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Fig. 1 The molecular structure of (a) α-graphyne, (b) β -graphyne, (c)

γ-graphyne and (d) γ-graphdiyne.

otubes are similarly obtained by rolling up graphene sheets onto
a cylinder.17 Fullerenes, carbon nanotubes, and other carbon-
based nanostructures such as graphyne, graphdiyne, graphone,
and graphane have been proposed as basic building blocks for
a variety of interesting nanotechnological applications.4,18–30 As
for graphene, hollow graphyne and graphdiyne structures can be
obtained by wrapping up graphyne sheets, with modifications of
course such that Euler’s polyhedral formula is fulfilled. Analo-
gously, graphyne-based and graphdiyne-based carbon nanotubes
can be obtained by rolling up the corresponding planar sheets.
Fullerene like graphynes (fullerynes) have already been intro-
duced by Baughman et al. in 1993,29 and more generally, vertex
insertions into cubic polyhedral graphs were already discussed by
Fowler and Rogers in 1998.30 Here we also note that the insertion
of dicarbon units into all bonds of a chemical structure leads to
the concept of carbomers (see for example the work of Chauvin
and co-workers31–33).

One of the smallest members of this class of molecules is
the recently proposed gaudiene molecule, which is an all-carbon
molecule consisting of 72 carbon atoms forming a hollow struc-
ture of Oh symmetry (Figure 2). Gaudiene can be constructed
from a truncated octahedron with two thirds of the edges re-
placed by –C≡C– units.34 Quantum chemical calculations showed
that β -C72 is an aromatic molecule with a rather large optical gap.

Here, a novel class of hollow carbon structures is proposed. We
call this class of polyhedral molecules gaudienes, because the ini-
tial polyhedron was inspired from the work of the Spanish archi-
tect Antoni Gaudí.34 Gaudienes are more general than carbomers
as insertion of dicarbon units may not take place in every chemi-
cal bond.

Fig. 2 The molecular structure of β -C72 of Oh symmetry, the smallest

β -gaudiene investigated.

2 Graph theoretical considerations

Before we start with the discussion of the different gaudienes
we briefly analyze their topology and introduce a classification
scheme. For the moment we do not distinguish between sin-
gle, double or triple bonding in the polyhedral graph. Formally,
gaudienes belong to the class of convex polyhedra (although
a quantum theoretical treatment might end up with a locally
non-convex structure).35 The classification of (non-regular) poly-
topes is currently an open problem.36 For the special class of
fullerenes a face-spiral classification scheme has been developed
by Manolopoulos et al.,37,38 which can be generalized for cu-
bic polyhedra.35,39 Here, we use the fact that simple insertions
(deletions) of divalent vertices into edges (edge subdivisions) of
a graph G results in a graph G′ (which is homeomorphic to G)
with a larger vertex set. Note that even though we have a home-
omorphism between G and G′, G is not a subgraph of G′ as the
vertex set E is not a subset of E ′.

A polyhedral graph G satisfies Euler’s polyhedral formula, and
by using the handshaking lemma we obtain

N −E +F = ∑
n=2

(

1−
n

2

)

Nn + ∑
n=3

Fn = 2 (1)

where N is the number of vertices in the graph G, E the number of
edges, F the number of faces, Nn the number of n-valent vertices,
and Fn the number of n-gons. We see that for n = 2 the number
of divalent vertices is exactly cancelled by the number of extra
edges introduced into the graph. In all cases considered here the
graph G is cubic, i.e., contains only 3-valent vertices, and Euler’s
polyhedral formula for the face count becomes35
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3F3 +2F4 +F5 + ∑
n≥7

(6−n)Fn = 12 (2)

Thus, we conclude that one cannot tile a sphere with hexagons
only, i.e., one has to introduce extra n-gons (for example 12 pen-
tagons for fullerene graphs; this however does not guarantee that
a certain polyhedron exists as for example the fullerene C22 does
not exist). Introducing extra n-gons can be done in many different
ways as we shall see when we discuss the gaudienes in detail.

For the characterization of the various gaudienes we have to
describe the cubic graph G or, if G is obtained by some other graph
transformation T of the original graph G0, i.e., G = T (G0). We
list the vertices and faces according to Pederson36 and describe
the subsequent list of vertex insertions into edges of each n-gon
separately. For G, or G0 with no divalent vertices, we use the
notation

PG [N3,N4,N5,N6, . . . ;F3,F4,F5,F6, . . .] (3)

where PG is the ideal point group of the polyhedron.35 For exam-
ple, the well known fullerene Ih-C60 is characterized by

Ih [60;0,0,12,20] (4)

This scheme does not uniquely classify the graph, as there are, for
example, many non-isomorphic structures for a fullerene with a
certain vertex count and symmetry,35 but becomes useful for the
gaudienes introduced here as we shall see.

α-graphyne based polyhedral structures (in their most general
form) can be derived from any polyhedral graph by inserting lin-
ear –C≡C– units into every bond (see Figure 1). It is thus identical
to the carbomer concept. This insertion is performed irrespective
of the assignment of double bonds in the original structure. For
cubic graphs this scheme was already introduced by Fowler in
Rogers.30 We denote the transformed version of a graph G0 ac-
cording to this scheme as G = α(G0). For example, if we chose
as the graph G0 of an α-gaudiene a fullerene with N0 vertices,
denoted as PG[N0;0,0,12,(N0/2 − 10)] and we insert two diva-
lent vertices into all 3N0/2 edges, we get a total vertex count of
NG = 4N0, where NG is the number of vertices in the α-gaudiene.
Such an edge subdivision conserves the point group of G0.

It follows from Thurston’s proof, which considers the number
of non-isomorphic triangulations of a sphere with all N vertices
of valency six or smaller, that the number of nonisomorphic cubic
graphs with faces up to hexagons grows as O(N9).40 As every
polyhedral graph can be transformed into an α-gaudiene, we can
estimate the number of derived α-gaudienes.

β -graphyne analogue carbon cages can be generated starting
with any polyhedral (i.e., three connected and planar) graph
G0. First we perform a leapfrog transformation (LF), which
is a (1,1) Goldberg-Coxeter transformation.35,41 The Goldberg-

Coxeter transformation of a polyhedral graph is a polyhedral
graph itself, implying that the initial graph can be subjected to any
number of consecutive leapfrog transformations. In the obtained
graph all faces with sizes 6= 6 and a subset of all hexagons are
selected, such that each vertex is adjacent to exactly one selected
face. Such a selection is guaranteed to exist and to be unique
for every polyhedral graph that is obtained through a leapfrog
transformation. The edges of all selected faces (i.e., two thirds of
all edges), are then replaced by a linear segment with two ver-
tices. The leapfrog transformation triples the number N0 of ver-
tices of a graph and introduces N0 extra hexagons,38 while the de-
scribed replacement triples the number of vertices again. There-
fore, β -graphyne cages with NG = (3×3)N0 vertices are accessible
from polyhedra with N0 vertices. We denote this sequence of one
leapfrog transformation and the following edge subdivision of G0

as β (LF(G0)). We denote k consecutive leapfrog transformations
of a graph G0 as LFk(G0).

Equivalently, β -graphynes can be created from the same orig-
inal graph G0 by first taking its dual G∗

0
. Then, each n-valent

vertex in the triangulation is replaced by an n-gon in which into
each edge a –C≡C– unit has been inserted. For every pair of ver-
tices connected by an edge in the original graph, the resulting two
expanded polygons are connected by an edge.

In a similar fashion, γ-graphyne analogue carbon cages are
generated starting with any polyhedral graph G0. Transforma-
tion and selection of faces are performed in the same fashion as
above. Then, all edges that are not adjacent to any selected face
(one third of the edge set), i.e., the complement of the previ-
ously picked edges, are replaced by two additional vertices. This
replacement scheme doubles the number of vertices, transform-
ing polyhedral graphs with N0 vertices into NG = (3×2)N0 vertex
cages. Analogously to the previous transformation this is denoted
as γ(LF(G0)).

Alternatively, we can start with the dual graph G∗
0
, and replace

every n-valent vertex by an n-gon. These n-gons are then con-
nected – according to the connectivity of the vertices they orig-
inated from – by bonds into which –C≡C– units have been in-
serted.

α-, β -, and γ-graphdiyne like cages are generated in the same
way as the respective graphynes but by replacing edges by lin-
ear four-vertex segments instead of two-vertex segments. N0

vertex polyhedral graphs are then transformed into NG = 7N0,
NG = (3 × 5)N0, and NG = (3 × 3)N0 vertex cages respectively.
Transformations of graphs G0 to graphdiynes are written with a
prepended ‘C4’, e.g., C4-α(G0).

3 Computational methods

Computationally, all structures were generated with a modified
version of the program Fullerene.42 Selected small polyhedral
graphs were hard coded. These graphs were subjected to leapfrog
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transformations as detailed in the previous section. The genera-
tion of all the gaudienes considered here are summarized in Ta-
ble 1.

N T G0 polyhedron(G0)

80 α Ih [20;0,0,12] dodecahedron
72 β (LF) Oh [8;0,6] cube

216 β (LF2) Oh [8;0,6] cube
648 β (LF3) Oh [8;0,6] cube
120 C4-β (LF) Oh [8;0,6] cube
360 C4-β (LF2) Oh [8;0,6] cube
162 β (LF) C2v [18;0,2,8,1] FS(45556555545)
288 β (LF) C2 [32;0,0,12,6] fullerene C32(1)
288 β (LF) D2 [32;0,0,12,6] fullerene C32(2)
288 β (LF) D3d [32;0,0,12,6] fullerene C32(3)
288 β (LF) C2 [32;0,0,12,6] fullerene C32(4)
288 β (LF) D3h [32;0,0,12,6] fullerene C32(5)
288 β (LF) D3 [32;0,0,12,6] fullerene C32(6)
72 γ(LF) D6h [12;0,6,0,2] hexagonal prism

648 γ(LF3) D6h [12;0,6,0,2] hexagonal prism
108 C4-γ(LF) D6h [12;0,6,0,2] hexagonal prism
432 γ(LF2) D6d [24;0,0,12,2] fullerene C24(1)
288 γ(LF) D2h [48;0,0,12,14] fullerene C48(15)
288 γ(LF) C2v [48;0,0,12,14] fullerene C48(17)
288 γ(LF) D2h [48;0,0,12,14] fullerene C48(41)
288 γ(LF) C2v [48;0,0,12,14] fullerene C48(56)
288 γ(LF) C2h [48;0,0,12,14] fullerene C48(80)
288 γ(LF) C2v [48;0,0,12,14] fullerene C48(138)
288 γ(LF) D6d [48;0,0,12,14] fullerene C48(186)
288 γ(LF) D6d [48;0,0,12,14] fullerene C48(189)

Table 1 Investigated gaudienes with N vertices resulting from a

transformation T of an origin graph G0, i.e. T (G0). A description of the

polyhedral graph G0 is provided as well. For one of the non-regular and

less common polyhedron used we give the face spiral (FS) indices n of

the n-gons for identification. For the fullerenes (Goldberg polyhedra) we

provide the canonical index derived from the list of ring-spiral pentagon

indices. 35,37,38

As the force field in program Fullerene can only operate on cu-
bic graphs and triangulations, polyhedra were generated at this
stage and optimized to bond lengths that correspond to the poly-
hedron after replacing a subset of bonds by elongated linear seg-
ments. After the optimization of the Cartesian coordinates, atoms
were inserted and placed in 3D by linear interpolation.

The molecular structures were then further optimized at the
density functional theory (DFT) level using the Becke-Perdew
generalized gradient approximation (GGA) functional (BP86) in
combination with the Karlsruhe split-valence polarization (SVP)
basis sets.43–46 Since calculations at the BP86 level slightly under-
estimate the gap between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO),
single-point calculations were performed at the DFT level us-
ing Becke’s three-parameter functional (B3LYP) together with a

SVP basis set.46–48 The semi-empirical dispersion correction of
Grimme has been employed in the molecular structure optimiza-
tion.49,50 The DFT calculations were performed with TURBOMOLE

version 6.5.51–53 The Cartesian coordinates of the atomic posi-
tions of all studied structures are given as Supporting Informa-
tion. Improving the basis set to a triple-zeta split-valence polar-
ization set for β -C72 leads only to a small change in geometry
(change in bond distances |∆re| < 0.012 Å and bond angles |∆αe|

< 0.04 degrees). These errors are within the accuracy of DFT and
therefore does not warrant more computer extensive calculations
for the discussion of the structures presented here.

4 Molecular structures

4.1 α-Gaudienes

The optimized structure of the smallest fullerene-like carbomer
based on α-graphyne, the gaudiene α-C80, is shown in Figure 3.
The structure belongs to the icosahedral (Ih) point group as
does its origin, the dodecahedron represented by the smallest
fullerene Ih-C20. Hence, this gaudiene consists of 12 pentagonal
15-membered carbon rings forming a cage. The atoms shared by
three rings are formally sp3 hybridized carbons with only three
neighbor carbons leading to a relatively small HOMO-LUMO gap
of 0.740 eV at the BP86 level, which can be compared with the
HOMO-LUMO gaps of 1.66 eV, 1.45 eV and 1.23 eV for the C60,
C180 and C240 fullerenes calculated at the GGA level.54 For com-
parison, DFT calculations using the BP86 functional yield HOMO-
LUMO gaps of 1.24 eV and 0.21 eV for β -C72 and γ-C72, respec-
tively. At the B3LYP level the HOMO-LUMO gap for α-C80 is
1.22 eV. The adjacency spectrum of fullerene-like carbomers and
their open/closed shell character have been analyzed in detail by
Fowler and Rogers.30

Fig. 3 The molecular structure of α-C80 of Ih symmetry, which is the

smallest α-gaudiene investigated.

A very stable molecule with a HOMO-LUMO gap of 5.17 eV
is obtained when adding 20 hydrogens to the corners of the α-
C80 icosahedron. Larger α-gaudienes can easily be constructed
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by using fullerenes as templates and replacing each carbon-
carbon bond with a −C≡C− moiety. All α-gaudienes have three-
coordinated carbons in the intersections between three carbon
rings. More stable molecules can be obtained by adding sub-
stituents to these three-coordinated carbons.

We should mention that Eq. (2) also allows to use other cubic
polyhedra. For example, if we chose the truncated octahedron
belonging to the Archimedean solids, Oh [24;0,8,0,6], containing
six squares according to Eq. (2), we can expand this graph for all
edges in a similar way and we arrive at Oh−C96, another type of
α-gaudiene. Hence the playing field is huge for the construction
of new 3D polyhedral molecular structures.

4.2 β -Gaudienes

The smallest member of the β -gaudiene class of molecules with
four- and six-membered rings involved is the previously pro-
posed β -C72 shown in Figure 2.34 It belongs to the Oh point
group and can be generated from the simple cube G0 = Oh [8;0,6]

or its dual, the octahedron G∗
0
= Oh [0,6;8]. When folding β -

graphyne to the hollow C72 structure, the edges of eight hex-
adehydro[12]annulene rings of β -graphyne form six four-sided
rings having four carbons on each side with alternating triple and
single bonds. Even though hexadehydro[12]annulene is formally
antiaromatic,55–57 β -C72 is aromatic according to the ring-current
criterion sustaining a ring current strength of 44.3 nA/T around
the molecule, which can be compared to the ring-current strength
for benzene of 11.8 nA/T.34,58 Since all carbons have formally
four bonds, β -C72 is a stable molecule with a HOMO-LUMO gap
of 1.82 eV at the B3LYP/SVP level.

A number of β -gaudiene structures were constructed us-
ing small polyhedral graphs as starting points. The smallest
one constructed using that procedure was β -C162 (C2v), which
was obtained using an 18-vertex graph as initial structure,
C2v[18;0,2,8,1], belonging to a non-regular polyhedron (see Fig-
ure 4). This polyhedron does not belong to the common solids
and we therefore give the face spiral in Table 1. The optimized
molecular structure of β -C162 (C2v) is shown in Figure 5a. It has
a rather small HOMO-LUMO gap of 0.48 eV as obtained at the
B3LYP level.

Fig. 4 Graph of the non-regular C2v[18;0,2,8,1] polyhedron.

Since the topological method ensures that the symmetry of the

(a) (b)

(c) (d)

Fig. 5 The molecular structure of the energetically lowest isomers of

β -gaudienes: (a) β -C162 (C2v), (b) β -C216 (Oh), (c) β -C288 (D3d), and (d)

β -C648 (Oh).

seed structure is conserved, many different isomers can be con-
structed when the corresponding fullerene structures are avail-
able. The next larger β -gaudiene structures of Oh symmetry are
β -C216 and β -C648, which have HOMO-LUMO gaps of 0.415 eV
and 0.225 eV at the B3LYP level, respectively. These are also
shown in Figure 5.

A large number of β -gaudienes consisting of 288 carbons can
be constructed by using different fullerene isomers such as those
of C32 as starting structures. The energetically lowest β -C288

structure of all investigated isomers (see Table 1) belongs to the
D3d point group. The energetically lowest β -gaudiene structures
obtained in this work are shown in Figure 5. The rest of the
studied β -C288 structures are shown in the Supporting Informa-
tion. The energetically lowest β -C288 isomers are 48.8 kJ/mol
(D3), 51.9 kJ/mol (D2), 53.2 kJ/mol (C2), 65.6 kJ/mol (C2), and
146.6 kJ/mol (D3h) above the D3d structure. The β -C288 (Oh) iso-
mer consisting of a β -C72 molecule inside β -C216 (β -C72@β -C216)
is 683 kJ/mol above the lowest β -C288 isomer of D3d symmetry.
The HOMO-LUMO gaps of the β -C288 structures are in the range
of 0.27–0.42 eV, with the largest gap for the most stable isomer.
The two β -C288 structures of C2 symmetry have negative HOMO-
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LUMO gaps at the BP86 level.

The largest molecule considered in this study was an onion-like
β -C72@β -C216@β -C648 cluster of Oh symmetry. The structure is
shown in the Supporting Information.

4.3 γ-Gaudienes

The smallest γ-gaudiene (γ-C72) studied belongs to the D6h

point group and has a HOMO-LUMO gap of 0.519 eV. The op-
timized molecular structure is shown in Figure 6. The ben-
zoic six-membered carbon ring is surrounded by six hexadehy-
dro[12]annulene rings that are fused at the molecular edge. The
correct topology of the closed surface is ensured by the six four-
membered carbon rings between the hexadehydro[12]annulenes
at the edge of the molecule. The next larger γ-gaudiene struc-
ture of Oh symmetry is γ-C432 (Oh) with a HOMO-LUMO gap
of 0.491 eV. The largest γ-gaudiene studied in this work is γ-
C648, which has D6h symmetry and a small HOMO-LUMO gap of
0.253 eV at the B3LYP level.

Fig. 6 The molecular structure of γ-C72 of D6h symmetry, which is the

smallest γ-gaudiene investigated.

A large number of γ-C288 structures were constructed with dif-
ferent fullerene isomers of C48 as the origin graph. The energet-
ically lowest γ-C288 belongs to the C2v point group. The struc-
ture of the energetically lowest γ-C288 (C2v) isomer is shown in
Figure 7. The structures and atomic coordinates of the remain-
ing studied γ-C288 clusters are shown in the Supporting Informa-
tion. The energetically lowest γ-C288 isomers are 44.3 kJ/mol
(D2h), 47.8 kJ/mol (C2h), 160.0 kJ/mol (D6d), 167.5 kJ/mol
(C2v), 287.2 kJ/mol (C2v), 565.5 kJ/mol (D2h), and 873.1 kJ/mol
(D6d) above the lowest C2v structure. The calculations show that
there are only three low-lying γ-C288 isomers among the studied
ones.

The HOMO-LUMO gaps of the lowest γ-C288 structure is 0.36 eV
at the B3LYP level, whereas the HOMO-LUMO gap of the γ-C288

are in the range of 0.18–0.47 eV, with the largest gap for γ-C288

(a) (b)

(c)

Fig. 7 The molecular structure of the energetically lowest isomers of (a)

γ-C288 (C2v), (b) γ-C432 (Oh), and (c) γ-C648 (D6h) gaudienes.

(D2h). The energetically lower isomer of D6d symmetry has a neg-
ative HOMO-LUMO gap at the BP86 level. The molecular struc-
ture of the energetically lowest γ-gaudienes obtained in this work
are shown in Figure 7.

4.4 Graphdiyne-based gaudienes

Graphdiyne-based gaudienes are obtained by replacing the
–C≡C– units of gaudienes with the twice longer –C≡C–C≡C– (C4)
group.

Even though the obtained molecules have a larger number of
triple bonds, the HOMO-LUMO gap is wider than for the cor-
responding graphyne-based molecules. The HOMO-LUMO gaps
calculated at the B3LYP level are 0.877 eV, 1.356 eV, and 1.168 eV
for C4-γ-C108, C4-β -C120, and C4-β -C360, respectively. The larger
stabilization of the graphdiyne-based gaudienes can be traced
back to the molecular properties of dodecadehydro[18]annulene,
which is an aromatic molecule.56 The HOMO-LUMO gap of C4-γ-
C108 is smaller than for the two other studied C4-gaudienes due
to the significantly larger bond strain of the small four-membered
carbon rings at the edge of the molecule. For the C4-β -gaudienes,
the correct topology is obtained by the six 20-membered carbon
rings. The molecular structures of the studied C4-gaudienes are
shown in Figure 8. The Cartesian coordinates of the atomic posi-
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tions are given as Supporting Information.

(a) (b)

(c)

Fig. 8 The molecular structure of the investigated graphdiyne-based

(C4) gaudienes: (a) C4-γ-C108 (D6h), (b) C4-β -C120 (Oh), and (c)

C4-β -C360 (Oh).

5 Discussion and Conclusions

The γ-gaudienes are generally significantly lower in energy than
the β -gaudienes for the same number of carbon atoms. The most
important exception is β -C72, which is 128.9 kJ/mol below γ-C72

due to the ring strain of the four-membered carbon rings of γ-C72

and maybe also due to the aromatic stabilization of β -C72.34 The
HOMO-LUMO gap of β -C72 of 1.82 eV calculated at the B3LYP
level is also much larger than the HOMO-LUMO gap of 0.52 eV
for γ-C72. For the small γ-C72 cage, the bond strain of the four-
membered carbon rings is not compensated by the energetically
favorable structure of γ-graphyne. For the larger gaudienes, the
γ-graphyne structure have significantly lower energies than the
corresponding β -gaudiene structures. The lowest isomer of γ-
C288 is more than 5000 kJ/mol (!) below the energy of the low-
est β -C288 structure. For larger gaudienes, the energy difference
between the γ-gaudiene and β -gaudiene is even bigger. For the
largest studied gaudienes, γ-C648 is about 11000 kJ/mol below
β -C648.

The relative energy per carbon atom is given as a function of
1/N in Figure 9, where N is the number of carbon atoms. The
relative energy depends roughly linearly on 1/N leading to the

three straight lines in Figure 9 showing that γ-gaudiene is the
most stable structure and that C4-gaudienes are the energetically
highest ones. Extrapolation to 1/N → 0 yields the relative energy
of β -graphyne, γ-graphyne, and β -graphdiyne. The calculations
show that β -graphyne is 17 kJ/mol/carbon higher in energy than
γ-graphyne and that β -graphdiyne is only 7 kJ/mol/carbon above
β -graphyne.

Fig. 9 The relative energy (in kJ/mol) as a function of 1/N of the studied

molecular classes. N is the number of atoms. The relative energies are

fitted to a line. The outlier at 37 kJ/mol for γ-C72 is not considered in the

fit.

The HOMO-LUMO gaps calculated at the B3LYP level are plot-
ted as a function of 1/N in Figure 10 yielding three straight lines
for three gaudiene classes. Extrapolation of the HOMO-LUMO
gap to the limit of 1/N → 0 yields estimated HOMO-LUMO gaps
of the β -graphyne, γ-graphyne and β -graphdiyne sheets. The
three lines suggest that the HOMO-LUMO gaps for the infinite
planar structures are larger than zero. The extrapolated HOMO-
LUMO gap of β -graphyne is 0.17 eV. For γ-graphyne we obtain
an extrapolated HOMO-LUMO gap of 0.33 eV. The extrapolated
HOMO-LUMO gap of 1.25 eV for β -graphdiyne agrees well with
the previously reported value of 1.22 eV, which was calculated at
the DFT level using a hybrid functional59 and it is significantly
larger than the HOMO-LUMO gap of 0.46 eV calculated at the
DFT level using the generalized gradient approximation.60 Even
though the error bars of the present extrapolated values are large
due to the few number of points used in the fit, the present calcu-
lations suggest that the HOMO-LUMO gap of graphdiyne is larger
than 1 eV.

The hollow gaudiene structures might open the avenue to novel
materials with interesting properties. For example, triple bonds
provide possibilities for functionalizing the molecules with differ-
ent kinds of substituents that even might couple several gaudi-
ene molecules to polymers or solid-state materials. The gaudiene
structures can also be fully or partially saturated with hydrogens
without destroying their cage structures. Such molecules are or-
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Fig. 10 The HOMO-LUMO gap (in eV) as a function of 1/N of the

studied molecular classes. N is the number of atoms. The relative

energies are fitted to a line. The outlier at 1.82 eV for β -C72 is not

considered in the fit.

dinary saturated hydrocarbons with extraordinary hollow struc-
tures. By attaching substituents to the corners of α-gaudienes,
molecules with a very large HOMO-LUMO gap are obtained. The
optical gap for the C4-gaudienes is significantly larger than for the
two other classes of molecules. Extrapolation to infinitely large
clusters suggests that planar graphdiyne has indeed a HOMO-
LUMO gap that is significantly larger than zero, which might pro-
vide novel possibilities for carbon-based mono-layer structures.4

Finally, we point out that there are also other graph theoreti-
cal procedures for obtaining cavernous all-carbon structures that
have not been discussed here.61,62 For example, one can insert
–C≡C– units into edges running parallel to the main axis of a
fullerene nanotube. One can also use other building blocks be-
side carbon which fit the required topologies, e.g., building units
which are used in metal-organic frameworks. This opens up a
whole new area of interesting cage structures and materials which
could be useful in many interesting applications.
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