Nanoscale

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

ARTICLE

Received 00th January 20xx,

Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Two-dimensional Nanosheets of MoS₂: A Promising Material with High Dielectric Properties and Microwave Absorption Performances

Ming-Qiang Ning, [±] Ming-Ming Lu, [±] Jing-Bo Li, ^{*} Zhuo Chen, Yan-Kun Dou, Cheng-Zhi Wang, Fida Rehman, Mao-Sheng Cao, ^{*} Hai-Bo Jin^{*}

In this work, few-layer MoS₂ nanosheets (MoS₂-NS) were obtained via the top-down exfoliation method from bulk MoS₂ (MoS₂-Bulk), and the dielectric properties and microwave absorption performances of MoS₂-NS were first reported. Dimension-dependent dielectric properties and microwave absorption performances of MoS₂ were investigated by presenting a comparative study between MoS₂-NS and MoS₂-Bulk. Our results show that the imaginary permittivity (ε ") of the MoS₂-NS/wax is twice as large as that of the MoS₂-Bulk/wax. The minimum reflection loss (RL) value of MoS₂-NS/wax with 60 Wt.% loading is -38.42 dB at the thickness of 2.4 mm which is almost 4 times higher than that of MoS₂-Bulk/wax, and the corresponding bandwidth with effective attenuation (< -10 dB) of MoS₂-NS/wax is up to 4.1 GHz (9.6-13.76 GHz). The microwave absorption performance of MoS₂-NS is comparable to those reported in carbon related nanomaterials. The enhanced microwave absorption performance of MoS₂-NS is attributed to the defect dipole polarization arising from Mo and S vacancies and its higher specific surface area. These results suggest that the MoS₂-NS is not only a promising candidate material in fundamental studies but also in practical microwave application.

been also reported to exhibit excellent dielectric properties

because of its higher specific surface area and clustered

defects.¹⁵Actually, 2D materials such as graphene,¹⁶⁻¹⁸ hexagonal boron nitride (h-BN), ^{19,20} carbon nitride $(C_3N_4)^{21-1}$

²³and and layer transition metal dichalcogenides (LTMD) ²⁴⁻²⁶

have also shown their substantial application potential in

optoelectronics, biomedicine, catalysis and so on. These can

be attributed to their exotic electronic properties caused by

the strictly defined dimensionalities, high specific surface areas

and polymorphism which are the three main unique features

of 2D materials. ²⁷⁻²⁹ As a widely known LTMD, molybdenum

disulfide (MoS₂), which consists of S-Mo-S triple layers bound

by weak van der Waals forces, has increasingly attracted much

attention recently since they exhibit unique electrical, optical

reports

biomedical applications of MoS₂ nanosheets have opened up

new prospects for realization of novel nanodevices with

hydrogen

and mechanical properties with

Recent

counterparts.

photoluminescence,^{30,31}

1.Introduction

Searching for lightweight, high-efficiency, wide-absorption frequency ranges and low-cost industrial processing has been actively pursued owing to its importance in the practical applications of electromagnetic (EM) wave absorbing materials.¹⁻¹⁰ Based on the above requirements, carbon nanomaterials included carbon nanosheets (CNSs),¹¹ carbon nanotubes (CNTs), ^{10,12} carbon nanocoils (CNCs)^{4,13} and carbon nanofibers (CNFs)¹⁴ have received significant investigation in the field of microwave absorption for their outstanding physicochemical properties and corresponding dimension structure. As an excellent representative of the carbon material, the reduced graphene oxides (R-GO), the thinnest and most lightweight 2D materials of the carbon world, have

School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China. E-mail: hbjin@bit.edu.cn, lijb@bit.edu.cn, caomaosheng@bit.edu.cn respect to its

evolution³²⁻³⁴

the

in

bulk

of

and

field

⁺ Electronic Supplementary Information (ESI) available: Fig S1-5 and Table S1. See DOI: 10.1039/x0xx00000x

[‡]Ming-Qiang Ning, Ming-Ming Lu contributed equally to this work

ARTICLE

advanced functionalities. However, compared with the intensive study of graphene, there is absent of a detailed investigation of the dielectric properties and microwave absorption performances of MoS₂-NS. In general, solution based exfoliation methods are usually used to obtain large quantities of mono- or few-layers MoS₂ sheets^{35,36} and those methods could give rise to new and interesting properties. Besides the higher specific surface area, a very intriguing phenomenon is that there is a phase transition from trigonal prismatic (2H-MoS₂) semiconducting phase to octahedral (1T- $\mathsf{MoS}_2)$ metallic phase. $^{37\text{-}39}$ Moreover, $\mathsf{MoS}_2\text{-}\mathsf{NS}$ may contain much more surface defects including S vacancies (Vs), Mo vacancies (V_{Mo}) due to the violent exfoliation process compared to MoS₂-Bulk and those defects would have great effects on MoS_2 -NS's electronic properties.⁴⁰⁻⁴² All these attributes suggest that the MoS₂-NS has a great potential in microwave absorption applications. Inspired by the excellent microwave absorption performances exhibited by recent work on graphene-related materials and combined with the intriguing properties of MoS_2 -NS, we focus on the dielectric properties and microwave absorption performances of MoS₂-NS. In this work, we prepared MoS₂-NS samples by top-down exfoliation method, demonstrated the excellent microwave absorption performances of MoS₂-NS and discussed possible mechanism of enhanced microwave absorption performance of MoS_2 -NS. To the best of our knowledge, this is the first systematical report about dielectric properties and microwave absorption performances of MoS₂-NS.

2. Experimental section

2.1 Materials

The commercial MoS_2 powder was purchased from Aladdin. Hexane, N-butyl lithium (1.6M in hexanes), anhydrous ethanol, deionized water and ether were supplied by Beijing Chemical Corporation. All reagents were analytical grade and used as received.

2.2 Preparation of samples

Preparation of MoS₂-NS samples and annealed MoS₂-NS samples

MoS₂-NS were obtained via the Per Joensen's method. ³⁶ The exfoliation process is shown in Fig 1(a) which involves two steps. The first step is to intercalate the MoS₂: 100 mg of the commercial MoS₂ powder was soaked in 10 mL of n-butyl lithium for 5 days at room temperature. Then, excess n-butyl lithium was removed by washing the samples for several times with hexane. The above step was completed in an argon-filled glove box. The second step, exfoliation process is as follows: the intercalated samples were exfoliated with distilled water in a vial by using ultrasound-assisted. The obtained suspension was centrifuged, dried at 60 \square under vacuum. Finally, the solid product MoS₂-NS were collected for further experiments. For comparison, the annealed MoS₂-NS samples were prepared by heating the MoS₂-NS samples at 150°C for 3h.

Preparation of MoS₂-Bulk/wax, MoS₂-NS/wax and the annealed MoS₂-NS/wax

In the dielectric measurement as shown in FigS1, the specific quantity of MoS_2 materials (MoS_2 -Bulk, MoS_2 -NS and annealed MoS_2 -NS: 30, 40, 50 and 60 Wt.%) and paraffin wax (70, 60, 50 and 40 Wt.%) were added to a vial containing appropriate amount of ether and then ultrasonic treatment for one hour. The MoS_2 materials/wax were cooled to room temperature after the ether solution evaporated completely and pressed into a test sample (outer radius: 7.00mm; inner radius: 3.00mm).⁴³

2.3 Characterization

Powder X-ray diffraction (XRD) patterns were collected on a Bruker-AXS diffractometer (Model D8 ANVANCE) with Cu-Kα@radiation source. Atomic force microscope (AFM) images were obtained on a Veeco Dimension Fast Scan system. Scanning electron microscope (SEM) images were obtained by a Hitachi S-480. Transmission electron microscope (TEM) images were obtained by a FEI Tecnai G2 F20S-TWIN. The thermal stability of samples was measured by DSC-TGA (NETZSCH DSC 204 F1 Phoenix, NETZSCH TG 209 F1) under air

atmosphere with a heating rate of 1 °C min⁻¹. Raman Spectroscopy measurements were performed on Lab RAM Aramis. X-ray photoelectron spectroscopy (XPS) was measured on a PHI Quantera system with a C60 ion gun. Keithley 4200-SCS semiconductor characterization system was used to measure the conductivity of the samples. The relative permittivity was measured at 2-18 GHz on the Anritsu 37269D vector network analyzer by the coaxial method.

3. Results and discussion

3.1 Morphology, structure and phase

The SEM images of MoS_2 -Bulk and MoS_2 -NS are shown in Fig.1 b-e. Much smaller and uniform MoS_2 -NS (marked by red circle) were obtained as shown in Figure 1(d-e).

Fig.1 (a): Illustration of the exfoliation method for achieving MoS₂-NS. (b-c) SEM images of MoS₂-Bulk. (d-e) SEM images of MoS₂-NS.

Figure 2(a) shows the TEM image of well transparent MoS_2 -NS. The TEM image suggests that the MoS_2 -NS is flexible and quite thin. A close observation to the surface by TEM image reveals that the MoS_2 -NS are few-layered or even monolayer. The selected area electron diffraction (SAED) indicates the fact MoS_2 -NS are well crystallized. The AFM image (Fig 2b) shows that the obtained MoS_2 -NS are typically less than 2.5 nm in thickness and 0.1~0.5 µm in extent. Fig 2 (c) shows the XRD pattern of MoS_2 -Bulk samples. The diffraction peaks of MoS_2 -Bulk are

well indexed to $2H-MoS_2$ (PDF# 37-1492). For MoS_2-NS samples, the wide diffraction peaks imply the nano-size nature of the samples, and the pattern is in good agreement with that of the few-layer MoS_2 .³⁶

Fig .2 (a) TEM (Inset: SAED of MoS₂-NS samples) and (b) AFM image of MoS₂-NS and the corresponding height profile. (c) XRD and (d) Raman spectra of MoS₂-Bulk and MoS₂-NS samples.

Raman spectra can be used to evidence the acquisition of few-layer nano-thin MoS₂ from the peak frequency difference ($\Delta \omega$) between the in-plane vibrational mode (E_{2g}^{l}) and the out-of-plane vibrational mode (A_{1g}) . For the Raman spectra of MoS₂-Bulk shown in Fig 2 (d), the strong E_{2g}^{1} mode at ~381 cm⁻¹ and the A_{1g} mode ~409 cm⁻¹ are in good agreement with those reported in bulk MoS₂. ⁴⁴ However, both A_{1g} and E_{2g}^{1} modes of MoS₂-NS are clearly softened and blue shift compared to MoS₂-Bulk. It is consistent with the previous results reported by C. N. R. Rao et al and the corresponding bands at 378 cm⁻¹ and 402 cm⁻¹ are considered to be due to phonon confinement.⁴⁵ Lee et al. have managed to identify the layer number of MoS₂-NS depending on the $\Delta \omega$ between A_{1g} and E_{2g}^{1} modes.⁴⁴ In this work, the $\Delta \omega$ between A_{1g} and E_{2g}^{l} modes of MoS₂-NS samples is ~24 cm⁻¹, from which the layer number of MoS₂-NS is deduced to be about 3~4. That corresponds to ~2.6 nm in thickness (calculated with ~0.65 nm for each monolayer). The thickness of ~2.6 nm is coincident with the results of AFM analysis in front.

Fig.3 (a) DSC of MoS_2 -Bulk and MoS_2 -NS samples. (b) XPS spectra showing Mo 3d peak regions of MoS_2 -NS sample and the annealed MoS_2 -NS sample.

As mentioned above, there is a phase transition from 2H to 1T during the exfoliation process, consequently the obtained MoS₂-NS samples could be mixed-phase. However, the 1T phase is not stable, and can transforms back to the 2H phase under moderate-temperature annealing. The mixed phase nature of prepared MoS₂-NS samples is evidenced by DSC and XPS measurements. Fig.3 (a) shows the DSC results of MoS₂-NS and MoS₂-Bulk samples. The exothermic peak of MoS_2 -NS around 95 $^{\circ}C$ indicates the irreversible phase transition from 1T to 2H and is consistent with the transiton temperature reported in Wypych's work.⁴⁶ Figure 3 (b) shows the XPS results of MoS₂-NS and annealed MoS₂-NS samples. The annealed MoS₂-NS samples are undoubtedly proved to be 2H-phase by showing the Mo $3d_{5/2}$ and Mo $3d_{3/2}$ orbitals at 228.5 and 231.8eV and the S $2p_{1/2}$ at 162.5eV, S $2p_{3/2}$ at 161.4eV. As for MoS₂-NS, the apparent red shift was observed and the additional peaks found at 228.1 eV (green line of Mo $3d_{5/2}$), 231.3 eV (green line of Mo $3d_{3/2}$) are considered to be 1T phase according to previous similar results.^{31,47} Similarly, the additional peaks found in S 2p spectra arise from 1T phase as shown in Figure S2.

3.2. Dielectric properties

Fig.4 The ε' of (a) MoS₂-Bulk/wax and (c) MoS₂-NS/wax with different loadings; ε'' of (b) MoS₂-Bulk/wax and (d) MoS₂-NS/wax with different loadings.

Dielectric frequency spectra of MoS₂-Bulk/wax and MoS₂-NS/wax with different loadings (30, 40, 50 and 60 Wt.%) were measured in the frequency range of 2-18 GHz by the coaxial method (Fig S1). The complex permittivities of MoS₂-Bulk/wax are shown in Fig.4 (a-b). The real permittivity (ϵ ') decreases with increasing frequency and increases with increasing loadings. The ε " decreases with increasing frequency firstly, and then appear two relaxation peaks at the frequencies of 12.2 and 15.0 GHz respectively. However, the two relaxation peaks are not very strong. For the MoS₂-NS/wax as shown in Fig.4 (c-d), both ε' and ε'' present a similar trend as MoS₂-Bulk/wax except that the values of ε' and ε'' were almost the double of that of the MoS₂-Bulk/wax. Compared with MoS₂-Bulk/wax, the relaxation peaks of MoS₂-NS/wax become much stronger. It is worth noting that the positions of the relaxation peaks do not change, indicating that the same physical nature of the relaxation for both MoS₂-Bulk and MoS₂-NS. Generally, the dielectric loss can be expressed by the Debye theory as follows:

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + \omega^2 \tau^2}$$
(1)

$$\varepsilon'' = \frac{\varepsilon_s - \varepsilon_\infty}{1 + \omega^2 \tau^2} \omega \tau + \frac{\sigma}{\omega \varepsilon_0}$$
(2)

where ω is the angular frequency, τ the polarization relaxation time, ε_s the static permittivity, and ε_{∞} the relative dielectric permittivity at the high frequency limit.

The ε' decreases with increasing frequency can be explained by Debye theory equation (1)^{9,48} and the increasing in ε' and ε'' with increasing loadings can be interpreted rationally according to the effective medium theory. 49 The equation (2) shows that the ε " is determined by the polarization and the electrical conductivity (σ). In general, the relaxations located in the frequency range of 2-18 GHz are caused by the polarization of the defect as reported previously.^{13,50-51} According to the first principle calculations and experimental investigations results, MoS₂-NS would contain an amount of surface point defects including Vs and $V_{Mo}^{41,52}$ as illustrated in Figure 5 (a). In MoS₂-Bulk samples, the amount of defects is small. For MoS_2 -NS, more defects would be created by the violent exfoliation process. These point defects would work as dipoles under alternating electric field as illustrated in Figure 5(b). As the relaxation frequency located in the experimental range, the dielectric relaxation peaks could be observed in the dielectric frequency spectra.

Fig 5. (a) Illustrations of Vs, V_{Mo} defects in single-layer MoS₂ (b) dipoles induced by the defect in MoS₂-NS/wax (c) Electron transport network of MoS₂-NS/wax (d) Microwave propagation model in MoS₂-NS/wax In order to further understand the contribution of the defects in the samples, the ε " of the annealed MoS₂-NS samples is compared with that of the MoS₂-Bulk sample as shown in Figure S3. It is found that the ε " of the annealed MoS₂-NS/wax is almost coincident with that of the MoS₂-Bulk/wax except for the two relaxation peaks. The intensities of the two relaxation peaks of the annealed MoS₂-NS samples are apparently higher than those of MoS₂-Bulk samples. That could be ascribed to the existence of a large amount of defects in MoS₂-NS samples in spite of the annealing treatment. In addition, MoS₂-NS contain a large amount of 1T metallic phase (50% of the total as previous similar reports³¹). The conductivity (σ) of 1T metallic phase is 10^7 times higher in magnitude than that of the semiconducting 2H phase. As a result, the high conductivity of MoS₂-NS/wax has a positive contribution towards the ε'' . Figure S4 (a) shows the σ of MoS₂-NS/wax with different loadings. For MoS₂-Bulk/wax, the conductivity is too small to be measured. The σ of MoS₂-NS/wax increases slowly from 1.4×10^{-7} to 5.9×10^{-6} S \cdot m⁻ ¹ along with the increasing loading from 30Wt.% to 50Wt.%, while rapidly increases to 2.2×10^{-5} S \cdot m⁻¹ when the loading added to 60Wt.%. Figure S4 (b) exhibits the contribution to ε'' from σ , which presents an increasing trend with increasing loadings. According to our previous reports,^{1,11} the conductive paths could not be built when the loading is relatively low (eg 30, 40Wt.%) and the conductivity loss could be neglected. However, the MoS₂-NS/wax with higher loadings (eg 50, 60Wt.%) would have more opportunities to establish conductive paths. When the EM wave propagates into the composites, an amount of electrons of MoS₂-NS could migrate along the nanosheets or hop across the defects and the interface as shown in Figure 5 (c) which will make a contribution to the dielectric loss by presenting a higher ε'' value compared to the MoS₂-Bulk/wax.

3.3. Microwave absorption

In general, the dielectric relaxation enhances the absorption properties of materials. The RL of MoS_2 -Bulk and MoS_2 -NS were simulated from the complex permittivity at various thicknesses of the absorber with the following equations:¹³

$$Z_{in} = Z_0 (\mu_r / \varepsilon_r)^{1/2} \tanh[j(2\pi \text{ fd/c})(\mu_r \varepsilon_r)^{1/2}] \quad (3)$$

$$RL = 20 \log \left| (Z_{in} - Z_0) / (Z_{in} + Z_0) \right|$$
(4)

ARTICLE

ARTICLE

where Z_0 is the impedance of air, Z_{in} the input impedance of the sample, c the light velocity, f the electromagnetic wave frequency, d the thickness of the absorber, and ε_r and μ_r the complex permittivity and permeability of the composite medium.

Fig.6 (a) RL of MoS₂-Bulk/wax and MoS₂-NS/wax with different loadings at the thickness of 2.4 mm. (b) RL of MoS₂-Bulk/wax and MoS₂-NS/wax with 60 Wt.% at different thicknesses.

Fig.6 (a) shows the RL of the MoS₂-Bulk/wax and MoS₂-NS/wax with different loadings at the thickness of 2.4mm. It can be found that the RL of MoS2-NS/wax decreases with the increasing loadings. The RL of MoS2-NS/wax with 60 Wt.% loading decreases rapidly to -38.42 dB while that of MoS₂-Bulk/wax -8.24 dB under the same condition. Fig.6 (b) shows the RL of the two composites with 60 Wt.% loading at different thickness. The absorption peak of MoS₂-NS/wax shifts to lower frequency with the increase of absorber thickness and the optimum thickness is 2.4 mm with a RL of -38.42 dB. In addition, the MoS₂-NS/wax with 60 Wt.% loading exhibit a wide bandwidth of effective attenuation (< -10 dB) up to 4.1 GHz (9.6-13.76 GHz). As for MoS₂-Bulk/wax, the RL presents a decreasing trend with the increasing thickness and the optimum thickness is 2.6 mm with a RL of -8.73dB. It is worth noting that the RL of the annealed MoS₂-NS/wax with 60 Wt.%

Journal Name

loading was also calculated at different thickness (Figure S5). The RL shows a similar trend compared with the MoS_2 -Bulk/wax. However, the maximum absorption of the annealed MoS_2 -NS/wax composites is at around -22.63 dB which is almost three times of MoS_2 -Bulk/wax under the same thickness.

Fig.7 3D plot of the RL versus the frequency and thickness of MoS_{2} -NS/wax

Fig.7 (a-d) show the three dimensional plots of RL of MoS₂-NS/wax versus the frequency and thickness at different loadings. The RL of MoS₂-NS/wax decreases rapidly from -4.96 dB to -38.60 dB with the increasing loadings while the MoS2-Bulk/wax -3.92 dB to just -8.76 dB as shown in Figure S6. Moreover, as for MoS₂-NS/wax with 60% loading, a large absorption bandwidth with RL below -20 dB is observed from 8.48 GHz to 17.84 GHz under the thickness of 1.8-3.0 mm. In order to compare the microwave absorption performance between MoS₂-NS and carbon materials, we summarized the corresponding performances in Table S1. It is found that the maximum RL value -38.42 dB of MoS₂-NS/wax is higher than all the listed carbon materials except the aligned carbonnanotube films/PANI which possess a value of -41.14 dB and the effective bandwidth (RL < -10 dB) shows a moderate level among those representative carbon composites. In general, EM attenuation is closely related to the absorptions and multiple internal reflections of electromagnetic waves. Firstly, the dielectric relaxations caused by defects mentioned above have a great contribution to improve the ε'' . Secondly, the conductive paths built by the MoS₂-NS could transform the

incident wave into heat or other forms of energy, as illustrated in Figure 5(c). Thirdly, the extremely thin and high specific surface areas of MoS_2 -NS could increase the propagation paths for the incident waves inside the samples compared with MoS_2 -Bulk as illustrated in Figure 5(d). Those are beneficial to enhance the microwave attenuation performance.

4. Conclusions

In summary, we have prepared the MoS_2 -NS by exfoliation method, and demonstrated the significant enhancement of dielectric properties and microwave absorption performances of MoS_2 -NS. The ε " of the MoS_2 -NS/wax is twice as large as that of the MoS_2 -Bulk/wax at each loading. The two relaxation peaks observed at the frequencies of 12.2 and 15.0 GHz mainly arise from the defect dipole polarization. Consequently, the MoS_2 -NS exhibit excellent microwave absorption performance comparable to nanoscale carbon materials. The MoS_2 -NS/wax has a minimum RL of -38.42 dB at the thickness of 2.4 mm and the effective absorption bandwidth (< -10 dB) up to 4.1 GHz. It is believed that the MoS_2 -NS is a promising candidate in microwave absorption application and we anticipate that our work could be extended to other LTMD.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 50972015, 51132002, and 51172026.

Notes and references

- B. Wen, M. S. Cao, M. M. Lu, W. Q. Cao, H. L. Shi, J. Liu, X. X. Wang, H. B. Jin, X. Y. Fang, W. Z. Wang and J.Yuan, *Adv. Mater*, 2014, 26, 3484.
- 2 R. C. Che, L. M. Peng, X. F. Duan, Q. Chen and X. L. Liang, *Adv. Mater*, 2004, 16, 401.
- 3 J. W. Liu, R. C. Che, H. J. Chen, F. Zhang, F. Xia, Q. S. Wu and M. Wang, *Small*, 2012, 8, 1214.
- 4 Z. J. Wang, L. Wu, J. G. Zhou, Z. H. Jiang and B. Z. Shen, nanoscale, 2014, 6, 12298.
- H. J. Yang, M. S. Cao, Y. Li, H. L. Shi, Z. L. Hou, X. Y. Fang, H.
 B. Jin, W. Z. Wang and J. Yuan, *Adv. Opt. Mater*, 2014, 2, 214
- 6 M. S. Cao, J. Yang, W. L. Song, D. Q. Zhang, B. Wen, H. B. Jin, Z. L. Hou and J. Yuan, ACS Appl. Mater. Interfaces, 2012, 4, 6949
- 7 T. Xia, C. Zhang, N. A. Oyler and X. B. Chen, *Adv. Mater*, 2013, 25, 6905.

- 8 M. Mahmoodi, M. Arjmand, U. Sundararaj and S. Park, *Carbon*, 2012, 50, 1455.
- 9 B. Wen, M. S. Cao, Z. L. Hou, W. L. Song, L. Zhang, M. M. Lu, H. B. Jin, X. Y. Fang, W. Z. Wang and J. Yuan, *Carbon*, 2013, 65, 124.
- 10 P. C. P. Watts, W. K. Hsu, A. Barnes and B. Chambers, *Adv. Mater*, 2003, 15, 600.
- 11 W. L. Song, M. S. Cao, M. M. Lu, J. Liu, J. Yuan and L. Z. Fan, J. Mater. Chem. C., 2013, 1, 1846.
- 12 H.Sun , R.C.Che ,X.You , Y.S. Jiang , Z.B. Yang , J. Deng , L.B Qiu ,and H.S. Peng, *Adv. Mater.* 2014, 26, 8120
- 13 N.J Tang, W. Zhong, C.T. Au, Y. Yang, M,G Han, K.J Lin and Y. W Du, J. Phys. Chem. C, 2008, 112, 19316.
- 14 G. Li, T.S.Xie, S.L. Yang, J.H. Jin, and J.M. Jiang, J. Phys. Chem. C ,2012, 116, 9196.
- 15 B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan and M. S. Cao, *Nanoscale*, 2014, 6,5754.
- 16 R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. C. Charlier, M. Pan, and M. Terrones, *Sci. Rep*, 2012, 2, 586.
- 17 G.K. Lim, Z.L. Chen, J. Clark, R.G.S. Goh, W.H. Ng, H.W. Tan, R.H. Friend, P.K.H. Ho and L.L. Chua, *Nature Photonics*, 2011, 5, 554.
- 18 Q. L.Bao, H. Zhang, Y. Wang, Z.H Ni, Y. L.Yan, Z.X. Shen, K.P. Loh and D.Y. Tang, *Adv. Funct. Mater*, 2009, 19, 3077.
- 19 Z. Liu, L.L. Ma, G. Shi, W. Zhou, Y.J. Gong, S. D.Lei, X.B. Yang, J. Zhang, J. N.Yu, K.P. Hackenberg, A. Babakhani, J.C. Idrobo, R. Vajtai, J. Lou and P.M. Ajayan, *Nature nanotechnology*, 2013, 8, 119.
- 20 I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao and L. Shi, *Nano Lett*, 2013, 13, 550.
- 21 P. Niu, L.L. Zhang, G. Liu and H.M. Cheng, *Adv. Funct. Mater*, 2012, 22, 4763.
- 22 X. D. Zhang, X. Xie, H. Wang, J.J. Zhang, B.C. Pan and Y. Xie, J. Am. Chem. Soc, 2013, 135, 18.
- Y. D. Hou, A.B. Laursen, J. S. Zhang, G. G. Zhang, Y. S. Zhu,
 X. C. Wang, S. Dahl and I. Chorkendorff, *Angew. Chem. Int. Ed. Engl*, 2013, 52, 3621.
- 24 M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh and H. Zhang, *Nature chem*, 2013, 5, 263.
- 25 X. Huang, Z.Y. Zeng and H. Zhang, *Chem.Soc.Rev*, 2013, 42, 1934.
- 26 H.Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q.H.Xiong and H. Zhang, ACS Nano, 2013, 11, 10344.
- 27 M. S. Xu, T. Liang, M.M. Shi, and H.Z. Chen, Chem. Rev., 2013, 113, 3766.
- 28 M. Chhowalla1, H. S. Shin, G. Eda, L.J. Li, K.P. Loh and H. Zhang, *NATURE CHEMISTRY*,2013,5,263
- 29 S.Hu and X.Wang, Chem. Soc. Rev, 2013, 42, 5577.
- 30 A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C.Y. Chim, G. Galli and F. Wang, Nano Lett, 2010, 10, 1271.
- 31 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, *Nano Lett*, 2011, 11, 5111.
- 32 J.D. Benck, Z. B. Chen, L.Y. Kuritzky, A.J. Forman and T.F. Jaramillo, *ACS Catalysis*, 2012, 2, 1916.
- 33 D. Voiry, M. Salehi, R. Silva, T. Fujita, M. W. Chen, T. Asefa, V.B. Shenoy, G. Eda and M. Chhowalla, *Nano Lett*, 2013, 13, 6222.
- 34 A.B. Laursen, S. Kegnæs, S. Dahl and I. Chorkendorff, Energy & Environmental Science, 2012, 5 5577.
- 35 G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S. D. Bergin, R.t Menzel, M.S. P. Shaffer and J. N. Coleman, ACS Nano, 2012, 6, 3468.
- 36 P. Joensen, R.F. Frindt and S.R. Morrison, *Mater. Res. Bull*, 1986, 21, 457.

ARTICLE

- 37 R. A. Gordon, D. Yang, E. D. Crozier, D. T. Jiang and R. F. Frindt, *Physical Review B*, 2002, 65, 125407.
- 38 D. Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin and R. F. Frindt, *Physical Review B*, 1991, 43, 12053.
- 39 F. Wypych and R. Schollhorn, J. Chem. Soc. Chem. Commun, 1992, 1386.
- 40 S. KC, R. C Longo, R. Addou, R. M. Wallace and K. Cho, *Nanotechnology*, 2014,25, 375703.
- 41 W. Zhou, X.L. Zou, S. Najmaei, Z. Liu, Y.M. Shi, J.Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.C. Idrobo, *Nano Lett*, 2013, 13, 2615.
- 42 H.P.Komsa, S.Kurasch, O. Lehtinen, U. Kaiser, and A.V. Krasheninnikov, *PHYSICAL REVIEW B*, 2013, 88, 035301.
- 43 W. L. Song, M. S. Cao, B. Wen, Z. L. Hou, J. Cheng, and J. Yuan, *Mater.Res.Bull*, 2012, 47, 1747
- 44 C. G. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S.Ryu, ACS Nano, 2010, 4, 2695.
- 45 H. S. S. R.Matte, A. Gomathi, A. K. Manna, D. J. Late, R.Datta, S.K. Pati, and C. N. R. Rao, *Angew. Chem.* 2010, 122, 4153.
- 46 F. Wypych and R.Schollhorn, J. Chem. Soc.Chem.Commun,1992, 1386.
- 47 S. S. Chou,Y. K. Huang, J. Kim, B. Kaehr, B. M. Foley, P. Lu, C. Dykstra, P. E. Hopkins, C. J Brinker, J. X. Huang, and V.P. Dravid, J. Am. Chem. Soc. 2015, 137, 1742.
- 48 W. L. Song, M. S. Cao, B. B. Qiao, Z. L. Hou, M. M. Lu, C. Y. Wang, J. Yuan, D. N. Liu, and L. Z. Fan, *Mater.Res.Bull*, 2014, 51, 277.
- 49 J. V. Mantese, A. L.Micheli, D. F. Dungan, R. G. Geyer, J. B. Jarvis, and J. Grosvenor, *J.Appl.Phys*, 1996, 79, 1655.
- 50 H.L. Zhu, Y.J. Bai, R. Liu, N. Lun, Y.X. Qi, F.D. Han and J.Q. Bi, *J. Mater. Chem*, 2011, 21, 13581.
- 51 B. S. Meng and B. D. B. Klein, *PHYSICAL REVIEW B*.,1996,53,12777.
- 52 S. K.C, R. C. Longo, R. Addou, R. M. Wallace and K. Cho, Nanotechnology,2014,25,375703.