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Global minimization of gold clusters by combining neural network 

potentials and the basin-hopping method†  
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Neural network potentials trained by first-principles density functional 

theory total energies were applied to search for global minima of gold 

nanoclusters within the basin-hopping method.  Using Au58 as an example, 

we found a new putative global minimum which has a core-shell structure 

of Au10@Au48 and C4 symmetry. This new structure of Au58 is 0.24 eV per 

formula more stable than the best previous model that has C1 symmetry. 

This work demonstrates that neural network potentials combined with the 

basin-hopping method could be very useful in global minimization for 

medium-sized metal clusters which might be computationally prohibitive 

for first principles density functional theory. 

Gold nanoclusters and nanoparticles have attracted great research 

interest due to their novel physical and chemical properties in 

contrast with their bulk counterpart. Pioneered by Haruta, catalysis 

by nanogold has been one of the most active research areas in 

heterogeneous catalysis.1-3 Understanding the structures of gold 

nanoclusters and nanoparticles can help elucidate their catalytic 

actives. Because of their small sizes, gold nanoclusters and 

nanoparticles are usually stabilized by an oxide support or a ligand 

monolayer.2, 4-6 Synthesis and structure determination of ligand-

protected gold nanoclusters have advanced greatly in the past 

decade,6-10 while structural understanding of oxide-supported gold 

nanoparticles has been hampered by their complexity (size 

dispersion, metal-support interaction, oxygen vacancies, etc.).2, 11, 12 

 

Au clusters in the gas phase, on the other hand, offer a simpler and 

interesting playground for both theorists and experimentalists to 

explore the evolution of their intrinsic structures and properties 

with size.13 For example, it was found that very small Aun clusters 

with n < 13 for anion,14 < 8 for cation,15 and < 12 for neutral16 adopt 

planar configurations; clusters from Au16 to Au18 have cage 

configuration, while Au19 and Au20 have a pyramid shape.17-21 From 

Au21 to Au35 the structure evolves from pyramidal to tubular, and 

then to core-shell structure.13 The global minimum of Au40 has been 

predicted by first principles basin hopping to have a twisted 

pyramid structure with a tetrahedral Au4 core.22 One of the largest 

Au clusters explored by DFT is Au58 and the putative global 

minimum was found to have a double-shell structure of Au10@Au44 

of C1 symmetry.23   

 

It becomes increasingly difficult to do global minimization for larger 

size Au clusters (say, n > 50) using first principles methods such as 

density functional theory (DFT) due to the exponential increase of 

the local minima number with size24, 25 and the nonlinear scaling of 

the computational cost (roughly ~n3 for DFT). In this context, 

alternative methods such as empirical potentials were often 

employed,26-30 such as the Rosato-Guillope-Legrand potentials for 

Au clusters up to 318 atoms,26 Sutton-Chen embedded atom 

potentials for Pt55 and Au55,27 and effective-medium-theory 

potentials for Au147 and Au309.30 Most empirical potentials, however, 

are not accurate enough, and sometimes could lead to unreliable 

predictions.13, 25, 27-29  

 

One promising way to overcome this difficulty is to use the artificial 

neural network (NN) potentials, trained by large data sets of first 

principles total energies. As a major approach of machine learning, 

an artificial NN is a group of interconnected nodes mimicking how 

neurons in the brain work. In the context of NN potentials for a 

chemical system (for example, a nanocluster), the goal is to 

construct a parameterized analytical expression for the potential-

energy surface (PES) of the system by using an artificial NN.  The 

details about how to construct such a NN PES based on DFT 

datasets can be found from the recent literature.31-33 The NN 

potentials combine the advantages of the speed of empirical 

potentials and the accuracy of the first principles methods. A 

number of recent papers have already shown the success of NN 

potentials in geometry optimization and molecular dynamics of 

large systems, such as free standing metal particles, oxide 

supported metal particles, and solution systems.32, 34, 35 However, 

NN-potential-based global minimization has not been 

demonstrated. 
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In this work, we apply the DFT-trained NN potentials to the global 

minimum search of Au nanoclusters for the first time. The Au58 is 

chosen here because it was reported to be highly stable and robust 

as observed from experiment.36, 37 The basin-hopping method has 

been demonstrated to be a highly efficient algorithm for global 

minimization of clusters.38, 39 Therefore, the basin-hopping method 

combined with the NN potentials (the NN-BH method for short) was 

employed in this work for global minimization of Au58. Stable 

structures found by NN-BH were then validated by density 

functional theory (DFT). For DFT calculations, we employed the 

Vienna Ab Initio Simulation (VASP) code,40 with projector 

augmented wave41 for the description of core-valence electronic 

interaction, Perdew-Burke-Ernzerhof 42 (PBE) functional for electron 

exchange-correlation, and plane wave for the basis set. Unless 

mentioned otherwise, calculations were done in normal precision 

with a cubic box of size 20 � 20 � 20 Å for the Au58. Only Γ-point 

was used to sample the Brillouin zone. Conjugate-gradient 

algorithm was employed for geometry optimization with force 

convergence criterion of 0.03 eV/Å. 

 

 
 
Figure 1. Flow chart of the NN potential construction. BH: basin-
hopping algorithm; NN: neural network potential; DFT: density 
functional theory. 

 

The flow chart to construct accurate NN potentials is shown in 

Figure 1. The construction was started from the generation of 400 

random initial structures of Au58, which were created by 

randomizing the 58 Au atoms within a sphere of certain radius and 

with a constraint of minimal Au-Au bond length of 2.4 Å. These 

random structures were then optimized by DFT calculations, and 

the structures and energies during all the relaxations (totally 23358 

configurations spanning 10 eV) were then used as initial reference 

data to train the NN potentials. A feed-forward NN was used which 

is a nested sum of activation functions and contain many weight 

parameters.31-33 Construction of NN potentials is to fit the weight 

parameters to known reference potential surfaces. The DFT data set 

was split randomly into 80% for the training and 20% for the test. 

The NN architecture of 56-30-30-1 (one input layer of 56 nodes, two 

hidden layers of 30 nodes each, and one output layer of 1 node 

which is just the energy) was adopted, which is reasonable to avoid 

inadequate or over fitting.32, 35 The constructed NN potentials were 

then used to calculate energy and force of given structures. To 

further refine the NN potentials, we used the NN-BH method to 

generate some new structures. Their energies were then checked 

by DFT: if the NN energies were in poor agreement with the DFT 

energies, these new structures would then be incorporated into the 

reference data set to refine the NN potentials. The final adopted NN 

potentials have a root mean square error (RMSE) of 0.60 meV/atom 

for the training set and 0.66 meV/atom for the test set, indicating 

that the quality of the NN potentials is acceptable. Figure 2 shows 

the validation of the NN potentials on new structures from BH. 

Although some deviation can be as large as 0.6 eV, the overall 

agreement is good between NN potentials and DFT.  

 

 
 

Figure 2. Comparison between NN and DFT energies of 18 Au58 

structures spanning a 1.8-eV energy window. The NN energies were 

chosen intentionally to be equally spaced. 

 

 
Figure 3. The energy landscape of 20 BH run based on NN potential. 
Adjacent two BH are indicated by different colour (blue or black). 
(a)-(g) are the local minima with structure shown in Figure 5. 

 

Armed with the NN potentials, we applied the BH method to search 

the global minimum of Au58. 20 NN-BH jobs (that is, Monte-Carlo 

Random structures generation 

Geo. opt. by DFT for initial reference data  

NN potential fitting 

New structures generation by BH-NN 

  

Energy comparison between NN and DFT 

NN potential ready for application 

Yes 

No 

Good agreement? 

Page 2 of 5Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3 

Please do not adjust margins 

Please do not adjust margins 

walkers) were started from 20 random initial structures, each 

running for 6000 Monte-Carlo steps. The energy landscape from the 

20 NN-BH jobs totaling 120,000 Monte-Carlo steps is plotted 

together in Figure 3. Figure 4 shows an example NN-BH run. Then 

over 6000 Monte-Carlo steps were run to find a good minimum. It 

can be seen that combining the BH runs and many random initial 

structures is an effective way to explore the complex configuration 

space of the Au58 cluster. Figure 3 labels the seven low energy 

isomers of (a)-(g), whose energy order has been checked by DFT 

(Table 1).  

 

Isomer (a) was confirmed by DFT to be the most stable structure of 

Au58 found from this work: we further optimized it with a tighter 

force tolerance (0.001 eV/Å) and finite-difference analysis of the 

normal modes found no imaginary frequencies (see the electronic 

supplementary information for the coordinates and the calculated 

IR spectrum). The structure of isomer (a) is shown together with the 

other six low-energy isomers in Figure 5. Isomer (a) has C4 

symmetry and is of a prolate spheroid shape with two squares at 

the top and bottom. It comprises a 48-atom outer shell and a 10-

atom inner core. The other isomers also have a core-shell structure 

but they are less symmetric and less stable by at least 0.30 eV than 

isomer (a).  

 
Table 1. Total energy (eV) of isomer (a)-(g) from NN potentials and 

DFT calculation 
 (a) (b) (c) (d) (e) (f) (g) 

NN -162.88 -162.86 -162.51 -162.68 -162.57 -162.63 -162.56 

DFT -162.80 -162.49 -162.47 -162.43 -162.36 -162.35 -162.27 

 
 

 
Figure 4.  Energy landscape of an example single BH run based on 

NN potential with 6500 steps. Red dots denote the initial random 

structure and the most stable structure found by the BH. 

 

The HOMO and LUMO orbitals of the most stable Au58 structure 

(Figure 5a) are shown in Figure 6. One can see that the HOMO 

orbital primarily distributes at the core and the waist of the shell, 

whereas the LUMO orbital populates the top and bottom of the 

outer shell. This indicates the spatial specific reactivity43-45 of the 

Au58 cluster, which could be interesting to explore in further studies. 

Isomer (a) has the largest HOMO-LUMO gap of 0.82 eV, while 

isomers (b)-(g) have gaps between 0.4-0.7 eV. 

 

 
Figure 5. The most stable isomer (a) and other less stable ones as 
labeled in Figure 3. Core structures are also shown (cyan). The 
number shows the DFT total energy (eV) relative to isomer (a). 

 

It is interesting to compare our best Au58 structure with previous 

models. In an earlier theoretical work, Dong and Gong (DG) 

performed global minimum search using genetic algorithm based 

on empirical potential, and then examined by DFT.23 Their best 

model also has the construction of a 10-atom core and 48-atom 

shell.  We compared the energy between their structure and ours 

by DFT. We tested various functionals (PBE,42 PBEsol,46 and TPSS47) 

and also employed a large box size of 30 � 30 � 30 Å in order to 

accurately evaluate the energy difference. We found that our 

structure is more stable than theirs for all functionals; for the TPSS 

functional which is known to be good for gold, our structure is 0.24 

eV more stable. Geometrically, the two structures are quite similar, 

having a similar Au10 core, but the Au58 from this work is of C4 

symmetry, whereas the DG structure is of C1 symmetry, which may 

explain the higher stability of our structure. The main difference lies 

in the shell structure as shown in Figure 7. The outer shell of isomer 

(a) from this work has two squares at the two ends of the prolate 

spheroid (Figure 7a) and eight five-coordinated Au atoms 

symmetrically distributed on the shell (Figure 7a and 7c). In contrast, 

the outer shell of the DG structure has a diamond at one end and a 

square at the other end (Figure 7b); there are 10 five-coordinated 

Au atoms on the shell (Figure 7b and 7d). We think that the higher 

symmetry of our structure leads to its higher stability. The 

electronic density of states (DOS) of the two structures near the 
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Fermi level also shows small differences (Figure 8): the higher 

symmetry of our structure leads to sharper peaks in the DOS. 

 
 

 
Figure 6. (a) HOMO and (b) LUMO of isomer (a) of Au58: positive, 

blue; negative, red. 

 

 
 
Figure 7. Comparison of the Au58 shell structures between the best 
structure from this work (a, top view; c, side view) and the best 
structure (the DG structure) from Ref. 23 (b, top view; d, side view).  
Blue, five-coordinated Au atoms. 
 

Figure 8. Comparison of the total electronic density of states 

between the DG structure (Ref. 23) and the best structure (isomer a 

in Figure 5) from the present work.  

 

In summary, neural network (NN) potentials have been used to 

search for the global minimum of Au58 in combination with the 

basin-hopping (BH) algorithm. NN potentials were trained and 

refined by DFT data sets. Then 20 NN-BH runs with 20 random 

initial structures were performed with a total of 120,000 Monte-

Carlo steps. The putative global minimum of Au58 was found to have 

C4 symmetry and a core-shell configuration of a 10-atom core and 

48-atom shell. Its stability was confirmed by DFT and found to be 

0.24 eV more stable than the best previous model of a similar 

construction but of lower symmetry (C1). This work shows that the 

neural network potentials can be used for global minimization of 

nanoclusters beyond the capability of the conventional first 

principles method. 
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