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In this work, we introduce a combined experimental and computational approach to describe the conductivity of metallic 

nanowire networks. Due to their highly disordered nature, these materials are typically described by simplified models in 

which network junctions control the overall conductivity. Here, we introduce a combined experimental and simulation 

approach that involves a wire-by-wire junction-by-junction simulation of an actual network.  Rather than dealing with 

computer-generated networks, we use of a computational approach that captures the precise spatial distribution of wires 

from an SEM analysis of a real network.  In this way, we fully account for all geometric aspects of the network, i.e. for the 

properties of the junctions and wire segments.  Our model predicts characteristic junction resistances that are smaller 

than those found by earlier simplified models. The model outputs characteristic values that depend on the detailed 

connnectivty of the network, which can be used to compare the performance of different networks and to predict the 

optimum performance of any network and the scope for improvement.  

 

Introduction 

 

The unique behaviour displayed by nanoscale-sized materials 

is responsible for numerous scientific and technological 

breakthroughs. In comparison to their bulk counterparts, 

nanomaterials often reveal superior physical properties. 

Nonetheless, despite the unprecedented level of control that 

is currently possible over their structure, the manipulation of 

individual nanoscale components is still extremely laborious. 

For this reason, industry and academia have sought to exploit 

these functionalities without the need for precise 

nanomaterial placement. A candidate of particular interest is 

films comprised of randomly dispersed nanowires, commonly 

known as nanowire networks (NWNs). 

NWNs are promising alternatives for a wide range of 

applications including flexible transparent conductors
[1,2,3]

, 

thin-film solar cells
[4]

, field effect phototransistor
[5]

 and 

sensor
[6]

 devices, to name but a few. Formed by randomly 

dispersed conducting wires, NWNs may function as conducting 

materials depending on the degree of connectivity of the 

network as well as on the quality of the junctions formed 

between neighbouring wires. Effective signal transmission 

through the wires depends on the nature of coating layers or 

surface functionalization on these wires. Because these 

coatings are typically dielectric in nature, NWNs can be 

thought of as an array of randomly dispersed conducting wires 

connected by capacitive junctions which will only conduct 

current if the voltage drop across a junction exceeds its 

characteristic threshold voltage
[7]

. Once this occurs, charge 

flows across the network through percolative paths formed by 

wires connected by resistive junctions. 

The conduction properties of NWNs is dictated by a multitude 

of parameters such as the wire length and diameter 

distribution
[8]

, interwire contact resistance, inner-wire 

resistance, wire density as well as their connectivity profile. 

With so many possible variables, such a study is best carried 

out through computer simulations. One way of simulating this 

percolative transport problem
[9,10]

 is to map the network into a 

node voltage problem: each wire is represented by a circuit 

node at a common voltage connected to other wires by a 

certain number of junction resistances that depends on its 

connectivity within the network. Within this representation, it 

is then straightforward to obtain the overall conductance of a 

network by merely applying Ohm’s and Kirchoff's current 

laws
[11,12]

. However, this approach involves an implicit 

assumption, hereafter referred to as the junction-dominated 

assumption (JDA), that the most significant contribution to the 

overall conductivity comes exclusively from the interwire 

junction resistances. This assumption is the basis for most 
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earlier descriptions of NWNs, including a recent theoretical 

calculation to describe the sheet resistance and the optical 

transmittance of Ag NWNs
[13]

 where the characteristic junction 

resistance was then adjusted to match available experimental 

data
[11]

. 
 

 

Figure 1: (Color online) (Left panels) Scanning electron micrograph (SEM) of silver 

nanowire networks containing densities of approximately (a) 0.28 and (c and e) 0.16 

wires per µm
2
. These networks are referred to in the text as #1, #2, and #3, 

respectively. Top scale bars represent 2 µm. (Right panels) Computational transcription 

of the networks shown on the left panels. Black dots mark the connections between 

wires represented by red sticks. Electrodes are represented by vertical blue sticks 

located on the extreme left and right of the figure. Isolated wires are represented by 

green sticks. Segments linking neighbouring connection points are highlighted in 

orange. Transparent grey arrows on panel (d) point at two critical junctions of the 

network.  

The JDA is perfectly safe when the junction resistance is 

significantly larger than any other characteristic resistances 

within the network. This indeed is the case of NWNs 

comprised of carbon nanotubes
[14,15]

. However, the demands 

for increasingly conductive films, driven by efforts to reduce 

the junction resistances, will ultimately undermine the validity 

of the JDA due to its neglect of the inner resistances of the 

wires
[16]

. By relaxing the JDA, we can account not only for the 

geometric aspects of the network but also for the material 

properties of its components. Furthermore, by extending this 

picture to the limit of vanishingly small junction resistances we 

can provide an upper bound for the conductivity of the NWNs 

and reveal how much room there is to improve the 

conductivity of a film. Rather than working with computer-

generated random networks, it is desirable to establish the 

upper bound for the conductivity of real networks. When 

conductivity measurements of such networks are compared 

with their respective upper bounds, one has a clear indication 

of how close to the optimum value they are. This calls for a 

computational tool capable of capturing the geometry of real 

networks combined with the ability to calculate the sheet 

resistance of the corresponding array of inter- and inner-wire 

resistors. 

In this manuscript, in addition to relaxing the JDA as described 

above, we present for the first time a set of simulations that 

obtain the sheet resistance of networks with defined 

geometries through SEM image analysis of real samples (cf. 

Figure 1). In this way, we have a one-to-one correspondence 

between simulation and experiment and can simulate both the 

actual and ultimate network conductivity, the latter assuming 

the junction can be further optimized. Networks to be 

simulated were built from real experimental images of sparse 

and dense samples with wire densities (n) ranging from 0.15-

0.6 wires per µm2. This approach avoids the need for spatial 

configurational averaging highlighted in a recent paper in 

reference 12. Instead, our simulated network captures exactly 

the same spatial arrangement of the network displayed on the 

SEM images. The inner-wire resistance was included using a 

novel node-voltage approach capable of describing the 

transport properties of NWNs that also accounts for the wires 

resistivity. The model uses a new mapping scheme in which 

the wires of the network are described by a multi-nodal 

representation (MNR); the network topology is mapped as a 

graph carrying information about the wire junction 

connections and their respective separations. Critically, the 

model outputs for each network a set of characteristic values 

that are determined by the network connectivity and that 

allow comparisons between networks that are not possible 

using traditional configurational averaging based approaches. 

Experimental and Computational methods 

 

Experimental procedure 

Ag nanowires (NWs) were purchased from Seashell 

Technology, LLC with an average length (diameter) of 6.7 μm 

(50 nm) (cf. supplemental information). Suitable single NWs 

were selected for contacting by electron beam lithography 

(EBL) after drop casting of NW/isopropanol dispersion (12.5 

µg/ml) on clean Si substrates (1 µm thermal oxide) with pre-

defined Ti/Au contact pads (5/25 nm). Isolated nanowire 

networks were formed by spray deposition of NW/isopropanol 

dispersion into EBL defined openings (120 μm x 20 μm) in bi-

layer MMA (methyl methacrylate) and PMMA (poly methyl 
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methacrylate) e-beam resists. Post-spraying, wires on the 

resist were removed by acetone lift off; wires gathered into 

the openings formed the isolated nanowire networks. EBL was 

used to define contacts to single Ag NWs and isolated 

networks such that each item could be interrogated by four 

co-linear electrodes (cf. supplemental information). All 

contacts were metalized with Ag (120 nm). 

Each section of the network bounded by adjacent electrodes 

was electrically stressed. Devices underwent electroforming by 

applying multiple 0 – 5 V dual sweeps stressing the network at 

increasing current compliance from the nA to mA range. The 

high current chosen ensures that the network conductivity is 

maximized with the vast majority of junction resistances 

optimized. This procedure has previously been shown to 

produce low resistance networks while avoiding potentially 

damaging high-temperature annealing steps[7,17]. Following 

this optimization step, a Kelvin (4-wire) resistance 

measurement was recorded. Current is sourced across the 

outer two electrodes and the drop in voltage is measured 

across the two innermost electrodes. This removes the contact 

resistance from the measurement and provides a true sheet 

resistance of the network. The resistivity for 15 single wire 

samples was also extracted using 4-probe resistance 

measurements. Wire diameters and channel lengths, including 

the electrodes‘ width[18] were measured using SEM (cf. 

supplemental material). All electrical measurements were 

carried out at ambient conditions using Keithley 4200 SCS. 

Imaging of nanowire networks was performed on a Zeiss Supra 

40 SEM. 

 

Simulations 

Initially, we processed SEM images of 30 Ag NWN samples 

with distinct wire densities[19]. This was done by opening the 

image files on an interactive canvas widget that allowed us to 

characterize each NWN on a wire-by-wire basis. The data is 

converted into Cartesian coordinates that are subsequently 

used as inputs for solving the resistor network problem. 

Examples are depicted on Figure 1: micrograph images of real 

networks (left panels) are converted into mathematical objects 

(sticks) illustrated on the right panels. In instances of curved 

wires, we break the wire into smaller segments that 

approximately outline the wire curvature.  

The standard way (JDA) of obtaining the transport 

characteristics of a given network containing N wires is to 

represent each wire by a node. The whole network is hence 

mapped into a voltage grid system of N nodes. Intersecting 

wires are represented by nearest-node neighbours connected 

by resistors that emulate active junctions (cf. Figure 2). Note 

that the spatial location of these nodes is irrelevant within 

JDA. From the connectivity profile of the network, one can 

build the resistance matrix (���) of the system as described in 

reference 12 and solve Kirchoff's circuit equation written in 

matrix form, ����� � ��, where the vectors Û and Î are the 

potential at each wire and the current injected/drained out of 

the circuit, respectively
[20]

. The sheet resistance (Rs) is then 

obtained by evaluating Rs = I / (UL-UR) where UL(R) is the 

potential on the left (right) electrode. The matrix ��� carries 

the resistance values assigned to each interwire junction (Rj), 

which is assumed to be homogeneous throughout the 

network. It is worth pointing out that our main findings are not 

changed when we relax this assumption and allow Rj to follow 

a normal distribution. The role played by a normal dispersion 

on the junction resistance distributions can be found in the 

supplemental material
[19]

. 

The JDA scheme described above is attractive due to the ease 

of computational implementation. While it can provide an 

adequate qualitative interpretation about the conducting 

properties of networks, it lacks critical ingredients that must 

be taken into account. JDA description assumes that charge 

carriers hop ballistically from junction to junction without 

scattering by the wire material. As mentioned previously, this 

method fails whenever Rj ≈ Rin, where Rin is the typical value 

for inner-wire resistance. Previous Monte Carlo 

simulations[21,22,23,24] on homogeneous networks above their 

percolation threshold have demonstrated that their transport 

properties are highly dependent on the ratio Rj/Rin. To move 

beyond JDA, we must introduce a new voltage-node mapping 

that is capable of including the inner-wire resistance. 

The resistance of an isolated wire is given by Rin = ρL/Ac where 

ρ is the wire resistivity, L its length and Ac the cross section 

area. In networks however, the wire resistance must be 

partitioned according to its number of intersections; a wire 

making k connections is partitioned into k+1 segments, each 

one of them carrying an inner resistance of �	

	 � �ℓ	 
�⁄   

where i =1,..., k+1. Therefore, the novel voltage grid scheme 

must map the interwire connection points and not the wires, 

as done within JDA. This is illustrated in Figure 2; one can see 

that nodes are attributed to all connection points in all wires. 

This gives a total number of nodes of 2Nc where Nc is the 

number of interwire connections of the network. This new 

mapping scheme generates a network that is topologically 

different from JDA and will be referred to as multi-nodal 

representation (MNR) since the wires can be described by 

multiple nodes. Note that in this scheme, the position of the 

nodes matters. If two nodes share the same set of (x,y) 

coordinates, they characterize an interwire connection with 

junction resistance Rj. If two nodes belong to the same wire 

and are nearest neighbours, they feature an inner-wire 

Figure 2: Nodal mapping schemes according to (a) JDA and (b) MNR models. JDA 

follows a wire-to-node criteria and the connection between nearest neighbor nodes 

are described by the junction resistance Rj. MNR accounts for Rj and inner wire 

resistances (Rin). This is done by mapping the connection points into nodes. Nearest 

neighbor nodes located in distinct wires are linked by junction resistances Rj whereas 

nearest neighbor nodes located on the same wire are linked by inner resistances Rin.
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segment which consequently has a resistance associated to it. 

Note also that the computational implementation of our 

approach does not require the use of 3D objects (e.g. 

cylinders)
[25]

 in order to account for the wire thickness. The 

networks can be still described by sticks dispersed on a plane 

since the diameter of wires is incorporated in the inner-wire 

resistances. 

The determination of nearest nodes is done by viewing the 

whole network as a graph composed of vertices (junction 

points) and edges (wire segments). An adapted breadth-first 

search
[26]

 algorithm was implemented to inspect the whole 

network - represented as a graph - and to determine its 

complete chart of neighbouring node pairs. In this way, one 

can construct a new resistance matrix ���
[20] which is plugged 

into Kirchoff's circuit law to obtain the sheet resistance of the 

samples. Results obtained via both models (JDA and MNR) are 

compared in the following section. 

 

Discussion and results 

To implement MNR, we used a resistivity value of ρ = 22.6 ± 

2.3 nΩm determined from room temperature resistance 

measurements of a distribution of 15 Ag nanowires with 

diameters of D = 50 ± 13 nm based on a SEM analysis of 101 Ag 

NWs[19]. It is important to note that surface scattering effects 

will depend on wire diameter and temperature
[27]

 so that wire 

resistance measurements must be performed on 

representative wires and under the appropriate temperature 

conditions before this model can be applied more generally. 

These values were employed in all 30 NWN samples mapped 

from micrograph images. Figure 3 shows the results obtained 

when JDA and MNR methods are applied on network #1 

shown in Fig. 1a and b. This sample exhibits wire density of n = 

0.28 μm
-2

 and a measured sheet resistance of Rs
exp

 = 84.42 Ω. 

The sheet resistance calculated as a function of the junction 

resistance Rj is plotted for JDA (black dashed line) and MNR 

(blue solid line). The horizontal dotted line corresponds to 

Rs
exp

.  As expected, the sheet resistance grows linearly with Rj 

for both descriptions (JDA and MNR). The models however 

differ in specific ways: JDA predicts that Rs = a0 Rj, whereas 

MNR finds Rs = a0 Rj + R0, where a0 is the slope and R0 is the 

resistance that the network would have if all interwire 

contacts were perfect. Thus the R0 shift between JDA and MNR 

models accounts for the influence of the inner-wire resistance 

on the overall sheet resistance and it is purely determined by 

the network geometry and its detailed connectivity. One 

immediate consequence of this shift is that the JDA tends to 

overestimate the junction resistances. The diamond and the 

circle on Figure 3 identify the value of Rj
exp

 in the JDA and MNR 

respectively that corresponds to the measured sheet 

resistance Rs
exp. The JDA-estimate for Rj

exp is found to be 

approximately 40 Ω higher than for the MNR for this particular 

sample, and R0 = 46.43 Ω. With such a large contribution from 

the resistance of the network skeleton, it is not surprising that 

Rj is overestimated by the same order of magnitude. In fact, 

recent attempts to obtain the junction resistances of NWNs 

within JDA have reported values of the order of 2 kΩ, which is 

substantially larger than the values measured across individual 

junctions[11]. The risk of an overestimation in Rj is that it might 

raise false hopes that the junctions of a network can be further 

optimized. Once again, it is worth reiterating that the JDA 

model is only valid when the transport is dominated by 

junction resistances, i.e. when Rs
exp >> R0 and so the inclusion 

of the inner-wire resistance contributions will cause minor 

changes to the estimated values of Rj. 

 

Another interesting consequence of relaxing the JDA is that by 

defining a quantity ∆ = Rs
exp – R0, we can estimate how close 

(or far) a particular sample is from operating at its minimum 

resistance state R0. For this particular sample ∆ = 37.99 Ω, 

which means that the sheet resistance is about 38 Ω above its 

minimum resistance state. A more descriptive quantity that 

establishes how much room for improvement a network has is 

given by γ = 1 - R0/Rs
exp

.  This dimensionless quantity, named 

optimization-capacity coefficient, ranges from 0 to 1. Values of 

γ close to 1 represent networks whose conductivities can be 

Figure 4: Optimization-capacity coefficient (γ) versus estimated characteristic junction 

resistance (∆/a0) for all 30 networks studied in this work. Inset: γ values obtained at 

four voltage sweep steps applied on sample #30 (cf. Table S1[19]). The triangle 

corresponds to its saturation state with a measured sheet resistance of Rs
exp = 76.68 Ω.

Figure 3: (Color online) Sheet resistance (Rs) versus junction resistance (Rj) analysis 

performed on sample #1 using JDA (black dashed line) and MNR (blue solid line) 

models. Horizontal dotted line (red) marks the measured sheet resistance value (Rs
exp = 

84.42 Ω). Circle and diamond dots indicate the estimated junction resistance within 

MNR and JDA, respectively. Fitting line expressions used to obtain a0 and R0 values are 

added on top of each numerical curve. 

Rs
exp 
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considerably improved since their sheet resistances are far 

from the optimal value R0. When γ approaches 0, on the other 

hand, the network is close to its optimum conductivity and is 

unlikely that it can be further optimized. The ability to 

establish how much potential for optimization a network has 

serves as a useful guide in the search for networks with 

continuously larger conductivity values. 

The characteristic values outputted by the model allow us to 

compare different networks. Table 1 shows the γ values for the 

three networks that are discussed in detail here, together with 

the corresponding values of n, R0, Rs
exp

, ∆, and ∆/a0 (Rj
exp

) 

obtained within MNR. We note ∆/a0 = Rj
exp

 since Rs
exp 

= a0 Rj
exp

 

+ R0. The complete table containing the characteristic values 

for all 30 samples can be found in the supplemental 

information. No obvious correlation is seen between the 

optimization-capacity coefficient and either of these 

quantities, suggesting that γ may contain a rather non-trivial 

dependence. However, when γ is compared against the ratio 

Δ/a0 for all 30 networks, a clear trend is observed. As shown in 

Figure 4, a plot of  γ as a function of Δ/a0 displays a monotonic 

behaviour that spans the entire range of possible values for 

the optimization-capacity coefficient which is not very 

surprising given Δ/a0 can be thought of as the estimated 

characteristic junction resistance. In spite of that, the fact that 

the diverse range of networks in table S1
[19]

 falls onto such a 

smooth curve suggests a very robust, if not universal, trend 

that is likely to be followed by all networks. 

Besides determining the optimization-capacity coefficient for 

different networks, this quantity can also be used to assess 

how one specific network evolves as it is electrically stressed.  

Consecutive voltage sweeps are known to increase the 

conductivity of the network from completely inactive all the 

way to its fully optimized state. The quantity R0 is determined 

by the geometry of the network (and will not change with the 

consecutive voltage sweeps) but the measured values of Rs
exp

 

change as the network is stressed. The inset of Figure 4 shows 

γ after a sequence of voltage sweeps. Note that it starts with a 

relatively large value of γ but it decays continuously indicating 

that the network is evolving towards its optimum value. Once 

again, γ appears as a useful quantity that can be employed to 

assess how much room there is to increase the conductivity of 

the NWNs. 

 

Comparisons between networks  

To highlight the advantage of using image processing 

techniques to reproduce the exact spatial distribution of real 

networks, we have selected to discuss the peculiar case of two 

samples shown in Fig. 1c-f that exhibit very distinct 

characteristic values (Δ/a0, R0, and γ) but rather similar sheet 

resistances and same wire density (0.16 wires per μm
2
). In this 

example, the simple intuitive relationship between density and 

sheet resistance fails to account for the critical role of 

connectivity in the performance of sparse films. The 

characteristic values within our model capture differences in 

connectivity for networks of similar densities. To demonstrate 

this, we present the image analysis of two samples labelled 

here as #2 and #3 (cf. Fig. 1c-f) and their characteristic values 

can be found on Table 1. Although both samples have the 

same wire density, their connectivity profiles differ 

remarkably. Sample #2 has fewer paths connecting one 

electrode to another compared with sample #3. Therefore, the 

distinct characteristic Δ/a0, R0, and γ values of each sample 

carry information about the inherent features of the networks 

that are hidden when analyzing global quantities such as sheet 

resistance versus density trends. An analysis of Figure 1d 

reveals that the performance of network #2 relies basically on 

2 junctions identified by the gray arrows. Those junctions are 

the main bridges connecting the electrodes. Since all the 

networks are mapped as a graph, we can quantify their 

importance by calculating their betweenness centrality
[28]

 

degree. This critical property quantifies the number of times a 

node must be visited to connect the shortest path between 

two other nodes. Those two junctions are the ones with the 

highest betweenness levels and they play a major impact on 

the current propagation across the network. Critically, this 

kind of information can only be accessed via our approach 

where the network is mapped wire-by-wire, junction-by-

junction. This method turns out to be extremely important for 

sparse networks such as samples #2 and #3 where each wire 

and each junction makes an important contribution to the 

conductivity. 

Conclusions 

We have introduced a novel computational method that 

exactly reproduces the spatial arrangement of experimentally 

generated NWNs through image analysis, so as to include the 

contribution of the inner-wire resistance in the calculation of 

the conductivity of these materials. Often neglected when the 

conductivity is dominated by junction resistances, the inner-

wire resistances may play a significant role in the overall 

conductivity of NWNs. When the inner-wire resistances are 

neglected, results for the junction resistance tend to be 

overestimated. Regarding the prospects for optimization of the 

network conductivity, it is important to have a realistic 

estimate of the quality of the junctions. If junction resistances 

are small (large), it is unlikely (likely) that they can be further 

improved. It is thus essential to be able to estimate them 

accurately. Furthermore, by including the inner-wire resistance 

contribution in our calculations we can establish an upper 

bound for the conductivity of NWNs by simply imposing ideal 

lossless junctions. A simple comparison of measured values of 

sheet resistances with the corresponding optimum values can 

tell how realistic the chances of further improving the network 

conductivity are. Rather than providing a qualitative 

assessment of the chances for improvement, we quantify the 

ease of improvement by introducing the optimization-capacity 

coefficient γ. This allows us to compare between different 

networks, identifying those which can be further improved.  

Similar analysis can be used to study the evolution of one 

specific network as it is electrically stressed. Our model 

explicitly avoids the use of configurational averaging over the 

spatial distribution of wires in computer-generated networks, 

which is known to cause significant fluctuations in the 
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calculated values of sheet resistance especially in the case of 

sparse samples. It also provides unique insights about the 

networks´ connectivity. Networks with similar wire densities 

and sheet resistances may have rather distinct connectivity 

profiles which are imprinted on the characteristic values 

determined within our model, providing insights that are 

simply not accessible using conventional configurational 

averaging approaches. 

 

 
Table 1: Wire densities (n), and characteristic junction resistances (∆/a0) of all Ag NWN 

samples obtained by fitting the measured sheet resistance (Rs
exp

) with the calculated 

curves Rs vs. Rj derived within MNR. Values of ∆, R0 as well as γ are also depicted. 

Network 

n 

(NW/ 

µm
2
) 

γγγγ ∆∆∆∆ (ΩΩΩΩ) 
∆∆∆∆/a0 

(ΩΩΩΩ) 
R0 (ΩΩΩΩ) 

Rs
exp 

(ΩΩΩΩ) 

#1 0.28 0.45 37.99 27.73 46.43 84.42 

#2 0.16 0.42 67.43 27.52 92.05 159.95 

#3 0.16 0.65 116.15 60.07 60.99 177.14 
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