn–O solid solutions) by integrating combustion processing with solution deposition of oxide-based macroelectronics (see Fig. 3).
Nanoscale Accepted Manuscript
Accepted
Nanoscale

been explored to dope TiO$_2$ with nonmetal ions from fuels such as carbohydrates, methanol, ethanol, and formic acid. It was shown that the absorption spectra of TiO$_2$ doped with nonmetal ions have been used to enhance their visible-light absorption and quantum yield. Various methods have been explored to dope TiO$_2$ with nonmetal ions (such as C, N, F, B, S, etc.). It was shown that the absorption spectra of TiO$_2$ doped with non-metal species are red-shifted to longer wavelengths, and exhibit higher photocatalytic activities as compared to that of pristine TiO$_2$, especially in the visible-light region.

Ever since the pioneering work by Asahi et al., showing that nitrogen-doped TiO$_2$ films and powders exhibited a prolonged light absorbance up to 500 nm and are effective in the degradation of methylene blue and gaseous acetaldehyde, doping of metal oxides with various nonmetal ions has been used to enhance their visible-light absorption and quantum yield. Various methods have been explored to dope TiO$_2$ with nonmetal ions (such as C, N, F, B, S, etc.). It was shown that the absorption spectra of TiO$_2$ doped with non-metal species are red-shifted to longer wavelengths, and exhibit higher photocatalytic activities as compared to that of pristine TiO$_2$, especially in the visible-light region.

Although Asahi et al. suggested that the visible light activity of N-doped TiO$_2$ is achieved due to the band-gap narrowing driven by mixing N 2p states with O 2p states, Lee and coworkers concluded on the basis of the first-principles density-functional calculations that the absorption of visible light by N- or C-doped TiO$_2$ is due to the isolated N(C) 2p states above the valence-band maximum of TiO$_2$ rather than due to a band-gap narrowing. Based on the XPS spectra, Chen and co-workers reported additional electronic states for C- and N-doped TiO$_2$ nanomaterials, which can explain the red-shifted absorption edge of these photocatalysts and their lowered oxidation potentials. However, Varley et al. reported that N atom on the substitutional O sites (N$_{sub}$) is the source of visible-light absorption through the photo-excitation of a localized electron from N$_{sub}$ to the extended conduction-band state. They pointed out that the substitutional N$_{sub}$ is a deep acceptor that gives rise to the sub-bandgap impurity-to-band transitions in the visible light range and the sub-bandgap absorption is unambiguously attributed to the substitutional N and not to the interstitial N. Although the explanations of the role of N or C doped in TiO$_2$ are different, it is obvious that the N/C element doping with appropriate amount has positive effect on the photocatalytic efficiency of TiO$_2$.

In the SCS process, N or C doping is obvious because the adopted fuels usually contain these two elements and the combustion temperature is very high, which facilitates the doping of the aforementioned elements into the lattice of crystals. For example, Xiao et al. prepared carbon-doped TiO$_2$ nanocrystals using ethylene glycol (C$_2$H$_4$O$_2$) and citric acid (C$_6$H$_8$O$_7$) as fuels. The results showed that the band gap energies (E_g) of the C-doped TiO$_2$ samples are about 2.90 eV, which should be attributed to two factors: (1) Ti–O–C structure in C-doped titania can be responsible for the visible-light photocatalytic activity; (2) the presence of Ti$^{4+}$ species produced in the process of carbon doping of TiO$_2$ leads to the formation of oxygen vacancy state between the valence band (VB) and the conduction band (CB) in the TiO$_2$ band structure. Several groups proved that the TiO$_2$ band structure is narrowed as compared to that of the commercial TiO$_2$, which can be attributed to the N or N,C-co-doping. Mani et al. verified that among glycerine, hexamine, and triethyl amine the former was the most effective fuel for improving absorbance of the co-doped TiO$_2$ in the visible light range.

Sivarajani and Gopinath explained the doping process with urea as a fuel. During the combustion process, urea decomposes to generate in situ NH$_3$, which acts as a nitrogen source and assures a reduction atmosphere. Embryonic titanium-oxo nanoclusters (TiO$_{y_0}$, x/y > 1) grow in ammonia atmosphere to bigger clusters/particles with many defects. As a highly electron donating compound, ammonia easily interacts with the defect-rich clusters, which results in the incorporation of N element into TiO$_2$ lattice to produce TiO$_2$-N$_x$ materials. According to the above mentioned study, the urea-assisted doping procedure does not retain any organic impurities in the resulting TiO$_2$-N$_x$ due to the complete conversion of urea to ammonia and CO$_2$. Moreover, the resulting materials are mesoporous structures with a high surface area (234 m2/g). The same concept has been also adopted for making ZnO$_{y_0}$-N$_x$.

In addition to the possibility of selecting different fuels, another effective way for controlled doping is the usage of properly selected precursors. For example, Chen et al. introduced a novel approach to the synthesis of N- and F-co-doped mesoporous TiO$_2$ photocatalysts using TiF$_4$ as a precursor, which is the source of Ti and F, and urea as a fuel and the source of N dopant. Doping can also lead to the discovery of new energy materials. For instance, using glycine and zirconium nitrate (Zr(NO$_3$)$_4$·5H$_2$O), Poli et al. synthesized C-doped tetragonal ZrO$_2$, which was found to be photocatalytically active with a band gap of nearly 3.5 eV. This result may provide some suggestions for the development of more effective photocatalysts by proper selection of dopants and doping conditions.
3.2.2 Formation of surface oxygen vacancies

In order to engineer efficient photocatalysts, the creation of suitable surface defects is an effective route. For instance, it was reported that the oxygen vacancies can act as electron capture centres, and hence improve the separation efficiency of charge carriers.82-87 Oxygen vacancies can also cause the presence of a vacancy-induced band of electronic states just below the conduction band, thus narrowing the band gap of a semiconductor.85 In the SCS process, there is a balance between oxygen in the surrounding atmosphere and that in the crystal lattice. If the oxygen pressure in atmosphere is low enough, oxygen from the lattice would be liberated, leaving vacancies at the original lattice sites.88,89

A successful creation of surface oxygen vacancies is also dependent on the fuels used. If the combustion reaction releases oxygen, it is hard to acquire oxygen vacancies. Recently, our group89 fabricated BiOBr/Bi$_2$O$_3$/Br$_{10}$ nanocomposites with surface oxygen vacancies using 2-bromoethylamine hydrobromide (C$_7$H$_9$BrN·HBr) as a fuel. The proposed reaction leading to the formation of BiOBr can be presented as follows:

\[
\text{Bi(NO$_3$)$_3$·5H$_2$O + C$_7$H$_9$BrN·HBr + 0.5CO(NH$_2$)$_2$ + 0.25O$_2$} \\
\rightarrow \text{BiOBr + 2.5CO$_2$ + HBr + 2.5N$_2$ + 4H$_2$O (4)}
\]

![Fig. 5. Illustration of adsorption models of a) MO and b) RhB on the BiOBr surface. Reproduced with permission from ref 89 Copyright © 2013, Royal Society of Chemistry.](image)

The ample amount of the created surface oxygen vacancies contribute to the extraordinary adsorption properties of the resulting composite, which is reflected by high adsorption capacities of both cationic dye, rhodamine B (RhB), and anionic dye, methylene orange (MO). The adsorption mechanism is shown in Fig. 5.

The influence of the fuel type and the external atmosphere on the amount of oxygen vacancies has been also verified in the case of Bi$_2$Zr$_{x}$O$_{3+y}$ and WO$_3$.46,90 It was shown that more oxygen vacancies can lead to a narrower band gap of a given photocatalyst and higher photocatalytic activity based on the dual functions of oxygen vacancies resulting in absorbing more light and capturing photogenerated electrons.90

For TiO$_2$, the existence of oxygen vacancies is also recognized as the generation of Ti$^{4+}$, which can extend the photoresponse of TiO$_2$ from the UV to the visible light region.91 Zuo et al.92 demonstrated that only flammable/combustible imidazoles can generate reducing gases to convert Ti$^{4+}$ into Ti$^{3+}$. Meanwhile, they found that some anions, such as Cl$^-$, can prohibit the formation of Ti$^{3+}$.

A brief survey of literature indicates that the creation of surface oxygen defects via the SCS process is an effective way of tuning the properties of catalysts, and may attract more and more attention in near future.

3.3 Doping with foreign ions

As indicated above the SCS process can sometimes result in the doping of non-metal elements such as N or/and C. To further adjust the optical structures and improve the performance of semiconductors, various metal ions can be doped into photocatalysts. Ni et al.93 reported that the metal ion-doped TiO$_2$ nanoparticles via SCS by employing a mixture of ethanol and ethylene glycol as solvents, tetra-n-butyl titanate [Ti(OC$_4$H$_9$)$_4$] as the source of titanium in the presence of small amounts of metal ions such as Cu$^{2+}$, Mn$^{2+}$, Ce$^{4+}$ and Sn$^{4+}$. The UV-vis DRS show that the absorption edges of all doped-TiO$_2$ samples are red shifted toward visible light region with longer wavelength as compared to those of undoped-TiO$_2$. They also found that the introduction of a small amount of Sn into TiO$_2$ increased the amount of oxygen vacancies and/or defects in the TiO$_2$ crystal, while in the case of doping with other metal ions an opposite effect was observed.

In Ramaswamy’s work,94 a homogeneous solid solution of Mn$_x$[Ce$_{0.85}$Ti$_{0.15}$]$_{1-x}$O$_{2.4}$ ($x=0-0.2$) was reported, which is thermally stable up to a temperature of 1050 °C; while the samples of similar composition prepared by co-precipitation or wet-impregnation methods suffer sintering at this temperature and show structural inhomogeneity. Co-doping of TiO$_2$ with other cerium and vanadium ions resulted in Ti$_{0.8}$Ce$_{0.05}$V$_{0.05}$O with oxygen vacancies, as reported by Huang et al.95

To obtain macroporous materials, Song and coworkers96 developed a novel electrospinning technique followed by a self-sustaining combustion procedure. The precursor of Ce$_{0.5}$Zr$_{0.5}$O$_2$, consisted of interconnecting nanofibers as shown in Fig. 6a. Each nanofiber is mesoporous and the inter-connections of nanofibers form macropores. After being heated at 300 °C for 1 h, the macroporous structure is preserved, while the fiber diameters decrease obviously (Fig. 6b) owing to the decomposition of the organic matter and the formation of a solid solution of Ce$_{0.5}$Zr$_{0.5}$O$_2$.

![Fig. 6. (a) SEM image of the precursor of composite nanofibers of Ce$_{0.5}$Zr$_{0.5}$O$_2$ (inset: SEM image at higher magnification). (b) SEM image of Ce$_{0.5}$Zr$_{0.5}$O$_2$ nanofibers after 300 °C treatment. Reproduced with permission from ref 96 Copyright © 2011, Royal Society of Chemistry.](image)
materials. Ekmambaram et al.77 prepared co-doped ZnO and found that the un-doped ZnO particles are connected to each other in the form of a large network structure with irregular pore sizes and shapes. However, a flake-type structure was obtained for cobalt-doped ZnO. The formation of pores is due to the liberation of a large amount of gaseous products during the combustion process. Ahmad et al.78 investigated the surface morphology of pristine ZnO and Al-doped ZnO (AZO) nanopowders. The un-doped ZnO nanoparticles were spherical and bigger, while those of AZO were smaller and ellipsoidal.

In recent decades, metal/nan-metal co-doped photocatalysts have been extensively studied to improve their photocatalytic activity under visible-light irradiation.79 Gopinath et al.78,79 reported (Zn\textsubscript{1-x}Ga\textsubscript{x})O\textsubscript{1-x}N\textsubscript{x} and (Zn\textsubscript{1-x}In\textsubscript{x})O\textsubscript{1-x}N\textsubscript{x} solid solutions formed during SCS via Ga/In and N co-doping of ZnO with metal nitrates as the source of metal ions and urea as a fuel and the source of nitrogen. The resulting band gaps decreased to 2.5 and 2.3 eV for (Zn\textsubscript{1-x}Ga\textsubscript{x})O\textsubscript{1-x}N\textsubscript{x} and (Zn\textsubscript{1-x}In\textsubscript{x})O\textsubscript{1-x}N\textsubscript{x}, respectively, because the N2p states of nitride are above O2p VB. Chen et al.99 reported a mesoporous N, W co-doped TiO\textsubscript{2} photocatalyst by utilizing urea and sodium tungstetate. The co-doping significantly narrowed its band gap to ca. 2.7 eV that is responsible for high visible light absorption. Furthermore, N, Cu co-doped ZnO, and N, B co-doped TiO\textsubscript{2} were also successfully synthesized.100,101

4. Synthesis of ternary and quaternary metal oxide nanomaterials

4.1 Perovskite type oxides (ABO\textsubscript{3})

Perovskite-type oxides (ABO\textsubscript{3}) have attracted much attention due to their extensive applications in catalysis, photovoltaic cells, solid oxide fuel cells as energy materials and in ferroelectric random access memory, magnetic data storage, and electromechanical transducers, etc.102 Traditional synthesis of these nanomaterials often result in undesired composition. Also, crystallization requires temperatures above 800 °C due to the difficult solid reaction between oxides. In 1993, Manoharan and Patil110 reported the combustion synthesis of LnCrO\textsubscript{3} (Ln=La, Pr, Nd, Sm, Dy, Gd and Y) and LaMg\textsubscript{3}O\textsubscript{4} (M=Mn, Co, and Ni) using metal nitrates-tetrafurans triazine (TFTA) mixtures. TFTA was prepared by reacting formaldehyde and hydrazine hydrate at 0 °C under constant stirring. These oxides are of sub-micrometer size with specific surface area ranging from 3 to 20 m2/g. This work initiated the usage of SCS for the synthesis of complex compounds.

Yttrium orthoferrite (YFeO\textsubscript{3}) is a promising material for visible light photocatalytic applications due to its band gap of 2.2–2.6 eV.104 Wu et al.105 reported its preparation using glycine as a fuel. Chen et al.106 obtained YFeO\textsubscript{3} and Y\textsubscript{2}Fe\textsubscript{2}O\textsubscript{5} by controlling thermal transformation with different Y/Fe initial ratios. Especially, it should be mentioned that YFeO\textsubscript{3} appears in two common phases, hexagonal and orthorhombic. Yu et al.107 reported that the phase structure of YFeO\textsubscript{3} can be selectively controlled to be hexagonal or orthorhombic by simply adjusting the ratio of glycine to nitrate (G/N). According to their experiments, when the G/N is 0.85, YFeO\textsubscript{3} exists as an amorphous phase. As the ratio increases to 1.0 and 1.3, the phase structure is hexagonal; with the ratio of 1.5 or 1.7, the obtained YFeO\textsubscript{3} exhibits high temperature phase, orthorhombic, with a low surface area of 6–4 m2/g. Meanwhile, the increase of glycine amount resulted in the enlargement of the particles.

Recently, LaFeO\textsubscript{3} has attracted much interest due to its high efficiency in solid oxide fuel cells and photocatalysis.108,109 Parida110 and Gallego111 groups reported a sol-gel combustion synthesis of this material, which required further post-treatment at high temperature for more than 2 hours. To improve the preparation efficiency, our group112 proposed a novel solution combustion method, the so-called self-combustion of ionic liquids. We found that some ammonium salts can coordinate with metal nitrates to form ionic liquids (ILs); meanwhile, these salts can also act as fuels in the combustion process. The ILs are mixed homogeneously at the molecular level, which is essential for the formation of nanopowders. Moreover, unlike traditional SCS, no additional water is needed to form the precursor solutions, avoiding destabilization of the system in the process of heating caused by continuous evaporation of water. In our work, ILs were prepared from Fe(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O, La(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O, and trimethylamine hydrochloride ((C\textsubscript{3}H\textsubscript{7})\textsubscript{3}N·HCl). The last reagent acts not only as the source of cation in IL, but also a fuel. The resulting LaFeO\textsubscript{3} materials exhibited porous structures with quite high surface areas between 37 and 84 m2/g. For the purpose of comparison, the surface areas of the LaFeO\textsubscript{3} samples prepared using glycine varied from 6.5 to 28 m2/g; the highest surface area was achieved at the glycine-to-nitrate ratio of 2.113 Wei et al.114 also reported the synthesis of LaFeO\textsubscript{3} and LaFe\textsubscript{0.5}Mn\textsubscript{0.5}O\textsubscript{3} by stearic acid solution combustion method; the latter possessed the surface area of 38 m2/g.

Other perovskite-type oxides, including SrTiO\textsubscript{3}, BiFeO\textsubscript{3}, LaNiO\textsubscript{2},115 BiFeO\textsubscript{3},116 doped BiFeO\textsubscript{3},117 and layered perovskite-type La\textsubscript{0.5}Ni\textsubscript{0.5}O\textsubscript{3} and \gamma-(La,Bi)\textsubscript{0.5}Mo\textsubscript{0.5}O\textsubscript{3}118 have been also successfully prepared via SCS, showing the suitability of SCS for the preparation of ABO\textsubscript{3} type compounds.

4.2 Spinel type oxide (AB\textsubscript{2}O\textsubscript{4})

Spinel-types oxides (AB\textsubscript{2}O\textsubscript{4}) are more complex than ABO\textsubscript{3} and their synthesis requires higher temperatures. As a pioneer in SCS, Patil’s group8 reported the preparation of alumina-based compounds, including spinel-type MgAl\textsubscript{2}O\textsubscript{4}, CaAl\textsubscript{2}O\textsubscript{4}, YAl\textsubscript{2}O\textsubscript{4}, and ZrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3}, Al\textsubscript{2}O\textsubscript{3}, LaAlO\textsubscript{3}, and ruby powder (Cr\textsubscript{3}+/Al\textsubscript{3}+) by combustion of the corresponding metal nitrate-urea mixtures. The synthesis of MgAl\textsubscript{2}O\textsubscript{4} revealed that Mg(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O and Al(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O exhibit different behavior with respect to urea, glycine and β-alanine.119 It was shown that urea is the most appropriate fuel for the decomposition of Al(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O, while β-alanine is suitable for Mg(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O. As a result, the use of mixed fuels (urea and β-alanine, urea and glycine) afforded the desired materials without subsequent annealing steps. On the contrary, a single fuel (urea, glycine or β-alanine) led to the formation of an amorphous powder.

MgAl\textsubscript{2}O\textsubscript{4} has been extensively used as a catalyst support,122–124 humidity sensor,125 and nuclear material126 because of its high melting point, low thermal conductivity, high mechanical strength, good chemical inertness, and excellent radiation resistance.121 However, there was no reference reporting its application in photocatalysis before our group reported it.44 We showed that the photocatalytically active mixed amorphous and crystalline MgAl\textsubscript{2}O\textsubscript{4} nanopowders can be prepared via SCS using
urea and glycine as a mixed fuel. The UV-Vis diffuse reflectance spectra of various MgAl\(_2\)O\(_4\) powders are shown in Fig. 7. The observed photo-absorption can be attributed to the amorphous MgAl\(_2\)O\(_4\), which features shorter Al-O bond length than that in crystalline MgAl\(_2\)O\(_4\).\(^{127}\)

Fig. 7. UV-Vis diffuse reflectance spectra of MgAl\(_2\)O\(_4\) powders. Reproduced with permission from ref 44 Copyright © 2011, Elsevier.

The Fe-based materials possess magnetic properties, which is beneficial for their recycle and reuse. Patil et al.\(^{129}\) reported the synthesis of MFe\(_2\)O\(_4\) (M=Mg, Mn, Co, Ni, Cu, Zn, Y, La, Nd, Sm, Gd, Dy, Nd\(_{0.5}\)Zr\(_{0.5}\)) using oxalyldihydrazide (ODH, C\(_2\)H\(_4\)N\(_2\)O\(_4\)) or TFTA as fuels. The combustion reaction can be controlled by adjusting heating rate and stoichiometry. A heating rate of less than 75 °C/min would not cause the occurrence of combustion and fuel-rich combustion mixtures would lead to the presence of carbon impurities. Other spinel oxides, such as doped ZnFe\(_2\)O\(_4\),\(^{129–131}\) CuCr\(_2\)O\(_4\),\(^{132}\) and (Co,Fe)Cr\(_2\)O\(_4\)\(^{133}\) have been reported too.

Fig. 8. FE-SEM micrographs of the BiVO\(_4\) crystallites obtained via (a) SCS and (b) SSR. Reproduced with permission from ref 141 Copyright © 2008, Elsevier.

Fig. 9. Schematic illustration of the CMC-assisted formation of BiVO\(_4\) nanospheres. Reproduced with permission from ref 142 Copyright © 2011, Elsevier.

To control morphology, Bao et al.\(^{134}\) proposed a post-synthesis treatment method. Firstly, CaIn\(_2\)O\(_4\) particles were obtained by SCS using calcium nitrate and indium nitrate as oxidizers and glycine as a fuel. Afterwards, CaIn\(_2\)O\(_4\) was annealed under high temperature. During the calcination process, the nanosized grains of the as-combusted CaIn\(_2\)O\(_4\) self-assembled into nanocapsules, which were further agglomerated into regular CaIn\(_2\)O\(_4\) rods having the diameter of ~300 nm and the length of about 2 µm.

In conventional synthesis of ABO\(_3\) or AB\(_2\)O\(_4\) type compounds, intermediate products such as various oxides are always generated. SCS does not have this drawback because of homogeneous solution of the precursors used and high reaction temperature.

4.3 Scheelite type oxides (ABO\(_4\))

Bismuth vanadate (BiVO\(_4\)) has attracted considerable interest because of its suitable band gap and excellent photocatalytic performance under visible-light irradiation.\(^{135,136}\) There are three phases for BiVO\(_4\): monoclinic scheelite, tetragonal scheelite and tetragonal zircon.\(^{137}\) Among these, monoclinic scheelite-structured BiVO\(_4\) with a band gap of 2.4 eV exhibits the highest photocatalytic activity under visible-light irradiation over the other forms. Urea\(^{138}\) and citric acid\(^{139,140}\) have been used as fuels to synthesize monoclinic BiVO\(_4\) with the specific surface area around 3.0 m\(^2\)/g. Using DL-malic acid, Chandrappa et al.\(^{137}\) obtained BiVO\(_4\) powders possessing a large surface area of ca. 13 m\(^2\)/g.

Jiang et al.\(^{141}\) prepared the spherical-shaped BiVO\(_4\) photocatalysts via SCS using citric acid and urea as co-fuels followed by annealing at around 500 °C for different times. The morphologies of the resulting samples obtained via SCS and solid-state reaction (SSR) are shown in Fig. 8. As can be seen, the product obtained SCS shows uniform spherical morphology, which is not the case for the material prepared by SSR. Martinez-de la Cruz et al.\(^{142}\) obtained BiVO\(_4\) nanospheres in the presence of sodium carboxymethylcellulose (CMC). The spherical morphology induced by the presence of CMC is very different from that obtained by co-precipitation and solid-state reaction methods. The specific surface areas of various samples are as follows: BiVO\(_4\)-solid state reaction, 0.3 m\(^2\)/g; BiVO\(_4\)-co-precipitation, 1.5 m\(^2\)/g; BiVO\(_4\)-CMC200, 4.0 m\(^2\)/g, and BiVO\(_4\)-CMC300, 3.0 m\(^2\)/g. The proposed formation route of BiVO\(_4\) nanospheres via CMC-assisted SCS method is shown in Fig. 9.

Fig. 10. SEM images of the surface and cross-section of a BiVO\(_4\) film deposited on soda-lime glass substrate, with ten layers and thermally annealed at 500 °C for 1 h. Reproduced with permission from ref 144 Copyright © 2014, Elsevier.

Thin film structures are advantageous for many applications as compared to the powder morphology. BiVO\(_4\) thin film has been also prepared through the solution combustion synthesis coupled with dip-coating process.\(^{143,144}\) Fig. 10 shows the SEM images of BiVO\(_4\) thin films. He et al.\(^{145}\) immobilized BiVO\(_4\) onto bentonite to obtain the BiVO\(_4\)/bentonite composite by SCS, which featured...
larger surface area and better performance than initial BiVO₄, and could be easily recovered. Also, a series of other scheelite type oxides with ABO₆ structure, FePO₄,¹⁴⁶ ZnWO₄,¹⁴⁷ and CeVO₄¹⁴⁸ have been also obtained via SCS using glycerine or oxalylidihydrazide as fuels.

4.4 Other complex oxides

The preparation of more complex ternary or quaternary oxides, such as Bi₃WO₆¹⁴⁹ Bi₃CeO₇,¹⁵⁰ Bi₃Ti₃O₁₂,¹⁵¹ K₀.⁶⁰Ti₁.₇₃Li₀.₂₉O₂O₁.,¹⁵² Li₂SiO₄,¹⁵³ and Bi₂TaO₅Cl¹⁵⁴ have been reported, which possess small particle sizes, relatively large specific surface areas, good crystallinity and often superior performance. Generally, the higher formation temperature and longer reaction time are required to prepare oxides with more complex structure; thus, the advantages of SCS are more obvious in the synthesis of these compounds.

Besides common fuels, some rare fuels, such as acenaphthene¹⁵⁵ and diformyl hydrazine¹⁵⁶ were also used to prepare the Li-containing compounds. Ananth et al.¹⁵⁷ mentioned that acenaphthene fuel was better than sucrose in reducing the particle size of LiNi₀.₅Mn₀.₅O₂ to smaller value than that of the compound prepared by simple solid state methods.

Akiyama et al.¹⁵⁸ reported the influence of the fuel ratio on the surface area and morphology of Ce₀.₂Mn₀.₅Fe₁₁.₀₂O₂ (CMF) as an anode material for solid oxide fuel cells (SOFC). The samples were designated as CMF1, CMF2, and CMF3 at φ=0.5, φ=1, and φ=1.8, respectively. The BET surface areas of CMF1, CMF2, and CMF3 were estimated to be 56, 16 and 37 m²/g, respectively, which are about 3-10 times larger than that of the SSR CMF sample, 6 m²/g. The CMF1 sample was obtained in the form of porous particles (with pores below 50 nm), while CMF2 and CMF3 were shown to have much larger pores.

Furthermore, Huang group¹⁵⁹ prepared In₂TiO₄ containing octahedra [InO₆] and [TiO₆] with a band gap of 3.02 eV. The band calculations show that the open coordination environment of Ti, large dispersion of In 5s states, and the optical indirect transition are in favor of photon energy storage and electron-hole separation to benefit the photocatalytic activity of In₂TiO₄.

5. Fabrication of nanocomposites

In the case of single semiconductors there is a contradictory situation for utilizing the visible light: semiconductors with wide band gaps are not responsive to visible light, but semiconductors with narrow band gap including the modified oxides feature low charge separation efficiency, which make them ineffective photocatalysts. Combining two semiconductors with well-matched energetic levels of the valence band (VB) and conduction band (CB), where one of them can harvest visible light, to form heterojunction has been proven to be an effective method for promoting charge separation and consequently enhancing the photocatalytic efficiency.¹⁵⁹,¹⁶⁰ At present, many methods have been developed to prepare hybrid photocatalysts, such as solvothermal, chemical etching, co-precipitation or precipitation–deposition, and microwave-assisted methods. Usually, one component of the composite is firstly synthesized and then was coupled with the other. As a result, the contact interface of the various compounds is limited, which is a very important factor influencing the charge carrier transfer efficiency.

However, one-pot preparation of heterostructured products from distinct starting materials is difficult because of their different growth mechanisms and reaction rates. Hence, combining different components to engineer complex hybrid photocatalysts with proper interface remains as a challenging but exciting topic.¹⁶¹ Again, SCS has unique advantages for fabrication of hybrid photocatalysts. It can assure high homogeneity of mixed precursors and narrow size distribution, which benefit the preparation of chemically homogenous, uniform and well-dispersed heterojunctions with more active contact sites, thus improving the charge transfer efficiency.¹⁶²

5.1 Heterostructured metal oxides

5.1.1 Support immersion synthesis

Support-assisted immersion synthesis involves infiltrating the pre-prepared component with the precursor solution prepared for combustion. At high temperature generated by the exothermic reaction or calcination, two or more components are combined firmly to form heterojunctions. For example, as mentioned in section 4.3, BiVO₄ is a potential photocatalyst in energy-related applications. However, its low quantum efficiency restricts further applications of this material. Jiang et al.¹⁶³ obtained CuO/BiVO₄ composite photocatalysts by incipient wetness impregnation technique. Firstly, BiVO₄ was prepared by a combustion method using citric acid and urea as co-fuels. Then, BiVO₄ was mixed with water and Cu(NO₃)₂·3H₂O to obtain a paste. Finally, the paste was dried and annealed to form CuO/BiVO₄ composite. As for TiO₂, various semiconductors with narrower band gap have been combined with TiO₂ to improve its quantum efficiency and the visible-light absorption ability. For instance, an infrared-to-ultraviolet upconversion agent Y₂O₃:Yb³⁺, Tm³⁺ and a novel composite photocatalyst TiO₂/Y₂O₃:Yb³⁺,Tm³⁺ have been synthesized by combustion and precipitation methods.¹⁶⁴

Recently, graphene oxide (GO) has attracted a lot of attention as a good candidate for supporting nanoparticles in liquid phase, which can facilitate the transfer of photo-generated electrons from photocatalysts to GO due to its excellent electronic conductivity, and thus reduce the recombination of charge carriers.¹⁶⁵ Moreover, the high surface area of GO is beneficial for adsorption of reactants and their diffusion to the photocatalyst. Naturally, GO was selected to combine with TiO₂,¹⁶⁵,¹⁶⁶ CoFe₂O₄¹⁶⁷ and NiFe₂O₄.¹⁶⁸

Generally, the specific surface area of the composites after combustion should be lower than that of the components before combustion. For instance, when α-Al₂O₃, γ-Al₂O₃, and ZrO₂ were used as porous supports, the specific surface areas of the supported catalysts were about or below the surface areas of the supports. However, Mukasyan et al.¹⁶⁹ observed that the surface area of combusted Fe₂O₃/activated Al₂O₃ increases as compared to that of the support. They thought that the decrease of reaction temperature caused by the water evaporation from activated Al₂O₃ and intensification of gas-phase evolution in the combustion wave led to an increase in the surface area of the composite products. The former restricts kinetics of the growth of nuclei and the latter hinders the collision between formed solid nuclei. In the case of α-Al₂O₃, γ-Al₂O₃, and ZrO₂, the decrease in
the surface area of the loaded catalysts may be due to the “epitaxial” coverage of the support surface and the sintering at high combustion temperature.

Inspired by above result and previous research that amorphous MgAl2O4 has shorter Al-O bond length and narrower band gap,44 our group45 developed TiO2/amorphous Al2O3 composite containing amorphous Al2O3 ingredient, which shows ultraviolet light response ability. To obtain TiO2/Al2O3, commercial P25 TiO2 was immersed in the solutions of Al(NO3)3·9H2O, urea, and water; then the suspension was heated to carry out the combustion. The resulting hybrids exhibited interesting properties: firstly, N element contained in urea was introduced (doped) into the lattice of TiO2, which resulted in the shift of light absorbance of TiO2 from red to visible region; secondly, the composite exhibited much higher surface area (the highest was 161 m²/g) than that of P25 (46 m²/g); thirdly, the photocatalytic activity of the hetero-junction was greatly enhanced due to the larger amount of defect sites on amorphous Al2O3 that can transfer electrons from TiO2. In this combustion process, TiO2 was used as support; while from the photocatalysis viewpoint, Al2O3 acts as an active support. Hence, this combustion method can be called “reverse support combustion”.

However, the support-assisted immersion synthesis is not an in situ process and the contact area of the components is also limited. Therefore, it is highly desirable to develop more effective methods for enhancing transfer efficiency of charge carriers.

5.1.2 One-step preparation from homogeneous solution

In SCS, hybrids can be obtained by using a homogeneous solution of precursors. The high temperature of combustion can cause a simultaneous formation of various metal oxides. In order to obtain TiO2-based heterostructures, Reddy et al.170 employed titanyl nitrate (TiO(NO3)2) formed by the reaction of titanium isopropoxide with nitric acid, zirconyl nitrate (ZrO(NO3)2), siliconyl nitrate obtained by reacting tetraethyl orthosilicate (TEOS) with nitric acid, aluminum nitrate nona-hydrate (Al(NO3)3·9H2O) as precursors and urea as a fuel to prepare TiO2–SiO2, TiO2–Al2O3, and TiO2–ZrO2 mixed oxides, which were found to be quite thermally stable (i.e., no phase transformation from anatase to rutile) and showed high surface area ranging from 89 to 115 m²/g.

By varying the amount and type of metal nitrates, α-Fe2O3/β-Fe2O3171 Sm2Ti2O7/SmCr2O7,172 Gd2Ti2O7/GdCr2O7,173 ZnO/Fe2O3,174 and V2O5/BiVO4175 have been also developed.

In the combustion process, when the amount of oxygen is insufficient or the fuel is in excess, the combustion reaction would be incomplete, which can result in the presence of carbonaceous impurities in the resulting materials. For example, Falaras et al.176 modified TiO2 by controlling the urea content and calcination temperature, thus reaching an absorption threshold of 2.19 eV. The visible light absorption of TiO2 was ascribed to the existence of monolayer of carbonaceous species, which covered the surface of TiO2 anatase nanoparticles.

On the other hand, it should be stated that there is also disadvantage of one-step in situ preparation of hybrid photocatalysts. Because of homogeneous composition, very high reaction temperature, unexpected intermediate products, additional phases, such as CeAl2O5 in CeO2/Al2O3 system and Al2O3 in CeO2/Al2O3 composites are often formed.177,178 In some cases, it is difficult to adjust the reaction conditions to avoid the formation of by-products.

The aforementioned hybrids are composed of two kinds of oxides. It is known that some metal oxides own many phases (polymorphism) or compositions. For example, iron oxides can exist as Fe2O3 or four different Fe2O3 phases:α-, β-, ε-, and γ-Fe2O3. Iron oxides with different phases possess various band gap energies. Sometimes it is desirable to prepare composites with mixed-phase or composition derived from the same oxide family. However, some phases are metastable and it is hard to obtain such hybrids using traditional synthesis methods because their long reaction time will affect the stability of the metastable phases; in this case SCS is the method of choice for the synthesis of mixed-phase oxides. Our group20 reported mixed-phase Fe2O3 with α and β structures via self-combustion of ILs using (C2H5)3NH·HCl as a fuel. The β/α-Fe2O3 ratio was controlled by adjusting the fuel amount; this ratio decreased with increasing the amount of fuel. This method afforded the metastable β-Fe2O3. Other analogous composites, such as (α+γ)-Fe2O3,28 Fe2O3/Fe6O15,27,19 and CoO/Co3O422 were also synthesized by varying the fuel amount or calcination atmosphere.

In recent years, BiOCl has attracted much attention due to its good photocatalytic activity under UV irradiation since Zhang et al. reported its high efficiency in photodegradation of methyl orange.180 However, the band gap of BiOCl is in the range of 3.19–3.60 eV, which is too large for efficient utilization of solar energy. Bi2O3/Cl10 with the band gap of ca. 2.90 eV is a product of the thermal decomposition of BiOCl.181 Our group27 fabricated Bi2O3/Cl10/BiOCl heterojunctions via the self-combustion of ILs, which were prepared from Bi(NO3)3 and diethylamine hydrochloride ((C2H5)2NH·HCl). The latter is not only the cation in IL, but also the main fuel in the combustion process. The ratio of Bi2O3/Cl10 to BiOCl can be controlled by adjusting the ratio of (C2H5)2NH·HCl to urea, which acts as an additional fuel.

5.2 Metal supported inorganic oxides

Transition metals have been widely used as co-catalysts for enhancing the electron transfer efficiency of photocatalysts. Especially the surface plasmon resonance (SPR) properties of noble metals make them responsive to visible light. Therefore, deposition of noble metals on the surface of photocatalysts can be used to make them responsive to visible light. In SCS, metal nanoparticles can be in situ generated by reducing metal oxides in a reductive atmosphere that can be created by the excess of fuels,30 for instance by ammonia formed due to the decomposition of urea as shown by the following equations:182,183

$$\text{CO(NH}_2\text{)}_2 \rightarrow \text{NH}_3 + \text{HCNO}$$

$$\text{NiO} + \text{NH}_3 \rightarrow \text{Ni} + \text{H}_2\text{O} + \text{N}_2 \ (T > 450 \ ^\circ\text{C})$$

By selecting an appropriate fuel and controlling atmosphere, inorganic oxides loaded with metal nanoparticles, such as Pd, Pt, Ag, Cu, and Ni on TiO2, ZnO, CeO2, Al2O3, NiO, can be prepared by using SCS.33,183–185 The formed heterojunctions exhibit much better performance than those present in the traditionally prepared composites due to a very good dispersion of metal particles in porous oxides.

On the other hand, it is well known that the size and amount of the loaded metal particles are important factors that influence the performance of the composite photocatalysts. However, it is
difficult to precisely estimate the size and amount of the deposited metal particles, which is a drawback of SCS.

6. Energy storage and conversion

6.1 Energy storage

6.1.1 Electrode materials for lithium-ion batteries

To efficiently generate the clean and safe electric power, the development of highly efficient energy storage devices is an important task. Li-ion rechargeable battery (LIB) is a device converting chemical energy to electrical energy, which has been widely used in mobile phones, laptops, digital cameras, and medical microelectronic devices thanks to its high energy density and long cycle life.\(^\text{13,196,197}\) An electrochemical cell is composed of two electrodes, the negative electrode (anode) and the positive electrode (cathode), separated and connected by a Li\(^+\) conducting electrolyte. The LIB performance including the specific energy and power, cycle life, and discharge rates rely largely on the intrinsic chemistry of cathode and anode materials. When the LIB is working, chemical potential is converted into electrical energy via Faradaic reactions, which is affected by the composition, crystal structure, and morphology of the electrodes.\(^\text{198}\) Hence, great efforts have been recently undertaken to improve the electrode materials, especially cathode materials, because cathodes affect the cell voltage, charge transfer kinetics, safety, and cost.\(^\text{199}\)

Lithium cobalt oxide (LiCoO\(_2\)) is a common commercial cathode material assuring high voltage, good reversibility, and high theoretical specific capacity of Li-ion batteries. LiCoO\(_2\) has a layered rhombohedral structure with lithium atoms in the 3a, cobalt atoms in 3b, and oxygen atoms in 6c positions (with respect to hexagonal axes).\(^\text{200}\) Both Rodrigues\(^\text{201}\) and Kalyani\(^\text{202}\) groups verified that LiCoO\(_2\) obtained by SCS features the first discharge capacity of over 120 mAh g\(^-1\) and a less than 10% capacity fade after 30 cycles. However, high cost, and toxicity of cobalt, limited rate capability and safety concerns of LiCoO\(_2\) restrict its further applications. To tackle these problems, the ion-doped LiCoO\(_2\) materials have been proposed; for example, LiCoO\(_1\)\(_{x}\)Ni\(_{0.5}\)O\(_2\)\(_{y}\) show higher specific discharge capacity and good cycle-life performance.

As alternative cathode materials with smaller toxicity, the olivine-type and layered manganese-based materials have attracted much attention. Hong et al.\(^\text{203}\) reported that a multimetal oxide Li\([\text{Mn}_{0.5}\text{Ni}_{0.5}\text{Co}_{0.1}]_2\text{O}_4\) solid solution delivered the first discharge capacity of 265 mAh g\(^-1\) between 4.8 and 2.0 V at the specific current of 100 mAh g\(^-1\). Ananthi’s group\(^\text{204}\) prepared LiMn\(_{0.5}\)Ni\(_{0.5}\)O\(_2\) via SCS, which exhibited an initial discharge capacity of 161 mAh g\(^-1\) in a voltage range of 4.6–2.5 V at 0.1 C (1 C is defined as one lithium per formula in one hour) rate and can be subjected to more than 50 cycles. This desirable electrochemical property can be attributed to the pure phase of LiNi\(_{0.5}\)Mn\(_{0.5}\)O\(_2\), which is difficult to prepare especially by the conventional solid state fusion method.\(^\text{206,207}\) However, Park et al.\(^\text{208}\) explored a simple combustion method for the synthesis of Li\([\text{Mn}_{0.5}\text{Ni}_{0.5}\text{Li}_{1.5}]_2\text{O}_4\) compounds with low Ni content. Based on the XRD and electrochemical data they concluded that LiMn\(_{0.5}\)Ni\(_{0.5}\)O\(_2\) exhibited a relatively low initial discharge capacity of 200 mAh g\(^-1\) and a large loss in the capacity during cycling; while Li[Mn\(_{0.61}\)Ni\(_{0.17}\)Li\(_{0.22}\)]O\(_2\) and Li[Mn\(_{0.58}\)Ni\(_{0.22}\)Li\(_{0.17}\)]O\(_2\) solid solutions featured higher initial discharge capacities of over 245 mAh g\(^-1\) and a stable cycle performance between 4.8–2.0 V. Aurbach’s group\(^\text{209}\) obtained LiNi\(_{0.5}\)Mn\(_{0.5}\)O\(_2\), LiNi\(_{0.33}\)Mn\(_{0.33}\)O\(_2\), and LiNi\(_{0.4}\)Mn\(_{0.4}\)O\(_2\) cathode materials with the capacity of 190, 180 and 170 mAh g\(^-1\), respectively, via self-combustion reaction following by calcination; while their rate capability (discharge capacity vs. cycle number at different C rates) follows the order as below: LiNi\(_{0.33}\)Mn\(_{0.33}\)O\(_2\) < LiNi\(_{0.5}\)Mn\(_{0.5}\)O\(_2\) < LiNi\(_{0.4}\)Mn\(_{0.4}\)O\(_2\). The spinel-type lithium manganate (LiMn\(_2\)O\(_4\)) also serves as high-capacity intercalation cathode for rechargeable lithium-ion batteries due to its economic and environmental advantages.\(^\text{210–212}\) LiMn\(_2\)O\(_4\) can be synthesized via SCS and its electrochemical behavior is reported elsewhere.\(^\text{210,213}\) To reduce the capacity fading at elevated temperatures and during overcharge of LiMn\(_2\)O\(_4\) powder-based electrodes, Novak et al.\(^\text{214}\) developed nanostructured LiMn\(_2\)O\(_4\) thin films by flame spray deposition and \textit{in situ} annealing via igniting and depositing precursor solution. The obtained LiMn\(_2\)O\(_4\) film exhibited good cyclability.

Besides the aforementioned cathode materials, Goodenough et al.\(^\text{215}\) explored lithium iron phosphate (LiFePO\(_4\)) as a cathode. Shao et al.\(^\text{216}\) reported the preparation of LiFePO\(_4\) at an optimal glycine/LiFePO\(_4\) ratio of 4:1 using inexpensive iron (III) as a precursor. The obtained material exhibited the discharge capacity of 100 mAh g\(^-1\) at a 0.1 C rate. Govindaraj et al.\(^\text{217}\) also reported another phosphate, LiNiPO\(_4\) doped with Cu\(^2+\) and Mg\(^2+\) ions via SCS. They found that the ionic conductivity increased at lower concentrations of dopants due to the increased channel size for Li\(^+\) diffusion; however, the ionic conductivity decreased with increasing dopant concentration due to inherent anti-site defects.

Carbon materials are frequently applied to improve the electrochemical performance of electrode materials in lithium-ion batteries.\(^\text{218–223}\) In the case of the solution combustion synthesis, solid carbon can be in situ generated as a primary product from fuel under fuel-rich conditions or in reductive atmosphere; hence, the electrical conductivity of the electrodes can be enhanced. For example, Shao et al.\(^\text{218}\) further treated LiFePO\(_4\) with sucrose as carbon source after auto-combustion. They greatly increased the discharge capacity of the LiFePO\(_4\)/C sample containing about 2.86 wt.% carbon to 160 mAh g\(^-1\) at a 0.1 C rate and 110 mAh g\(^-1\) at a 5 C rate. In addition, the electrodes show excellent cycling performance during 90 cycles at various rates. Kalaiselvi et al.\(^\text{224}\) employed ODH as a combustible fuel and a carbon source to prepare Li\(_{x}\)M\(_{1-x}\)V\(_2\)PO\(_4\)/C (M=Fe, Co) composite to further enhance the electronic conductivity and lithium transport kinetics based on the fact that native Li\(_{x}\)V\(_2\)PO\(_4\) has a high theoretical capacity of 197 mA h g\(^-1\). The combined effect of residual carbon from ODH and the added super P carbon (a kind of commercial carbon) led to the formation of carbon wiring. Li\(_{x}\)Co\(_{1-x}\)V\(_2\)PO\(_4\)/C showed the highest capacity (178 mAh g\(^-1\)) and very little fade (4%) after 50 cycles under a 10 C rate due to the synergistic effect of the present carbon and the optimum concentration of Co substituent.

As negative-electrode materials, cobalt oxides (CoO\(_2\) and CoO) have also attracted great interest because of their high theoretical specific capacity (890 mAh g\(^-1\) for CoO\(_2\) and 715 mAh g\(^-1\) for CoO).\(^\text{225,226}\) However, the high cost of cobalt oxides
nanoscale volatile organic compounds (VOCs) can be measured using a variety of techniques, including direct current (DC) and alternating current (AC) conductivity measurements, as well as electrochemical impedance spectroscopy (EIS). The choice of measurement technique depends on the specific application and the desired resolution. For example, DC conductivity is commonly used to study the electrical properties of materials in the absence of an external electric field, while AC conductivity is often used to investigate the frequency-dependent behavior of materials. EIS, on the other hand, is a powerful tool for characterizing the impedance of materials and can provide information on their electrical properties over a wide range of frequencies.

Figure 10 illustrates the results of a typical EIS measurement for a nanoscale material. The real (resistive) and imaginary (reactive) parts of the complex impedance are plotted as a function of frequency. The data shows a typical semicircular arc, which is characteristic of the behavior of materials with a high degree of charge carrier mobility and a large number of charge carrier traps. The diameter of the semicircle is related to the charge carrier lifetime, while the position of the semicircle on the real axis is related to the density of charge carrier traps. These results can be used to gain insight into the charge transport mechanisms and to optimize the design of nanoscale devices.

Figure 11 shows the results of a DC conductivity measurement for a different nanoscale material. The conductivity is plotted as a function of temperature, and the data shows an exponential increase with increasing temperature. This behavior is typical of materials with a high degree of charge carrier mobility, and it suggests that the charge transport is dominated by hopping processes between localized states.

In summary, nanoscale materials offer unique electrical properties that can be leveraged in a variety of applications, including sensors, actuators, and electrochemical devices. The choice of nanoscale material and measurement technique depends on the specific application and the desired resolution. Further research is needed to fully understand the behavior of these materials and to optimize their performance for specific applications.
their high energy density, long cycle life (>100,000 cycles), simple principle, and high dynamic of charge propagation.243,244 Generally, the electrode materials for supercapacitors can be categorized into three principal types: electrical double layer-based electrodes such as porous carbons and graphene; Faradic reaction-based electrodes such as metal oxides/hydroxides and conductive polymers.245,246 Transition metal oxides based on Faradaic redox reactions have been widely studied due to their potential higher capacitance as compared to porous carbon materials, mainly originating from their multiple oxidation states. However, the intrinsically low electrical conductivity and the fact that fast Faradaic reactions only occur on the surface of oxides restrict their applications.247 Therefore, the development of nanostructured porous materials is of high priority. Based on the fact that CuCo\textsubscript{2}O\textsubscript{4} nanostructures have been used as anode in Li-ion batteries with high Li-ion storage capacities,248,249 Mousavi et al.247 prepared cauliflower-like nanostructured CuCo\textsubscript{2}O\textsubscript{4} via urea combustion method combined with a post annealing process. The resulting material possessed a high capacitance of 338 F g-1 at 1 A g-1 (8 times greater than that of CuCo\textsubscript{2}O\textsubscript{4} microparticles) and exhibited capacitance of 88 F g-1 at an extremely high current density of 50 A g-1, with a high power density of 22.11 kW kg-1. Furthermore, 5000 continuous cycles performed at various current loads demonstrated its electrochemical suitability as a promising electrode material for high-rate SC.

Recently, metal molybdates have been used as electrode materials in Li-ion batteries250,251 and SCs.252–254 After combustion synthesis of MnMoO\textsubscript{4}, CoMoO\textsubscript{4}xH\textsubscript{2}O and NiMoO\textsubscript{4} with specific capacitance of 126, 401 and 1116 F g-1 at 5 mA cm-2, respectively,255 Selvan et al.256 prepared \(\beta\)-NiMoO\textsubscript{4}–CoMoO\textsubscript{4}xH\textsubscript{2}O nanocomposites via SCS and verified that NiMoO\textsubscript{4}–CoMoO\textsubscript{4}xH\textsubscript{2}O nanocomposite with Ni : Co ratio 3 : 1 exhibited a capacitance of 1472 F g-1 at a current density of 5 mA cm-2. They attributed this excellent electrochemical capacitance behavior to uniform small particle sizes, high specific surface area and increased electronic conductivity.

Metal oxides containing lithium have been reported as electrode materials in supercapacitors.257,258 Among all the lithium insertion compounds, the spinel-type LiMn\textsubscript{2}O\textsubscript{4} materials are economically feasible and environmentally friendly. To eliminate a severe reduction in the capacity during long-term cycling, Wang et al.259 prepared Cr-substituted LiMn\textsubscript{2}O\textsubscript{4} samples by urea-assisted combustion method and found that the partial substitution of Mn3+ by Cr3+ can increase the stability of the spinel structure and improve the cycling performance. Kim et al.260 also reported that Li\textsubscript{1−x}Mn\textsubscript{x}O\textsubscript{12} obtained by combustion synthesis showed good properties because of its large specific surface area.

Similar to the utilization of carbon as additive/support in rechargeable Li-batteries, the electrode materials with carbon introduced by in situ or ex-situ processes have been also developed for SCs to enhance their electrical performance and durability. For example, ZnO/C,261 Fe\textsubscript{3}O\textsubscript{4}/C, Fe\textsubscript{3}O\textsubscript{4}SnO\textsubscript{2}/C and Fe\textsubscript{3}O\textsubscript{4}–ZnO/C262 were synthesized by Jayakalshmi group via SCS. Efficient electrode materials for supercapacitors should feature narrow particle size distribution and high specific surface area. Therefore, to develop more efficient electrodes, the pore sizes and pore distribution should be controlled, which cannot be achieved without good understanding of the solution combustion synthesis.

6.2 Energy conversion

Energy conversion refers to the transformation of energy from one form to another, for example, solar energy to chemical or electrical, electrical to chemical or mechanical energy.11 With the ever-increasing rapid depletion of fossil fuels, energy issue became one of the most important and challenging topics in the world. Advanced energy conversion devices (including artificial photosynthesis catalysts, fuel cells, and solar cells) are expected to play an important role in utilizing the clean and safe solar energy.263 The development of low cost, highly efficient new materials is the key for successful application of energy conversion devices. In this section, the application of nanomaterials, obtained via SCS method, for energy conversion is reviewed.

6.2.1 Artificial photosynthesis

Artificial photosynthesis mainly refers to the conversion of photon energy into chemical energy. For example, solar fuels such as hydrogen, methanol or formic acid, can be obtained by water splitting or by photocatalytic and photoelectrochemical CO\textsubscript{2} reduction.264–268 As regards the CO\textsubscript{2} reduction, Ye group269 reported a self-doped SrTiO\textsubscript{3} obtained by a carbon-free one-step combustion method and subsequent thermal treatments in Ar. They demonstrated that higher oxygen deficiency is beneficial for chemical adsorption of CO\textsubscript{2} on the surface and in the bulk of SrTiO\textsubscript{3}, especially for accommodation of CO\textsubscript{2} in oxygen vacancies, which improves the artificial photosynthesis efficiency for methanol production.

Ye’s work explains clearly that the structure of the SCS-generated material affects its performance. However, due to the complexity and diversity of morphologies and structures of the SCS-generated materials, sometimes, it is difficult to establish their influence on the catalytic activity. For example, Groven et al.260 reported that the hydrogen generation rate over Co\textsubscript{3}O\textsubscript{4} prepared via SCS in the presence of NaBH\textsubscript{4} was about twice higher than that obtained over commercial Co\textsubscript{3}O\textsubscript{4}, though their specific surface areas are comparable. They attributed the observed significant enhancement due to the foam-like morphology achieved via SCS method, which may facilitate the effective conversion of Co\textsubscript{3}O\textsubscript{4} to the active catalyst, cobalt boride, derived via reaction between Co\textsubscript{3}O\textsubscript{4} and NaBH\textsubscript{4}.

Besides the structure effect, the chemical composition is also important. Gomathisankar et al.274 prepared B-doped ZnO via SCS, the photocatalytic activity of which for \textsubscript{p}H\textsubscript{2} evolution from aqueous Na\textsubscript{2}S + Na\textsubscript{2}SO\textsubscript{3} solution was shown to be about twice higher than that of undoped ZnO. The role of B was ascribed to the improved separation efficiency of the photoexcited electron/hole pairs and the formation of new B\textsubscript{2}O\textsubscript{3}. The authors also proposed an in situ formation of p-n heterojunctions. The p-type ZnS formed from photoreduced Zn2+ and S2− was coated on the surface of n-type B/ZnO to form B/ZnO-ZnS.

6.2.2 Electrode materials in fuel cells

Solid oxide fuel cells (SOFCs) are considered as efficient energy conversion devices with the advantage of direct usage of hydrocarbon fuels. SOFCs consist of two porous electrodes, anode and cathode, separated by a dense solid oxygen ion
conducting electrolyte. On the cathode (air electrode) side, oxygen is reduced to oxygen ion, which is transported through the electrolyte to the anode.\(^\text{270}\)

In the most frequently used SOFCs system, \(\text{Y}_{2}\text{O}_{3}\)-stabilized \(\text{ZrO}_{2}\) (YSZ) is usually employed as an electrolyte, the cermet-like Ni-YSZ as anode, and electronically conducting oxides such as lanthanum manganites or \(\text{LaCoO}_{3}\) as cathode.\(^\text{271}\)

In the case of Ni-YSZ anode, Ni tends to sinter and agglomerate at the high SOFCs operation temperature of nearly 1000 °C, which would decrease the anode performance. Furthermore, coke deposition and sulfur poisoning reduce the anode properties in the presence of gas as an anode fuel.\(^\text{157}\)

To minimize these disadvantages, various oxides have been explored, such as fluorite, perovskite, tungsten bronze, and pyrochlore types, etc.\(^\text{270,272}\)

As a fluorite-type compound, \(\text{CeO}_{2}\) has been used as anode in SOFCs. To further improve its electrical properties and/or chemical stability against reduction under open-circuit voltage (OCV) conditions, ion doping and cermet-like materials have been used.\(^\text{270,273}\)

Zhu et al.\(^\text{157}\) prepared via SCS method \(\text{Ce}_{0.8}\text{Mn}_{0.2}\text{Fe}_{2}\text{O}_{3}\) (CMF) anode for SOFC and compared it with the conventional SSR sample. This comparison shows that the SCS product exhibited the power densities of 1.23 W cm\(^{-2}\) at 1000 °C under configuration of the cell of \(\text{CMF}/\text{Lao}_{0.8}\text{Sr}_{0.2}\text{Fe}_{1.9}\text{Co}_{0.1}\text{O}_{3}/\text{Sm}_{0.2}\text{Sr}_{0.8}\text{Ce}_{0.3}\text{O}_{2}\) using humidified hydrogen gas as a fuel and \(\text{O}_2\) as an oxidizing agent, which is higher than 1.09 W cm\(^{-2}\) for the SSR-derived sample under the same evaluation conditions.

In direct methanol fuel cell (DMFC), the reaction intermediate, \(\text{CO}_2\), would strongly bind to the catalyst surface and occupies the active sites during the process of low temperature oxidation of the fuel. Among different approaches for solving this problem, the use of a Pt-Ru alloy was shown to be successful. To reduce the cost by replacing the use of noble metals, Mukasyan et al.\(^\text{274}\) prepared \(\text{LaRuO}_{3}\)-Pt and \(\text{SrRuO}_{3}\)-Pt composites via SCS, which contained four times less platinum, and displayed a comparable apparent catalytic activity to that of a standard Pt-Ru alloy.

To decrease the high operation temperature, it is necessary to develop solid electrolytes having high ionic conductivity at intermediate temperatures. Doped-\(\text{CeO}_{2}\) solid solutions have been widely reported as promising low temperature electrolytes.\(^\text{275-277}\)

Parkash et al.\(^\text{278}\) reported that \(\text{Ce}_{0.8}\text{Sm}_{0.2}\text{Sn}_{0.01}\text{O}_{1.9}\) prepared via SCS and post-calcination exhibited the conductivity of 2.67×10\(^{-2}\) S cm\(^{-1}\) at 600 °C. Aruna et al.\(^\text{279}\) prepared \(\text{Ce}_{0.8}\text{Gd}_{0.2}\) powder using oxalyl dihydrazide as fuel with conductivity of 3×10\(^{-4}\) S cm\(^{-1}\) at 400 °C. Park et al.\(^\text{280}\) compared the performance of Nd-doped ceria electrolytes obtained via solid state, combustion, co-precipitation and hydrothermal synthesis. The results show that \(\text{Nd}_{0.2}\text{Ce}_{0.8}\text{O}_{2}\) and \(\text{Nd}_{0.1}\text{Ce}_{0.9}\) intermediate temperature-solid oxide electrolytes synthesized by combustion method and sintered at 1450 °C for 4 h featured the highest ionic conductivities in air at 600 °C and below 550 °C, respectively.

In the development of cathode materials via SCS for intermediate temperature SOFCs, Jiang et al.\(^\text{281}\) prepared \(\text{La}_{0.9}\text{Sr}_{0.1}\text{Ce}_{0.8}\text{Gd}_{0.2}\text{O}_{3}\) (LSCN) nanopowders. Next, the chemical compatibility of LSCN, YSZ and Gd\(_2\)O\(_3\) doped Ce\(_2\)O\(_3\) (GDC), and electrochemical activity of LSCN were evaluated. The results show that LSCN is compatible with YSZ at temperatures below 850 °C, and its electrode area specific resistance (ASR) is 0.30 and 0.10 Ω cm\(^2\) at 700 and 750 °C, respectively, indicating its potential as an alternative cathode material for intermediate temperature SOFCs. Akiyama et al.\(^\text{282}\) produced LaMn\(_3\) (\(\text{M} \; \text{Fe, Co, Mn}\)) perovskite type oxides and tested their electrocatalytic activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using a three-electrode half-cell design and a full rechargeable Zn-air battery with a 6 M KOH electrolyte. Electrochemical characterization showed the order of activity is as follows: \(\text{LaMnO}_3 > \text{LaCoO}_3 > \text{LaFeO}_3 > \text{CB}\) (carbon black). However, LaMn\(_3\)-catalyzed air electrode degraded very quickly in the cycling performance measurements, whereas the LaCoO\(_3\)-based electrode showed the best recharge ability and stability.

Cathode or electrolyte materials in SOFCs require appropriate chemical compositions, lattice parameter (adjusted by dopant type and content), and structure (particle size, microstructure).

6.2.3 Photovoltaic solar cells

As the most important source of renewable energy, solar light can be used directly either as the heat source or converted into electrical energy by photovoltaic cells.\(^\text{283}\) Over the past several decades, crystalline silicon and thin film solar cells, known as the first and second generation solar cells, were used. As compared to silicon cells, thin films are less costly, however, show lower efficiency.\(^\text{284}\) To develop the third generation high-performance photovoltaic solar cells, various nanostructure-based semiconductors are needed to convert sunlight into clean electrical power.\(^\text{285}\) The need for low-cost semiconductors open new opportunities to SCS as a facile and energy-saving method.

Among several different types of solar cells, dye sensitized solar cells (DSSC) have been considered as a highly promising device due to their simple fabrication process, low production cost and high photoelectrical conversion efficiency.\(^\text{286}\) In DSSC, dye molecules are adsorbed on a TiO\(_2\) thin film photoelectrode, which is attached to a piece of transparent conducting oxide (TCO) glass, and the photo-generated electrons of dyes can be injected to the CB of TiO\(_2\) film, and then transferred to the TCO glass and external circuit. Hence, the absorbance ability of TiO\(_2\) films is a very important factor influencing the electron transfer and photoelectrical conversion efficiency, the requirement for these films is their high porosity and nanosized structure.\(^\text{287}\)

Chung et al. synthesized TiO\(_2\) nanopowders by SCS and fabricated photoelectrodes using them in DSSCs. Their study indicates that the aforementioned nanopowder shows similar performance as commercial P25 TiO\(_2\) and can work well as photoelectrode in DSSCs.

Polymer solar cells (PSCs) have attracted a great attention due to their low-cost and wide applications from flexible and low-weight solar modules to photon recycling in liquid-crystal displays.\(^\text{288,289}\) Li et al.\(^\text{290}\) prepared a solution-processed molybdenum oxide (MoO\(_3\)) hole selective layer via SCS. The obtained MoO\(_3\) hole selective layer exhibited high charge transportation ability similar to that of poly-(ethylendioxithiophene):polystyrene sulfonate (PEDOT:PSS); meanwhile, it possessed better device stability. The hole-transport layers (HTLs) are of great importance for solution-processed optoelectronic devices to improve the efficiency of the charge extraction/injection and increase device stability.\(^\text{291-293}\) Jin et al.\(^\text{294}\)
fabricated NiO thin films via SCS. When these films were used as HTLs in the solution-processed optoelectronic devices such as heterojunction organic photovoltaics with a model system of poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl](TQ1):[6,6]-phenyl-C 71 -butyric acid methyl ester (PC 71 BM), a noticeable power conversion efficiency of 6.42% with a high fill factor of 0.70 were obtained. These devices showed better long-term stability under ambient conditions than devices with common poly(3,4-ethylenedioxythiophene):poly-(styrene-sulfonate) (PEDOT:PSS) HTLs.

The factors affecting the adorption performance of dyes on these materials include not only specific surface area, pore structure and distribution, but also the surface charges, and surface defects. To further improve the properties of solar cells, the relationship between physicochemical characteristics and solution technology should be established.

7. Conclusions and Outlook

This review article highlights the fundamentals and applications of solution combustion for the preparation of energy materials, including binary compounds, complex ternary and quaternary oxides, and nanocomposites. In many cases, solution combustion synthesis opens new opportunities for the synthesis of novel structures, such as surface oxygen vacancies, in situ heterojunctions. Furthermore, the application of the materials prepared via SCS in energy storage and conversion is also reviewed, such as lithium-ion batteries, supercapacitors, artificial photosynthesis, fuel cells, and photovoltaic solar cells. Although some outstanding advances have been made in the fabrication of complex nanomaterials with special structures and high performance, development of novel combustion synthesis techniques and engineering of surface oxygen vacancies, many challenging topics require further studies.

From the viewpoint of fundamental understanding of combustion science and technology, the correlations between the morphology, structure and fuel types, and heating rate are still not well established. Basically, the type of the starting materials, the fuel-oxidizer ratio, and the water amount in solution would affect thermodynamic variables including enthalpy, adiabatic flame temperature and the total amount of decomposed gas, which are related to the powder characteristics, such as crystal structure and surface area. In general, a good combustion synthesis does not proceed violently, would produce non-toxic gases and possess excellent complexing between metal salts and fuels. For example, when the solution is heated, water should be evaporated, which affects the stability of metal ions in the solution. Hence, the coordination ability of fuel, the type of metal salts, and the heating rate are key factors for designing objective materials. Furthermore, the type and amount of fuels and metal salts decide combustion temperature and the amount of released gases. The basic understanding of the raw materials should be improved. Moreover, surface oxygen defects can be easily created during solution combustion synthesis.

From the viewpoint of applications, the relationship between the performance and composition, structure of materials requires further studies. The design of materials with desired properties is still a great challenge. Especially, the regular porous materials or films with special properties should be exploited by solution combustion synthesis combined with template-assisted methods.

From the viewpoint of industrial production, the design and development of large-scale combustion reactors is necessary. The scale-up reactors should have the devices for introducing and emitting gas, collecting nanopowders, and basically, heating rate can be controlled.

This review focuses on the synthesis and applications of inorganic oxides and shows the progress and development trends in SCS to stimulate further efforts in the design and fabrication of new materials, and in studying the correlation between performance and properties of these materials.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21376061, 21076060), the Program for New Century Excellent Talents in University (No. NCET-12-0686), Natural Science Foundation for Distinguished Young Scholar of Hebei Province (B2015208010), Scientific Research Foundation for High-Level Talent in University of Hebei Province (GCC2014057), and by the Australian Research Council (ARC) through the Discovery Project program (DP140104062, DP130104459). F. T. Li thanks the fund from China Scholarship Council.

Notes and references

aThe two authors have the equal contributions
bCollege of Science, Hebei University of Science and Technology, Shijiazhuang 050018
cSchool of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia. E-mail: s.qiao@adelaide.edu.au
dDepartment of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA.
11 M. G. Kim, M. G. Kanatzidis, A. Facchetti and T. J. Marks, Nat. Mater., 2011, 10, 382.