Nanoscale

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

5

Nanoscale

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

PAPER

RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T₁weighted MR imaging of glioma[†]

Yu Luo,^{1a} Jia Yang,^{1b} Yu Yan,^a Jingchao Li,^a Mingwu Shen,^{*a} Guixiang Zhang,^{*b} Serge Mignani^c and Xiangyang Shi^{*^a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

 $_{10}$ We report a convenient approach to preparing ultrasmall Fe₃O₄ nanoparticles (NPs) functionalized with arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of glioma. In our work, stable sodium citrate-stabilized Fe₃O₄ NPs were prepared by a solvothermal route. Then, the carboxylated Fe₃O₄ NPs stabilized with sodium citrate was conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe₃O₄-PEG-RGD) was fully

15 characterized using different techniques. We show that these Fe₃O₄-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration range, and display targeting specificity to glioma cells overexpressing $\alpha_v \beta_3$ integrin *in vitro*. With the relatively high r_1 relaxivity ($r_1 = 1.4 \text{ mM}^{-1}\text{s}^{-1}$), the Fe₃O₄-PEG-RGD particles can be used as an efficient nanoprobe for targeted T₁-weighted positive MR imaging of glioma cells in vitro and the xenografted tumor model in

²⁰ vivo via an active RGD-mediated targeting pathway. The developed RGD-functionalized Fe₃O₄ NPs may hold great promise to be used as a nanoprobe for targeted T₁-weighted MR imaging of different $\alpha_{\nu}\beta_{3}$ integrin-overexpressing cancer cells or biological systems.

Introduction

Among the various molecular imaging techniques, magnetic 25 resonance (MR) imaging has been identified as one of the most powerful noninvasive imaging techniques due to its high spatial resolution and tomographic capabilities, and the ability to acquire three-dimensional (3D) tomographic information of tissues with high soft tissue contrast.¹⁻⁴ However, for highly-sensitive and 30 accurate MR imaging applications, enhanced contrast between

normal and pathological tissues is required. Consequently, the use of exogenous MR contrast agents is crucial.

Currently, most of the MR positive contrast agents are either paramagnetic Gd or Mn chelate-based agents. Nevertheless, the 35 recently reported nephrogenic system fibrosis associated with Gd(III)-based contrast agents caused serious safety concerns, especially in patients with abnormal kidney function.⁵⁻⁸ Accordingly, development of new stable biocompatible positive MR contrast agents still remains a great challenge.

In an earlier work, Roca and coworkers have shown that the 40 magnetic property of Fe₃O₄ nanoparticles (NPs) is strongly dependent on their sizes.9 The magnetic moment of Fe₃O₄ NPs reduces sharply as their size decreases due to the reduction of their volume magnetic anisotropy and spin disorders on the

⁴⁵ surface of the NPs, thus inhibiting the T₂ effect and conversely maximizing the T₁ contrast effect.^{10, 11} Therefore, small sized Fe_3O_4 NPs (< 5 nm) have been used as T_1 contrast agents for MR imaging applications.^{12, 13}

Thermal decomposition of iron precursors in nonpolar organic 50 solvents has been employed to produce extremely small-sized iron oxide NPs (diameter \sim 5 nm).¹⁴⁻¹⁶ Nonetheless, this approach suffers several drawbacks: 1) the formed Fe₃O₄ NPs are water insoluble due to their coated hydrophobic ligands, limiting their biomedical uses;^{17, 18} 2) in most of these studies related to 55 cancer diagnosis, a passive targeting strategy, based on the wellknown enhanced permeability and retention (EPR) effect, has been adopted to image the tumor tissues with leaky vasculature and poor lymphatic drainage. Consequently, for efficient and specific MR imaging of tumors, it is essential to modify the NPs 60 with various targeting ligands that can direct the particles specifically to the tumor region via a receptor-mediated active targeting strategy.¹⁹⁻²² Another approach is to prepare waterdispersible ultrasmall Fe₃O₄ NPs using sodium citrate as a stabilizer via a facile one-pot solvothermal route.²³ Unfortunately, 65 the formed citrate-stabilized ultrasmall Fe₃O₄ NPs have not been functionalized to have targeting specificity for targeted T₁weighted MR imaging of tumors.

Polymer grafting has been considered to be one of the most effective approaches used for NP surface functionalization.²⁴⁻²⁶ In 70 our previous work, we have shown that polyethyleneimine (PEI)coated Fe₃O₄ NPs formed via a one-step hydrothermal approach can be modified by polyethylene glycol (PEG) to render the particles with minimum macrophage cellular uptake,²⁷ be functionalized with targeting ligands such as folic acid (FA)²⁸ or ⁷⁵ hvaluronic acid²⁹ for targeted T₂-weighted negative MR imaging

of tumors overexpressing FA receptors or CD44 receptors, respectively. In addition, PEI-coated Fe₃O₄ NPs formed *via* a mild reduction can also be functionalized with FA³⁰ or arginylglycylaspartic acid (RGD) peptide³¹ *via* a PEG spacer for terrested T, weighted means the MB imperiant of space for the space functionalized at the space functionalized for the space for the space functionalized for the space for the space functionalized for

- ⁵ targeted T₂-weighted negative MR imaging of specific tumors. Meanwhile, preformed Fe₃O₄ NPs can also be assembled with functionalized dendrimers for T₂-weighted negative MR imaging applications.^{32, 33} These strategies may be used to functionalize citrate-stabilized ultrasmall Fe₃O₄ NPs for targeted T₁-weighted
- ¹⁰ MR imaging of tumors. In our recent attempt, we have shown that citrate-stabilized ultrasmall Fe_3O_4 NPs can be assembled onto generation 5 RGD-functionalized dendrimers.³⁴ However, due to the formation of the clustered particles, the prepared dendrimer-functionalized Fe_3O_4 NPs can only be used for T_2 -
- ¹⁵ weighted negative MR imaging of $\alpha_{v}\beta_{3}$ integrin-overexpressing tumors.

In this present study, we report a convenient approach to forming RGD-functionalized ultrasmall Fe₃O₄ NPs for targeted T_1 -weighted positive MR imaging of glioma overexpressing $\alpha_v\beta_3$

- $_{20}$ integrin. In our approach, stable sodium citrate-stabilized Fe₃O₄ NPs prepared by a solvothermal route were conjugated with PEGylated RGD *via* 1-ethyl-3-(3-dimethylaminopropyl) carbodimide hydrochloride (EDC) chemistry (Figure 1). The formed Fe₃O₄-PEG-RGD NPs were fully characterized. The
- $_{25}$ cytocompatibility and hemocompatibility of the NPs were evaluated by cell viability and hemolysis assays, respectively. The RGD-mediated targeting of the Fe₃O₄-PEG-RGD NPs towards U87MG cells (a human glioma cell line) overexpressing high-affinity $\alpha_{\nu}\beta_{3}$ integrin was confirmed by both ICP-AES
- ³⁰ analysis and Prussian blue staining. Finally, the feasibility to use the developed NPs as a nanoprobe for targeted T_1 -positive MR imaging of cancer cells *in vitro* and the xenografted tumor model *in vivo* was also explored. To our knowledge, this is the first report related to the use of ultrasmall Fe₃O₄ NPs functionalized
- ³⁵ with targeting ligands for specific T₁-positive MR imaging of tumors.

Experimental

Materials

- Diethylene glycol, EDC, and *N*-hydroxysuccinimide (NHS) were ⁴⁰ purchased from Aldrich (St Louis, MO). RGD was from GL Biochem (Shanghai, China). A dual functional PEG with one end of amine group and the other end of maleimide group (NH₂-PEG₂₀₀₀-Mal, Mw = 2,000) and PEG monomethyl ether with the other end of amine group (*m*PEG-NH₂, Mw = 2,000) were
- ⁴⁵ purchased from Shanghai Yanyi Biotechnology Corporation (Shanghai, China). U87MG cells (a human glioma cell line) and L929 cells (a mouse fibroblast cell line) were obtained from Institute of Biochemistry and Cell Biology (the Chinese Academy of Sciences, Shanghai, China). Dulbecco's Modified Eagle
- ⁵⁰ Medium (DMEM), fetal bovine serum (FBS), penicillin, and streptomycin were purchased from Gibco (Carlsbad, CA). Sodium citrate, anhydrous ferric chloride (FeCl₃ > 99%) and all other chemicals were from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and used as received. Water used in all
- 55 experiments was purified using a Milli-Q Plus 185 water purification system (Millipore, Bedford, MA) with a resistivity

higher than 18 M Ω .cm. Regenerated cellulose dialysis membranes (molecular weight cut-off, MWCO = 10,000) were acquired from Fisher Scientific (Pittsburgh, PA).

60 Synthesis of the Fe₃O₄-PEG-RGD NPs

Synthesis of citrate-stabilized Fe_3O_4 NPs. FeCl₃.6H₂O (1081 mg) was dissolved in 40 mL of diethylene glycol under stirring to form a homogeneous solution. Sodium citrate (471 mg) was added to the above solution, and the mixture was heated to 80 °C

65 in a water bath until a clear solution was formed. Subsequently, sodium acetate (1312 mg) was added to the above mixture solution and dissolved, and then the mixture was transferred to a Teflon-lined stainless-steel autoclave with a volume of 100 mL and sealed in air. The autoclave was placed into an oven at 200 m² C for 4 h After cooling down to room temperature, the black

⁷⁰ °C for 4 h. After cooling down to room temperature, the black solution was collected by centrifugation (10000 rpm, 5 min) and purified with ethanol for 3 times to remove excess reactants and byproducts. The resulting black product was redispersed into water and lyophilized to obtain the powder of the Fe₃O₄ NPs for ⁷⁵ further use.

Synthesis of NH₂-PEG-RGD. NH₂-PEG-Mal (20.00 mg) was dissolved in 5 mL DMSO under vigorous magnetic stirring at room temperature, followed by addition of RGD (6.92 mg, 2 mL in DMSO). The reaction mixture was stirred for 24 h. After that, ⁸⁰ the mixture was subjected to dialysis against phosphate buffered saline (PBS, 3 times, 2 L) and water (6 times, 2 L) for 3 days using a dialysis membrane with an MWCO of 1,000 to remove the DMSO and the excess of reactants and byproducts. A further lyophilization step gave rise to the product of NH₂-PEG-RGD in ⁸⁵ a white powder.

Preparation of the Fe₃O₄-PEG-RGD NPs. The citric acid carboxyl group of Fe₃O₄ NPs (56 mg, in 10 mL DMSO) was first activated with EDC (144 mg, dissolved in 1 mL DMSO) and NHS (70 mg, dissolved 1 mL DMSO) at room temperature for 3 ⁹⁰ h. Then, the resulting solution was dropwise added into a DMSO solution of NH₂-PEG-RGD (11.08 mg, 5 mL) under vigorous stirring at room temperature for 3 days. Finally, the reaction mixture was dialyzed against PBS (3 times, 2 L) and water (6 times, 2 L) for 3 days using a dialysis membrane with an MWCO ⁹⁵ of 3,000, followed by lyophilization to obtain the product of the Fe₃O₄-PEG-RGD NPs (Figure 1). For comparison, Fe₃O₄ NPs were also reacted with *m*PEG-NH₂ under similar experimental conditions to afford the formation of the Fe₃O₄-*m*PEG NPs.

Characterization techniques

- ¹⁰⁰ ¹H NMR spectra were collected using a Bruker AV400 nuclear magnetic resonance spectrometer. Samples were dissolved in D₂O before measurements. Thermogravimetric analysis (TGA) was carried out using a TG 209 F1 (NETZSCH Instruments Co., Ltd., Bavaria, Germany) thermogravimetric analyzer. The
 ¹⁰⁵ samples were heated from room temperature to 750 °C at a rate of 10 °C/min under nitrogen atmosphere. Zeta potential and dynamic light scattering (DLS) measurements were conducted using a Malvern Zetasizer Nano ZS model ZEN3600 (Worcestershire, UK) equipped with a standard 633 nm laser.
- Transmission electron microscopy (TEM) was performed with a JEOL 2010F analytical electron microscope (JEOL, Tokyo, Japan) operating at 200 kV. TEM samples were prepared by depositing a dilute particle suspension (5 µL) onto a carbon-

coated copper grid and air-dried before measurements. The Fe concentration of the NPs in aqueous solution was analyzed using a Leeman Prodigy inductively coupled plasma-atomic emission spectroscopy (ICP-AES) (Hudson, NH). T_1 relaxometry was

- s performed by a 0.5 T NMI20-Analyst NMR Analyzing and Imaging system (Shanghai NIUMAG Corporation, Shanghai, China). The samples were diluted in water with an Fe concentration in a range of 0.1-1.6 mM. The instrumental parameters were set at point resolution of 156 mm \times 156 mm,
- ¹⁰ section thickness of 0.5 mm, TR of 400 ms, TE of 20 ms, and number of excitation of 1. The T_1 relaxivity was calculated by linear fitting the inverse T_1 relaxation time (1/ T_1) as a function of Fe concentration.

Cytotoxicity assay and cell morphology observation

- ¹⁵ The cytotoxicity of the Fe₃O₄-*m*PEG and Fe₃O₄-PEG-RGD NPs was evaluated by MTT viability assay of U87MG cells. The cells were seeded into a 96-well plate with a density of 1×10^4 per well and incubated in regular DMEM supplemented with 10% heat-inactivated FBS, 100 U/mL penicillin, and 100 µg/mL
- $_{20}$ streptomycin for 24 h. Afterwards, the medium was replaced with fresh medium containing the Fe₃O₄-*m*PEG or the Fe₃O₄-PEG-RGD NPs at different Fe concentrations. After 24 h incubation at 37 °C and 5% CO₂, MTT (20 μ L, 5 mg/mL) in PBS was added to each well and the cells were incubated for another 4 h under
- ²⁵ regular culture conditions. The medium was then carefully removed, and DMSO (200 μL) was added to each well to dissolve the formed formazan crystals. The absorbance at 570 nm in each well was measured using a Thermo Scientific Multiskan MK3 ELISA reader (Thermo Scientific, Hudson, NH). Mean and ³⁰ standard deviation for the triplicate wells were reported.

After treatment with the Fe_3O_4 -mPEG or Fe_3O_4 -PEG-RGD NPs at different Fe concentrations (0-100 µg/mL) for 24 h, the cell morphology was observed using a Leica DM IL LED inverted phase contrast microscope with a magnification of 200 × 35 for each sample.

Hemolysis assay

Fresh human blood stabilized with EDTA was kindly supplied by Shanghai General Hospital (Shanghai, China) and used with the permission by the ethical committee of Shanghai General ⁴⁰ Hospital. Human red blood cells (HRBCs) were obtained and hemolysis assay was performed according to the literature.^{28, 30, 35,}

 36 Both the Fe₃O₄-*m*PEG and Fe₃O₄-PEG-RGD NPs at an Fe concentration range of 0-80 μ g/mL were tested.

Cellular uptake

- ⁴⁵ The specific uptake of the Fe₃O₄-PEG-RGD NPs by U87MG cells was confirmed by ICP-AES analysis of the cells treated with the particles for 4 h. In brief, U87MG cells were seeded in 12-well plates at a density of 2×10^5 cells per well in 1 mL DMEM and incubated at 37 °C and 5% CO₂. After overnight incubation
- ⁵⁰ to bring the cells to confluence, the medium was replaced with 1 mL fresh medium containing PBS (control), and the Fe₃O₄-mPEG or Fe₃O₄-PEG-RGD NPs at different Fe concentrations (20, 40, 60, 80, and 100 μ g/mL, respectively). After 4 h incubation, the cells were washed 3 times with PBS, trypsinized, centrifugated,
- ss and resuspended in 1 mL PBS to count the number of cells per well before digested by aqua regia solution. Then, ICP-AES

analysis was used to quantify the uptake of the Fe₃O₄-*m*PEG or Fe₃O₄-PEG-RGD NPs by U87MG cells. For comparison, normal L929 cells were also treated under similar experimental ⁶⁰ conditions.

To further qualitatively confirm the specific cellular uptake of the Fe₃O₄-PEG-RGD NPs, Prussian blue staining was employed. Similar to the ICP-AES analysis, U87MG cells were treated with the Fe₃O₄-mPEG or Fe₃O₄-PEG-RGD NPs for 4 h. The cells were then washed 3 times with PBS, fixed with 2.5% glutaraldehyde solution, stained with Prussian blue solution, and observed by phase contrast microscopy.

In vitro MR imaging of U87MG cells

U87MG cells were seeded in a 6-well plate at a density of 3×10^{6} cells per well in 2 mL DMEM and incubated at 37 °C and 5% CO₂. After overnight culture to bring the cells to confluence, the medium was replaced with 2 mL fresh medium containing the Fe₃O₄-mPEG or Fe₃O₄-PEG-RGD NPs at different Fe concentrations (5, 10, 25, 50, and 100 µg/mL, respectively), and 75 then the cells were incubated at 37 °C and 5% CO₂ for 6 h. After that, the cells were washed with PBS for 5 times, trypsinized, centrifuged, and resuspended in 1 mL PBS in 2-mL Eppendorf tubes before MR imaging. T₁-positive MR imaging of the cell suspension was performed by a 0.5 T NMI20-Analyst NMR ⁸⁰ Analyzing and Imaging system using a wrist receiver coil with a sequence of inversion recovery (TR = 400 ms, TE = 20 ms, point resolution = 128 mm × 128 mm, section thickness = 0.5 mm, and number of excitation = 1).

In vivo MR imaging of xenografted U87MG tumor model

- ⁸⁵ Animal experiments were carried out according to protocols approved by the institutional committee for animal care, and also in accordance with the policy of the National Ministry of Health. Male 4 to 6-week-old BALB/c nude mice (15-20 g, Shanghai Slac Laboratory Animal Center, Shanghai, China) were ⁹⁰ subcutaneously injected with 5×10^6 cells/mouse in the left back. When the tumor nodules reached a volume of about 250 mm³ at approximately 4 weeks postinjection, the mice were anesthetized by intraperitoneal injection of pentobarbital sodium (40 mg/kg), and then the Fe₃O₄-*m*PEG or Fe₃O₄-PEG-RGD NPs (dispersed in
- $_{95}$ 0.3 mL PBS) were intravenously delivered into the tumor-bearing mice *via* the tail vein (450 µg Fe per mouse). For MR imaging, a 1.5 T GE Discovery MR750 scanner with an animal coil suitable for mouse imaging (Magtron Inc., Shanghai, China) was used with an FSE sequence (slice thickness = 1.8 mm, TR = 600 ms, TR = 600
- ¹⁰⁰ TE = 11.7 ms, FOV = 3×3 cm, and point resolution = 128×256). For each animal, two dimensional (2D) spin-echo T₁-weighted MR images were obtained before and at 15, 45, 60, 75, 90, 120, 150, and 180 min postinjection of the particles.

In vivo biodistribution

¹⁰⁵ The tumor-bearing mice after MR scanning were euthanized at 12 h postinjection and the heart, liver, spleen, lung, kidney, and tumor were extracted and weighed. The organs were then cut into 1-2 mm² pieces and digested by aqua regia solution (nitric acid/hydrochloric acid, v/v = 1:3) for 24 h. Then, the Fe content ¹¹⁰ in different organ pieces was quantified by ICP-AES. For comparison, the mice without injection and the mice injected with the nontargeted Fe₃O₄-*m*PEG NPs were used as controls. One-way ANOVA statistical analysis was performed to evaluate the significance of the experimental data. A p value of 0.05 was selected as the level of significance, and the data were indicated 5 with (*) for p < 0.05, (**) for p < 0.01, and (***) for p < 0.001, respectively.

Results and discussion

Synthesis and characterization of the Fe₃O₄-PEG-RGD NPs

Via a similar solvothermal route,³⁴ citrate-stabilized Fe₃O₄ NPs ¹⁰ with a size of 2.8 nm were synthesized for subsequent modification with *m*PEG-NH₂ or PEGylated RGD with one end of amine group through EDC coupling. To form the PEGylated RGD, thiolated RGD was reacted with Mal-PEG-NH₂ through thiol-maleimide coupling. The formed RGD-PEG-NH₂ was ¹⁵ characterized by ¹H NMR (Figure S1, electronic supplementary

information, ESI). Through NMR integration, the number of RGD attached to each PEG was estimated to be 0.5.

Zeta potential measurements were carried out to confirm the successful surface modification of the Fe_3O_4 NPs (Table S1, ESI).

- ²⁰ The pristine citrate-stabilized Fe₃O₄ NPs have a quite negative surface potential of -39.7 mV due to the citrate stabilization. Subsequent reaction of $mPEG-NH_2$ or RGD-PEG-NH₂ significantly increases the surface potential of the particles, and the surface potentials of the Fe₃O₄-mPEG and Fe₃O₄-PEG-RGD
- $_{25}$ NPs were measured to be -8.8 and -10.1 mV, respectively. The hydrodynamic size of the Fe₃O₄ NPs before and after surface modification was also analyzed (Table S1, ESI). It can be seen that the hydrodynamic sizes of the Fe₃O₄-mPEG and Fe₃O₄-PEG-RGD NPs are 168.7 nm and 212.5 nm, respectively. The
- ³⁰ increased hydrodynamic size of the NPs compared to the pristine citrate-stabilized Fe_3O_4 NPs should be attributed to the surface modification process, likely resulting in the increased tendency of certain degree of aggregation in aqueous solution. It should be notified that both Fe_3O_4 -mPEG and Fe_3O_4 -PEG-RGD NPs are
- ³⁵ quite stable in water and their hydrodynamic sizes do not have appreciable changes after at least 7 days' continuous monitoring (Figure S2, ESI). Meanwhile, both particles are stable in water, PBS, and cell culture medium and no precipitation occurs for at least 14 days (Figure S3, ESI), demonstrating the good colloidal ⁴⁰ stability of these particles.

The morphology and size of the Fe_3O_4 -mPEG and Fe_3O_4 -PEG-RGD NPs were characterized by TEM (Figure 2). Both particles display a spherical or quasi-spherical shape with a quite uniform size distribution. The mean diameter of the Fe_3O_4 -mPEG and

- ⁴⁵ Fe₃O₄-PEG-RGD NPs was measured to be 2.7 \pm 0.2 nm, similar to that of the pristine citrate-stabilized Fe₃O₄ NPs.³⁴ This suggests that the size and morphology of the particles do not have any appreciable changes after the further PEGylation modification step. It is interesting to note that the measured sizes of the Fe₃O₄-
- ⁵⁰ mPEG and Fe₃O₄-PEG-RGD NPs are much smaller than those of the respective particles measured by DLS. This should be due to the fact that TEM measures the size of the single Fe₃O₄ core particles, where DLS measures the size of large aggregates or clusters of particles in aqueous solution that may consist of many ⁵⁵ single Fe₃O₄ NPs, in agreement with the literature.³¹

TGA was performed in order to quantitatively analyze the

amount of *m*PEG or PEG-RGD conjugated onto the surface of Fe₃O₄ NPs (Figure 3). It is clear that the pristine Fe₃O₄ NPs show a weight loss of 34.4% due to the presence of citrate on the oparticle surface. After subsequent modification with the *m*PEG or PEG-RGD, the weight loss of Fe₃O₄-*m*PEG and Fe₃O₄-PEG-RGD NPs were evaluated to be 41.1% and 44.7%, respectively. Consequently, by subtracting the weight loss of the Fe₃O₄ NPs (34.4%), we were able to calculate the loading percentages of the *m*PEG (for nontargeted particles) and PEG-RGD (for targeted particles) on the surface of the Fe₃O₄ NPs to be 6.7% and 10.3%, respectively.

T₁ relaxometry

Fe₃O₄ NPs are known to be used as T₂ negative MR contrast ⁷⁰ agents, which is able to decrease the MR signal intensity. In this study, in contrast to other previous studies,^{27, 28, 36, 37} we synthesized ultrasmall Fe₃O₄-PEG-RGD NPs and tested the potential to use them as T₁ positive MR contrast agents. From the T₁-weighted MR images (Figure 4a), it is clear that both the ⁷⁵ Fe₃O₄-*m*PEG and Fe₃O₄-PEG-RGD NPs display increased MR signal intensity with the Fe concentration. By plotting the relaxation rate (1/T₁) as a function of Fe concentration, the r₁ of the Fe₃O₄-*m*PEG and Fe₃O₄-PEG-RGD NPs was calculated to be 1.15 and 1.37 mM⁻¹s⁻¹, respectively (Figure 4b). Taken together, ⁸⁰ the T₁-weighted MR images and T₁ relaxometry data suggest that the formed PEGylated Fe₃O₄ NPs could be used as potential T₁weighted positive contrast agents for MR imaging applications.

Cytocompatibility assay

Before the use of the Fe₃O₄-PEG-RGD NPs for *in vitro* or *in vivo* ⁸⁵ MR imaging applications, the cytotoxicity of the particles was evaluated by MTT cell viability assay (Figure 5). We can clearly see that the viability of U87MG cells treated with either the targeted or nontargeted NPs slightly decreases with the Fe concentration (from 5 to 100 μ g/mL) when compared with the ⁹⁰ PBS control. However, at the tested highest Fe concentration (100 μ g/mL), the U87MG cells treated with either the Fe₃O₄-*m*PEG or the Fe₃O₄-PEG-RGD NPs display a quite high viability of 80.0%. These results indicate that both the Fe₃O₄-*m*PEG and Fe₃O₄-PEG-RGD NPs have good cytocompatibility in the studied

⁹⁵ concentration range.
The cytocompatibility of the PEGylated Fe₃O₄ NPs was further confirmed by observation of the morphology of U87MG cells treated with both targeted and nontargeted Fe₃O₄ NPs (Figure S4, ESI). Compared with the PBS control, the morphology of U87MG cells treated with both particles at the studied Fe concentrations (5-100 µg/mL) do not display any appreciable morphological changes. These results corroborate the MTT assay data, confirming the good cytocompatibility of both the Fe₃O₄-*m*PEG and the Fe₃O₄-PEG-RGD NPs.

105 Hemolysis assay

Hemocompatibility represents a critical concern for the development of contrast agents for *in vivo* biomedical applications. We evaluated the hemocompatibility of both the Fe₃O₄-*m*PEG and the Fe₃O₄-PEG-RGD NPs using hemolytic ¹¹⁰ assay (Figure S5, ESI). Clearly, no hemolytic effect is observed for HRBCs treated with both NPs with an Fe concentration up to 80 µg/mL (Figure S5, right panel). The hemolytic percentages for

both NPs at different Fe concentrations (10-80 μ g/mL) are less than the threshold value of 5%³⁸ (Figure S5, left panel). These studies indicate that both NPs have an excellent hemocompatibility in the studied concentration range.

5 Specific cellular uptake of the Fe₃O₄-PEG-RGD NPs

ICP-AES was used to evaluate the cellular uptake of the Fe₃O₄-PEG-RGD NPs by $\alpha_{\nu}\beta_{3}$ integrin-overexpressing U87MG cells (Figure 6). Normal mouse fibroblast cells without expression of $\alpha_{\nu}\beta_{3}$ integrin (L929 cells) were also tested for comparison

- ¹⁰ (Figure S6, ESI). It can be seen that the U87MG cells display increased Fe uptake with the Fe concentration for both the Fe₃O₄*m*PEG and Fe₃O₄-PEG-RGD NPs. However, at the same Fe concentration, the uptake of the targeted Fe₃O₄-PEG-RGD NPs by U87MG cells is much higher than that of the nontargeted
- $_{15}$ Fe₃O₄-mPEG NPs (p < 0.001). In contrast to the $\alpha_{v}\beta_{3}$ integrinoverexpressing U87MG cells, at the same Fe concentration, the uptake of the Fe₃O₄-mPEG and the Fe₃O₄-PEG-RGD NPs in the control L929 cells do not show obvious difference. It should be noted that the Fe concentration-dependent nonspecific cellular

²⁰ uptake of the Fe₃O₄-*m*PEG NPs by U87MG cells and the Fe₃O₄-PEG-RGD or Fe₃O₄-*m*PEG NPs by L929 cells may be attributed to two distinct mechanisms (phagocytosis and diffusion through cell walls). And the large hydrodynamic size of both particles seems not to impact their nonspecific cellular uptake, in ²⁵ agreement with the literature.^{22, 33, 37}

The specific cellular uptake of the Fe_3O_4 -PEG-RGD by U87MG cells was further qualitatively confirmed by Prussian blue staining (Figure S7, ESI). It is clear that U87MG cells treated with the Fe_3O_4 -PEG-RGD NPs display much more

³⁰ significant blue staining than those treated with the Fe₃O₄-*m*PEG NPs at the same Fe concentrations. In contrast, control cells treated with PBS do not display such blue staining. The Prussian blue staining results corroborate the quantitative ICP-AES data, demonstrating the role played by RGD-mediated targeting, in ³⁵ agreement with the literature.³⁹

Targeted T₁-weighted positive MR imaging of cancer cells *in vitro*

Next, we explored the potential to use the Fe_3O_4 -mPEG-RGD NPs as a nanoprobe for T_1 -weighted positive MR imaging of ⁴⁰ cancer cells *in vitro* (Figure 7). Both the Fe_3O_4 -mPEG and Fe_3O_4 -PEG-RGD NPs are able to induce T_1 -positive MR contrast enhancement of U87MG cells with the Fe concentration. Additionally, at the same Fe concentration, the MR signal intensity of the U87MG cells treated with the Fe_3O_4 -PEG-RGD

- ⁴⁵ NPs is much higher than that of the same cells treated with the Fe₃O₄-mPEG NPs without RGD (Figure 7a). By plotting the T₁ MR signal to noise ratio (SNR) of the U87MG cells treated with the Fe₃O₄-mPEG or Fe₃O₄-PEG-RGD NPs as a function of Fe concentration (Figure 7b), it can be clearly observed that for both
- ⁵⁰ particles, the MR SNR increases with the Fe concentration. Notably, the MR SNR of cells treated with the Fe₃O₄-PEG-RGD NPs is significantly higher than that treated with the Fe₃O₄-mPEG NPs at the same Fe concentration (p < 0.05). This suggests that the Fe₃O₄-PEG-RGD NPs are able to be used as a nanoprobe for
- ss specific T₁-positive MR imaging of $\alpha_v\beta_3$ integrin-overexpressing cancer cells *in vitro*.

Targeted T₁-weighted positive MR imaging of xenografted U87MG tumor model *in vivo*

The potential to use the Fe_3O_4 -PEG-RGD NPs as a nanoprobe for

60 targeted T1-weighted MR imaging of tumors in vivo was next investigated (Figure 8). Clearly, intravenous injection of both targeted and nontargeted NPs induces MR contrast enhancement of the U87MG tumors (Figure 8a). At 45 min postinjection, both particles are able to afford the tumor region with the maximum 65 MR contrast enhancement likely due to the maximum accumulation of the NPs within the tumor region. The gradual decrease of MR signal intensity after 45 min postinjection should be due to the fact that the particles have undergone a metabolism process, leading to gradually decreased accumulation in the 70 tumors. Only a slight increase in MR signal intensity has been observed in the nontargeted group in comparison to the targeted group at the same time points. The quantitative tumor MR SNR data show that at the same time point, the tumor MR SNR treated with the Fe₃O₄-PEG-RGD NPs is significantly higher than that 75 treated with the nontargeted Fe₃O₄-mPEG NPs (p < 0.001, Figure 8b). Taken together, these MR imaging results and the MR SNR data suggest that the Fe₃O₄-PEG-RGD NPs are able to be used as a nanoprobe for targeted T₁-weighted positive MR imaging of tumors in vivo thanks to the RGD-mediated active targeting 80 pathway.

In vivo biodistribution

For further in vivo MR imaging applications, it is important to investigate the biodistribution behavior of the Fe₃O₄-PEG-RGD NPs. ICP-AES data reveal that the Fe concentration in all the 85 organs and tumor tissue after injection of the Fe₃O₄-mPEG or Fe₃O₄-PEG-RGD NPs is much higher than that of the control mice without injection (Figure 9). A significant uptake in the liver and spleen occurs, while only a relatively small amount of Fe is uptaken in other organs (e.g., heart and kidney) and the 90 tumor tissue. Clearly, the Fe biodistribution data suggest that the PEGylation modification of the Fe₃O₄ NPs allows a portion of particles to escape from the reticuloendothelial system (RES) and to deliver to the tumor tissue for effective tumor MR imaging. Importantly, the Fe concentration in the tumors of the mice 95 treated with the targeted Fe₃O₄-PEG-RGD NPs is much higher than that treated with the nontargeted Fe₃O₄-mPEG NPs (P \leq 0.01). These results fully illustrates the important RGD targeting role, allowing for effective delivery of the NPs to tumors, consequently allowing for effective targeted MR imaging of 100 tumors.

Conclusions

In summary, we developed a convenient approach to preparing RGD-functionalized ultrasmall Fe_3O_4 NPs for targeted T_1 -weighted positive MR imaging of tumors *in vivo*. Using simple ¹⁰⁵ solvothermal decomposition technique and PEGylation conjugation chemistry, RGD-functionalized ultrasmall Fe_3O_4 NPs with a size of 2.7 nm can be prepared to have good water dispersibility, colloidal stability, and cytocompatibility and hemocompatibility in the studied Fe concentration range. Owing ¹¹⁰ to the role played by RGD-mediated targeting and the inherent good r_1 relaxivity, the developed Fe_3O_4 -PEG-RGD NPs are able to be used as a nanoprobe for targeted T_1 -weighted positive MR

imaging of $\alpha_v\beta_3$ integrin-overexpressing glioma cells *in vitro* and the xenografted tumor model *in vivo*. Taking into consideration of the possibility to functionalize citrate-stabilized Fe₃O₄ NPs with other targeting ligands (e.g., antibodies, sugars, and other 5 peptides) and drugs, ultrasmall Fe₃O₄ NPs may be developed as new multifunctional theranostic nanoplatforms for different

Acknowledgements

biomedical applications.

- ¹⁰ This research is financially supported by the National Natural Science Foundation of China (21273032 and 81371623), the Sino-German Center for Research Promotion (GZ899), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. M. Shen thanks the
- ¹⁵ Fundamental Research Funds for the Central Universities. Y. Luo thanks the Innovation Funds of Donghua University Doctorate Dissertation of Excellence (15D310509).

Notes and references

- ^a College of Chemistry, Chemical Engineering and Biotechnology,
- ²⁰ Donghua University, Shanghai 201620, People's Republic of China E-mail: <u>xshi@dhu.edu.cn</u> (X. Shi) and <u>mwshen@dhu.edu.cn</u> (M. Shen) ^b Department of Radiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, People's Republic of China. E-mail: guixiangzhang@sina.com
- 25 ^c Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France ¹ Yu Luo and Jia Yang contributed equally to this work.
- 30 **† Electronic supplementary information (ESI) available**: additional experimental results.
 - M. R. Ramaswamy, G. Chaljub, O. Esch, D. D. Fanning and E. vanSonnenberg, *Am. J. Roentgenol.*, 2000, **174**, 617-622.
- 35 2. R. T. Heelan, B. E. Demas, J. F. Caravelli, N. Martini, M. S. Bains, P. M. McCormack, M. Burt, D. M. Panicek and A. Mitzner, *Radiology*, 1989, **170**, 637-641.
 - S. Aime, C. Cabella, S. Colombatto, S. Geninatti Crich, E. Gianolio and F. Maggioni, *J. Magn. Reson. Imaging*, 2002, 16, 394-406.
- 40 4. X. Hu and D. G. Norris, Annu. Rev. Biomed. Eng., 2004, 6, 157-184.
 - P. Marckmann, L. Skov, K. Rossen, A. Dupont, M. B. Damholt, J. G. Heaf and H. S. Thomsen, J. Am. Soc. Nephrol. , 2006, 17, 2359-2362.
- M. Tan, Z. Ye, E.-K. Jeong, X. Wu, D. L. Parker and Z.-R. Lu, Bioconjugate Chem., 2011, 22, 931-937.
- 45 7. C. Thakral, J. Alhariri and J. L. Abraham, *Contrast Media Mol. Imaging* 2007, 2, 199-205.
 - M. A. Sieber, P. Lengsfeld, J. Walter, H. Schirmer, T. Frenzel, F. Siegmund, H. J. Weinmann and H. Pietsch, *J. Magn. Reson. Imaging* 2008, 27, 955-962.
- 50 9. A. G. Roca, J. F. Marco, M. P. Morales and C. J. Serna, J. Phys. Chem. C 2007, 111, 18577-18584.
 - Y. Jun, J. H. Lee and J. Cheon, Angew. Chem., Int. Ed., 2008, 47, 5122-5135.
 - 11. R. Kodama, J. Magn. Magn. Mater., 1999, 200, 359-372.
- 55 12. G. Wang, X. Zhang, A. Skallberg, Y. Liu, Z. Hu, X. Mei and K. Uvdal, *Nanoscale*, 2014, 6, 2953-2963.

- L. Zeng, W. Ren, J. Zheng, P. Cui and A. Wu, *Phys. Chem. Chem. Phys.*, 2012, 14, 2631-2636.
- 14. U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel and H.
 Weller, *Nano Lett.*, 2009, 9, 4434-4440.
 - E. Taboada, E. Rodríguez, A. Roig, J. Oró, A. Roch and R. N. Muller, *Langmuir*, 2007, 23, 4583-4588.
 - J. Xie, K. Chen, H. Y. Lee, C. Xu, A. R. Hsu, S. Peng, X. Chen and S. Sun, J. Am. Chem. Soc., 2008, 130, 7542-7543.
- 65 17. B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park, Y. Choi, K. Shin, Y. Lee, S. G. Kwon and H. B. Na, J. Am. Chem. Soc., 2011, 133, 12624-12631.
 - W. Y. William, E. Chang, C. M. Sayes, R. Drezek and V. L. Colvin, Nanotechnology, 2006, 17, 4483-4487.
- 70 19. J. A. Barreto, W. O'Malley, M. Kubeil, B. Graham, H. Stephan and L. Spiccia, *Adv. Mater.*, 2011, 23, 18-40.
 - 20. H. Maeda, Bioconjugate Chem., 2010, 21, 797-802.
 - 21. C. Minelli, S. B. Lowe and M. M. Stevens, *Small*, 2010, **6**, 2336-2357.
- 75 22. H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi and G. Zhang, *Biomaterials*, 2011, **32**, 2979-2988.
 - L. Shen, J. Bao, D. Wang, Y. Wang, Z. Chen, L. Ren, X. Zhou, X. Ke, M. Chen and A. Yang, *Nanoscale*, 2013, 5, 2133-2141.
 - 24. D. Li, Q. He, Y. Yang, H. Möhwald and J. Li, *Macromolecules*, 2008, **41**, 7254-7256.
- D. Li, C. Li, A. Wang, Q. He and J. Li, J. Mater. Chem., 2010, 20, 7782-7787.
- 26. D. Li, Q. He and J. Li, Adv. Colloid Interface Sci., 2009, 149, 28-38.
- 27. H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G.
- ⁸⁵ Zhang and X. Shi, *ACS Appl. Mater. Interfaces*, 2013, 5, 1722-1731.
 28. J. Li, Z. L., C. H., S. W., S. M., Z. G. and S. X., *Biomaterials*, 2013, 34, 8382-8392.
- J. Li, Y. He, W. Sun, Y. Luo, H. Cai, Y. Pan, M. Shen, J. Xia and X. Shi, *Biomaterials*, 2014, 35, 3666-3677.
- ⁹⁰ 30. J. Li, Y. Hu, J. Yang, W. Sun, H. Cai, P. Wei, Y. Sun, G. Zhang, X. Shi and M. Shen, *J. Mater. Chem. B*, 2015, DOI: 10.1039/C1035TB00849B.
- Y. Hu, J. Li, J. Yang, P. Wei, Y. Luo, L. Ding, W. Sun, G. Zhang, X. Shi and M. Shen, *Biomater. Sci.*, 2015, 3, 721-732.
- 95 32. X. Shi, S. H. Wang, S. D. Swanson, S. Ge, Z. Cao, M. E. Van Antwerp, K. J. Landmark and J. R. Baker, *Adv. Mater.*, 2008, 20, 1671-1678.
 - 33. Z. Qiao and X. Shi, Prog. Polym. Sci., 2015, 44, 1-27.
- 34. J. Yang, Y. Luo, Y. Xu, J. Li, Z. Zhang, H. Wang, M. Shen, X. Shi and G. Zhang, *ACS Appl. Mater. Interfaces*, 2015, **7**, 5420-5428.
- 35. J. Meng, Z. Z. Han, H. Kong, X. J. Qi, C. Y. Wang, S. S. Xie and H. Y. Xu, J. Biomed. Mater. Res. Part A, 2010, 95A, 312-320.
- J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang and X. Shi, Biomaterials, 2015, 38, 10-21.
- 105 37. J. Li, X. Shi and M. Shen, Part. Part. Syst. Charact., 2014, 31, 1223-1237.
 - S. Wang, R. Castro, X. An, C. Song, Y. Luo, M. Shen, H. Tomas, M. Zhu and X. Shi, *J. Mater. Chem.*, 2012, 22, 23357-23367.
 - R. Shukla, E. Hill, X. Shi, J. Kim, M. C. Muniz, K. Sun and J. R. Baker, *Soft Matter*, 2008, 4, 2160-2163.

110

Figure captions

Figure 1. Schematic illustration of the preparation of Fe₃O₄-PEG-RGD NPs.

Figure 2. TEM image and size distribution histogram of the Fe₃O₄-*m*PEG (a) and Fe₃O₄-PEG-RGD (b) NPs.

Figure 3. TGA curves of Fe₃O₄, Fe₃O₄-*m*PEG, and Fe₃O₄-PEG-RGD NPs.

Figure 4. T₁-weighted MR imaging of the Fe₃O₄-*m*PEG (Nontargeted) and Fe₃O₄-PEG-RGD (Targeted) NPs at the Fe concentrations of 0.05, 0.1, 0.2, 0.4, and 0.8 mM, respectively (a). (b) shows the linear fitting of $1/T_1$ of the Fe₃O₄-*m*PEG or Fe₃O₄-PEG-RGD NPs as a function of Fe concentration.

Figure 5. MTT viability assay of U87MG cells after treatment with the Fe_3O_4 -*m*PEG or Fe_3O_4 -PEG-RGD NPs with different Fe concentrations for 24 h. U87MG cells treated with PBS were used as control.

Figure 6. The Fe uptake in U87MG cells after the cells were treated with the Fe_3O_4 -*m*PEG or Fe_3O_4 -PEG-RGD NPs with different Fe concentrations for 4 h. U87MG cells treated with PBS were used as control.

Figure 7. *In vitro* T_1 -weighted MR imaging (a) and MR SNR (b) of U87MG cells treated with the Fe₃O₄-*m*PEG (Nontargeted) or Fe₃O₄-PEG-RGD (Targeted) NPs at different Fe concentrations for 6 h.

Figure 8. *In vivo* T_1 -weighted MR imaging (a) and MR SNR (b) of xenografted U87MG tumors after intravenous injection of Fe₃O₄-*m*PEG (Nontargeted) or Fe₃O₄-PEG-RGD (Targeted) NPs (450 μ g Fe, in 0.3 mL PBS) at different time points postinjection.

Figure 9. *In vivo* biodistribution of Fe in the major organs of the mice including heart, liver, spleen, lung, kidney, and tumor at 12 h post intravenous injection of the Fe_3O_4 -mPEG (Nontargeted) or Fe_3O_4 -PEG-RGD (Targeted) NPs (450 µg Fe, in 0.3 mL PBS).

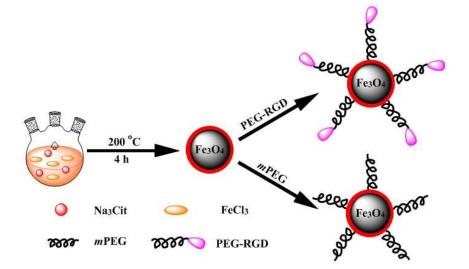


Figure 1 Luo et al.

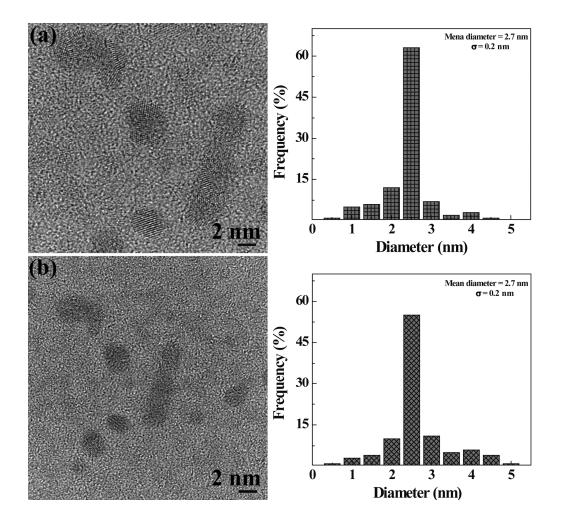


Figure 2 Luo *et al*.

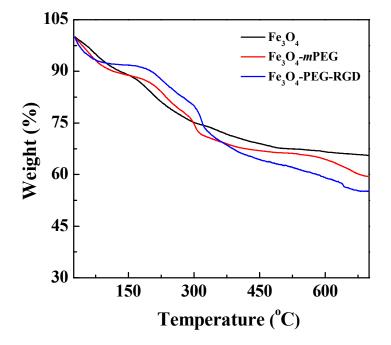


Figure 3 Luo *et al*.

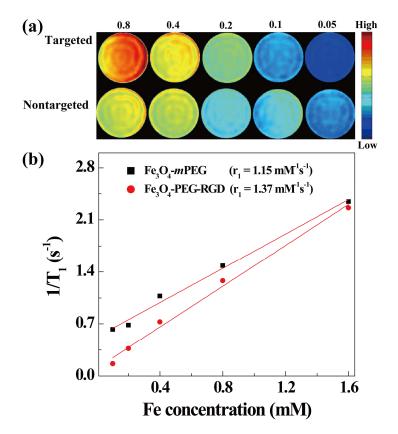


Figure 4 Luo *et al*.

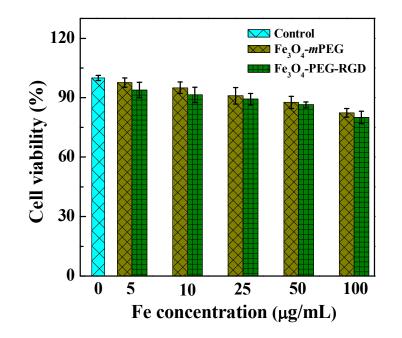
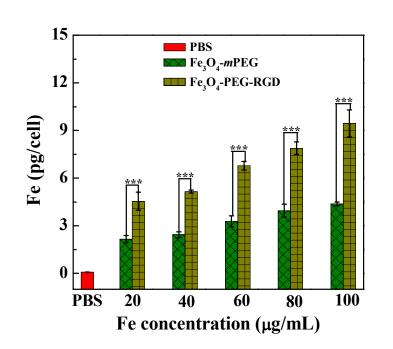



Figure 5 Luo *et al*.

Nanoscale Accepted Manuscript

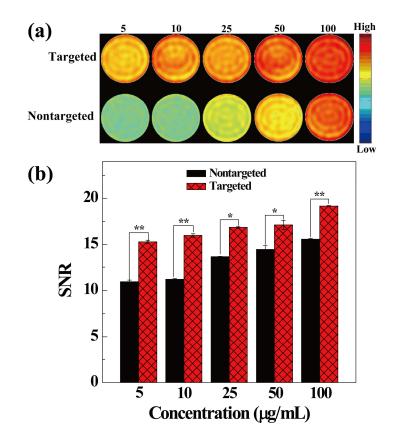
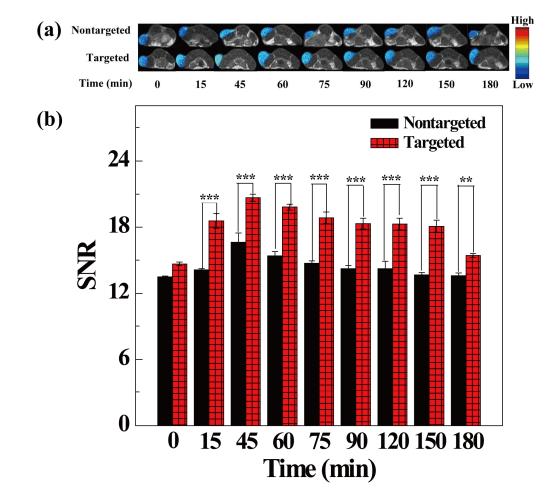



Figure 7 Luo *et al*.

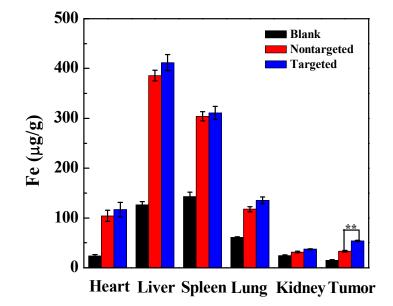


Figure 9 Luo *et al*.