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doesn’t break time-reversal symmetry, and consequently cannot
generate a quantum Hall effect or chiral edge modes as a real
field would, the spectral analogy is robust and supported by ex-
perimental evidence. Time-reversal symmetry can be explicitly
broken by combining strain and magnetic fields, which breaks the
valley degeneracy and can be explored for pseudomagnetic quan-
tum dots whose sharp resonant tunneling characteristics might
provide a very sensitive strain detector20,21. The experiments of
Levy18 and Lu19 with graphene nanobubbles confirm the poten-
tial of strain-engineering for effective manipulation of the elec-
tronic motion in graphene and demonstrate the unique charac-
teristics of this approach: (i) the ability to generate local PMFs
with magnitudes that can easily exceed several 100s of Tesla; (ii)
the possibility of having these fields localized in regions of only a
few nm, if strain can be locally concentrated; (iii) the prospect of
continuously varying the strength of the local PMF, in particular
being able to establish and remove it on demand; and (iv) not re-
quiring drastic extrinsic modifications of the graphene layer, thus
preserving most of its intrinsic superlatives, namely the high mo-
bility and the Dirac nature of its carriers. Recently, in order to
gain more insight into details of the PMF magnitude and spatial
profile associated with graphene nanobubbles, as well as to un-
derstand the role played by typical substrates, we (with several
colleagues) conducted a study of the effects of nano-sized bub-
bles in graphene under different geometries and substrate con-
ditions22. In order to have a continuous and tunable range of
deflection, the nanobubbles were generated by inflation under
gas pressure against selected apertures on the substrate22. In the
present article, we revisit this problem from the point of view of
electronic transport to elucidate the main signatures that circu-
lar and triangular nanobubbles, and their strong PMFs, imprint
on the conductance characteristics. We are particularly interested
in whether the large and local PMF leads to scattering and/or
confinement that is significant enough to translate into modified
transmission characteristics. This is directly relevant to scenar-
ios such as the one explored in a recent experiment that shows
selective 3-point electronic transmission across pressurized tri-
angular graphene nano-blisters23. Existing theoretical work ap-
proaches this problem by straining graphene according to defor-
mation fields that are either prescribed analytically or obtained
numerically, but always following from the equations of contin-
uum elasticity thus treating the graphene sheet as a continuum
medium24,25. Hence, even when performing tight-binding cal-
culations on the honeycomb lattice, the widespread practice has
been to obtain the deformations from continuum elasticity theory.
If this is justifiable for deformation profiles that vary over charac-
teristic distances that are large compared to the lattice parameter,
it isn’t so in the cases we are interested to describe here. One
notable exception is the approach based on discrete differential
geometry recently pioneered by Barraza-Lopez et al.26,27, which
retains all the quantities parameterized on the lattice.

We tackle this in the same framework developed in reference
22, that combines molecular dynamics (MD) and tight-binding
(TB) calculations. In this approach, the lattice deformation is
determined fully atomistically for the prescribed substrate and
loading conditions, and the relaxed atomic positions are used to

build a TB description of the electron dynamics in the system.
The aim is to reduce any bias in the description of the electronic
system by capturing all the atomic-scale details of deformation
and curvature, without assumptions, since they play an impor-
tant role at these scales of less than 50 nm. Similar to what is
observed for real magnetic barriers6 or Gaussian bump defor-
mations28,29, the conductance of either zigzag (ZZ) or armchair
(AC) graphene nanoribbons (GNR) develops marked dips (anti-
resonances) at the edge of each conductance plateau. We show
that this is due to scattering of propagating modes into evanes-
cent states confined in the nanobubble. The coupling between
the confined evanescent state and the propagating modes can
be enhanced under different clamping and substrate conditions,
leading to Fano resonances30–32 in the conductance traces. Our
calculations show that these signatures of electronic confinement
in graphene nanobubbles are a robust effect, being observed ir-
respective of the orientation of the underlying graphene lattice,
for circular and triangular graphene nanobubbles on hexagonal
boron nitride.

1 Model and methodology

To reproduce the deformation of graphene and its derived trans-
port properties as accurately as possible, we implemented a com-
bined MD-TB simulation. Molecular dynamics provides the spa-
tial location of the carbon atoms when graphene is subjected to
gas pressure and a nanobulge forms through the substrate aper-
ture. Once the coordinates of each atom are known, the nearest-
neighbor TB parameters are calculated throughout the system
and the TB Hamiltonian for the deformed system is built. This
Hamiltonian constitutes the basis for the calculation of all the
local spectral and transport properties. Electronic transport is
addressed via the lattice representation of the non-equilibrium
Green’s function (NEGF).

It is beneficial to underline from the outset the role we attribute
to the substrate in our modeling with regards to the electronic
structure and transport: all the electronic action is taken to hap-
pen within the graphene sheet, which we assume not to be chem-
ically perturbed in a significant way by the presence of the sub-
strate underneath. This amounts to assuming that the electronic
properties of graphene are completely decoupled from those of
the substrate, the latter playing a rather passive role from this
perspective, in that it simply stabilizes the static lattice configura-
tion of graphene on which all the electronic action unfolds. This
is a reasonable assumption for most current experimental scenar-
ios, where graphene is physically transferred and deposited on a
target substrate with a random orientation of the respective lat-
tice directions. It also implicitly assumes substrates without re-
active/dangling bonds that could strongly interact with those pz

orbitals that happen to be in registry and become a significant
source of disorder. The most important aspect of this scenario of
weak electronic coupling between graphene and the substrate is
that we consider electronic conduction taking place only through
the graphene system, and its characteristics are determined solely
by the electronic states derived from the pz orbitals in the de-
formed and curved graphene. This is done so that the computa-
tions can be easily extended to tens of thousands of atoms, and

2 | 1–10

Page 2 of 10Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



Page 3 of 10 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



bitals is given by:

ti j(d) =Vppπ (di j) n̂i · n̂ j

+
[

Vppσ (di j)−Vppπ (di j)
] (n̂i · ~di j)(n̂ j · ~di j)

d2
i j

, (2)

where n̂i is the unit normal to the surface at site i, ~di j is the
distance vector connecting two sites i and j, and Vppσ (d) and
Vppπ (d) are the Slater-Koster bond integrals for σ and π bonds.
Their dependence on the inter-atom distance is taken as22,49

Vppπ (di j) = t e−β (di j/a−1), (3)

Vppσ (di j) = 1.7Vppπ (di j), (4)

where t = 2.7 eV, a ≃ 1.42 Å represents the equilibrium bond
length in graphene, and β = 3.37 captures the exponential de-
crease in the hopping with interatomic distance. Once the values
of ti j are obtained, we use the TB Hamiltonian of the strained
system as the scattering central region, to which two ideal con-
tacts are attached. This approach captures all the possible mod-
ifications of the π-derived bands at the level of the Slater-Koster
approximation. In particular, since nothing is assumed with re-
gards to the position of the carbon atoms, it naturally includes
effects such as the so-called pseudomagnetic field induced by non-
uniform deformations, the scalar local deformation potential, and
sublattice symmetry breaking terms if the atomistic configura-
tions so allow12,13,26,28,50. Since the edges of the central system
are of ZZ or AC type, the central region is seamlessly stitched
to the contacts resulting in a perfect ZZ or AC ribbon. We then
study the quantum transport characteristics of such a GNR con-
taining a central region deformed by the presence of the nano-
bubble. The zigzag graphene nanoribbon (ZGNR) is created at-
taching two pristine semi-infinite ZZ nanoribbons to the left and
right edges of the strained graphene square. The metallic arm-
chair graphene nanoribbon (AGNR) is constructed by connecting
two perfect metallic semi-infinite AGNR to the upper and lower
edges of the central region. The conductance of these nanorib-
bons is calculated within the Landauer-Büttiker formalisim using
Caroli’s formula51–53: G = 2e2

h Tr[ΓqGrΓpGa], where Gr = [Ga]† =

[E + iη −H −Σp −Σq]
−1 is the retarded [advanced] Green’s func-

tion, the coupling between the contacts and the central region is
represented by Γq = i[Σq −Σ

†
q], and Σq is the self-energy of con-

tact q which is calculated recursively for ZZ and AC contacts54.
Having calculated the retarded and advanced Green’s functions,
other electronic properties such as the density of states (LDOS),
ρii = −Im[Gr(~ri,~ri,E)]/π, and the total density of states (DOS),
ρ = Tr(ρii) are readily calculated. For a local mapping of the cur-
rent distribution in the central region we consider the current
density between nearest neighbors51, Ii j =

2e
h

∫

dE[t jiG
<
i j − ti jG

<
ji ],

that is calculated from the lesser Green’s function, and which can
be obtained exactly in the absence of electronic interactions as53

G< =Gr(E)[ΓL(E) fL(E)+ΓR(E) fR(E)]G
a(E). We stress again that

the interaction graphene-substrate is included in the MD simula-
tion part to realistically describe the interaction and sliding of

graphene in contact with the substrate by the combined action of
gas pressure and substrate aperture55. From the electronic point
of view, the substrate plays no direct role in electronic tunneling
or other electronic processes.

In order to compare the local current distribution to the spa-
tial pattern of the PMF the latter is calculated directly from ti j

introduced in eq. (2) via

Ax(r)− iAy(r) =
2h̄

3tae
∑
n

δ tr,r+n eiK·n. (5)

This defines the two-dimensional pseudomagnetic vector poten-
tial, A = (Ax, Ay)

12,13, from where the PMF is calculated using
B = ∂xAy − ∂yAx. Note that Eq. (5) is used here only as a practi-
cal and direct means of quantifying the effect of the non-uniform
strain in the electronic properties of graphene. It does not imply
that we use this as an approximation for the PMF in graphene for,
as stressed above, the general and realistic hopping model eq. (2)
that we use in the transport calculations naturally includes effects
that are not captured by such an approximation.

2 Pseudomagnetic fields, mode mixing and

confinement

In order to recognize the incremental contributions of the differ-
ent factors determining the conductance characteristics of the sys-
tem (geometry, substrate interaction, and edge type of the GNR),
we start with the simplest scenario described above: a ZGNR
where all carbon atoms outside the aperture are rigidly (thus
artificially) attached to their original position; any deformation
occurs only within the aperture region under the gas pressure.
Under this scheme the nanobubble in the middle of the ZGNR
is the only extended scattering center, which allows us to isolate
the effect of the bubble geometry and the corresponding PMF on
the conductance. We chose two representative cases of aperture
geometry for discussion: triangular and circular. The triangular
aperture is particular because it begets a PMF that is appreciably
uniform within most of the bubble area, and which does not al-
ternate in sign within. The circular hole, on the other hand, is
used because it captures most of the qualitative features of the
PMF that sets in for a class of different shapes22 For a meaning-
ful comparison, circular and triangular bubbles are chosen with
approximately the same area ≃ 50nm2, and centered within the
square simulation cell; specifically, the radius of the circular aper-
ture is 4 nm and the side length of the triangle is 10.6 nm. In
a second stage, we analyze the conductance traces arising from
the nanobubbles inflated against a h-BN substrate to determine
whether the graphene-substrate interaction perturbs the conduc-
tance traces of the ideal clamped situation.

2.1 Clamped bubbles

There is one key feature in the quantum transport of these sys-
tems stemming from the presence of the central bubble in an
otherwise perfect GNR and which is independent of the bubble
geometry. Irrespective of the shape, the conductance of a ZGNR
with W ≃ 20 nm of transverse dimension with an embedded bub-
ble exhibits reproducible dips just at the onset of a every new
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Fig. 2 Top rows present the conductance as function of the Fermi

energy, EF , for a ZZ GNR 20 nm wide with an embedded (a) circular and

(b) triangular nanobubble. Bottom rows correspond to the Density of

States (DOS) of the same ZGNR with (c) circular and (d) triangular

bubbles. In all panels the carbon atoms outside the bubble region are

rigidly clamped to the substrate and remain (artificially) undisplaced.

The red dashed lines correspond to the conductance and DOS of a

pristine graphene ribbon with ZZ edges state.

conductance plateau. The conductance traces for circular and tri-
angular nanobubbles are shown in Fig. 2(a)-(b) for a gas pressure
of 19 Kbar, equivalent to a deflection of 1 nm. The difference in
sharpness and depth of these dips, as well as the roundness of the
conductance steps, can be attributed to the geometry of the bub-
bles which, together with the spatial extent and magnitude of the
local PMF, contributes to defining the strength of the scatterer.
The weaker the scatterer, the narrower the line-shape of the con-
ductance dips will be56,57. The red dashed traces in Fig. 2(a)-(b)
represent the conductance of the ideal ZGNR. By direct inspec-
tion, we see that the conductance is generally lowered relative
to perfect quantization, and dips remain sharp for the circular
bubble. The triangular bubble exhibits larger reduction from the
quantized value within each plateau, together with broader dips
(notwithstanding, the original plateau structure is still identifi-
able). The spectral fingerprint of the conductance dips is the ap-
pearance of strong and narrow peaks in the DOS of the ribbons,
just below the van Hove singularities (VHS) of the unpressurised
system, as observed in Fig. 2(c)-(d)

Before proceeding further with our analysis we want to discuss
the origin and physics behind the shallow and sharp features ob-
served right before the onset of the plateaus (in the conductance)
or the VHS (in the DOS). This resonant behavior is a multimode
effect previously observed in quasi-one dimensional systems with
impurities58,59, finite-range local potential scattering60,61, and
short-range impurity potentials56,57,62–64. It can be understood
by recalling that in quantum wires electric current is carried by
independent transverse modes. When an impurity is present an

electron incident upon the defect in a given mode will be scat-
tered into a number of available modes with the same energy,
including evanescent states56. The transition probability for this
process depends on the density of final modes and, therefore, by
virtue of the high density of evanescent states at the edge of each
sub-band (mode), the electron has a high probability of scattering
to an evanescent state, which is a state predominantly confined
within the defect region, with an energy close to the bottom of
the sub-band56. Of course, the transition rate depends also on the
scattering potential itself, in addition to the density of evanescent
states. As we outlined in the introduction, electrons in graphene
perceive non-uniform local changes in the electronic hopping pa-
rameter as a PMF, and it is this non-uniform PMF pattern created
by the inflation of graphene that determines the strength of the
scattering at each nanobubble. The detailed analysis of the PMF
created by the clamped circular and triangular nanobubbles, and
other geometries not considered here, can be found in reference
22. For our current purposes, Fig. 3(a)-(b) shows the spatial
profile of the PMF in the two geometries considered. We recall
briefly that one of the leading characteristics of the PMF distribu-
tion arising from an inflated nanobubble is an intense magnetic
barrier that is narrowly localized within a few atomic distances
from its perimeter. This results from the large bending and high
bond stretching that occurs at the edge of the apertures. Different
geometries have an impact in the local polarity of the PMF and
its magnitude and space dependence in the central regions of the
bubble.

The PMF graphs in Fig. 3(a)-(b) show that the circular bubble
has high PMF barriers (∼ 2000 T) at the perimeter, followed by
a rapid decay towards the center of the bubble. Triangular bub-
bles, on the other hand, create PMFs of magnitude equally large
around the perimeter and a roughly constant field of ∼ 100 T in
the inner central area. Unlike the behavior in circular bubbles, in
triangular nanobubbles the intensity and polarity of the periph-
eral barrier remain constant at all the three edges. Based on the
this, we can attribute the conductance dips observed in Fig. 2 to
scattering of propagating modes into a confined state around the
bubble. However, it remains unclear how the wave function of
the confined electron is distributed under such different strengths
and patterns of PMF created by the bubbles. To clarify this point,
let us inspect the LDOS maps shown in Fig. 3(c)-(d), each taken
at the energy of the conductance dips observed at E = 0.215 t0.
We see no fingerprint of a strictly confined state: the shape of the
bubble itself is not even identifiable in either panel and, although
the highest values of the LDOS are found within the bubble re-
gion, they are not significantly different from those outside.

To interpret these maps it is important to note that the
unpressurized conductance of these systems at E = 0.215 t0 is
G(0.216 t0) = (2e2/h)× 11. From the conductance quantization
sequence of an ideal GNR, G = (2e2/h)(2n+1)65,66, we conclude
that there are 5 conducting modes in an ideal GNR at the energy
represented in Fig. 3(c)-(d). The inclusion of the bubbles brings
only a small change to this tally, as Fig. 2 shows that the conduc-
tance in their presence is, for the most part, scarcely modified:
at E = 0.215 t0 one or more channels are backscattered because
G = (2e2/h)× (10.1) for the circle, and G = (2e2/h)× (9.4) for the
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Fig. 3 Spatial maps of the PMF in the central scattering cell used in the

transport calculations for the representative cases of a circular (a) and a

triangular (b) nanobulge. The PMF calculated according to eq. (5)

includes the hopping perturbations brought in by bond stretching and

bending, as per eq. (2). Normalized local DOS for (c) circular and (d)

triangular bubbles at E = 0.215 t0.

triangle. Despite this nominal suppression by 1 to 2 of the con-
ducting modes, the conductance is never zero.

A better insight into the extent to which the local PMF arising
from different geometries disrupts the electron flow can be ob-
tained from the local current density that we have calculated at
each C-C bond as described earlier, and whose results are pre-
sented in Fig. 4. The current map shown in Fig. 4(a) for the cir-
cular bubble reveals current streams where the current is directed
forwards and backwards in an alternating pattern, signaling elec-
tron trapping within and its bouncing back and forth by the ac-
tion of the strong PMF barriers at the perimeter of the bubble (cf.
Fig. 3). Over the central region of the bubble the current remains
predominantly horizontal by virtue of the negligible PMF inside
a circular bubble. These strong bands decay outside bubble, con-
firming that this current pattern is associated with an evanescent
mode created by the bubble through mode mixing. In contrast to
the circle, a triangular bubble sustains a high and constant PMF
∼ 100 T in the inner central region (cf. Fig. 3). Inspection of
the current’s spatial distribution in Fig. 4(b) reveals that the PMF
within is seemingly enough to permanently trap a fraction of the
electronic density in closed orbits, as suggested by the presence
of a local eddy of current of at the center of the bubble. We note
that an electron in graphene with energy E = 0.215 t0 in a constant
magnetic field of 100 T has a magnetic length ℓB ≈ 2.6 nm and a
cyclotron radius of rc = ℓ2

BkF ≈ 6.8 nm. Since such rc is larger than
the bubble, and since other geometries still display conductance
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Fig. 4 (Color online) Current density at E = 0.215 t0 around the clamped

circular bubble (a) and triangular bubble (b). The red outline marks the

portion of the system corresponding to the bubble region. Each blue

arrow indicates the local current flow, and has a magnitude proportional

to the current at each lattice site.

dips despite the absence of such localized current features, we
conclude that those effects are not dominated solely by the PMF
but that bubble geometry and mode mixing are important ingredi-
ents. Finally, note that an electron should have an energy higher
than E ≈ h̄vF π/L to be sensitive to a scatterer of typical size L.
The average radius of the substrate apertures that we considered
is L ≈ 4 nm, which means that only above energies of E ≈ 0.16 t0

should the electrons begin to be noticeably affected by the pres-
ence of the nanobubble. This estimate is quantitatively consistent
with the fact that the conductance dips and DOS peaks, observed
in Fig. 2, develop only above this energy and are not present at
lower energies.

2.2 Nanobubbles on hexagonal boron nitride substrate

Whereas the previous section discusses transport in the presence
of a nanobubble, but with the graphene layer rigidly clamped
everywhere except the aperture region, in a realistic scenario,
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we must account for the graphene-substrate interaction. The
pressure-induced bulging of the graphene sheet through the aper-
ture will be accompanied by its sliding and stretching in the re-
gions outside the hole. The final strain distribution will thus be
different which, in turn, will lead to modifications of the PMF bar-
riers. Since the modification of electronic conductance discussed
above stems from these barriers, one should naturally assess how
robust they are in a realistic substrate scenario. To answer this
question, we explicitly incorporate the graphene-substrate inter-
action at the atomistic level by carrying out MD simulations of tri-
angular and circular graphene nanobubbles on a h-BN substrate,
letting all the atoms in graphene to relax under the constraint
imposed by the gas pressure. The PMF that obtains in this case
is very similar to that shown previously in Fig. 3(a)-(b). This is,
of course, not surprising given that outside the aperture region
graphene is still being pressed against the rigid BN substrate; the
magnitudes of the fields are, however, smaller, which is a direct
consequence of the in-plane relaxation of the carbon atoms and
the smaller in-plane strain that, consequently, sets in for the same
deflection imposed on the bubble.

The implications of the modified PMF pattern to the conduc-
tance can be analyzed in two different energy ranges, according
to whether the electron’s Fermi wavelength, λF = k/2π, is larger
(E < 0.150 t0) or smaller (E > 0.150 t0) than the characteristic size
of the central nanobubble. In Fig. 5(c)-(d) we show the conduc-
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Fig. 5 (Color online) The top row shows the PMF spatial distribution for

(a) circular and (b) triangular bubbles on h-BN substrate. Bottom rows

show the conductance as a function of EF for ZZ nanoribbons 20 nm

wide placed on h-BN substrate, and containing a: (a) circular

nanobubble and (b) triangular nanobubble. The red lines represent the

conductance of the same geometry bubble in the clamped configuration.

tance of a ZGNR with embedded circular and triangular bubbles
on h-BN; we can see that the conductance traces – specially at

low energies – are now richer than before. Interestingly, there is
no marked difference between the two geometries; at higher en-
ergies, the presence of the bubble translates only into shallower
and wider conductance dips.
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Fig. 6 (Color online) The top row shows the normalized local DOS for a

circular bubble in graphene lying on a h-BN substrate for (a)

conductance peak at E = 0.05 t0 and (b) conductance dip at E = 0.116 t0.

The bottom row refers to a triangular bubble on h-BN substrate, at (c)

the conductance peak for E = 0.05 t0 and (d) the conductance dip seen

at E = 0.116 t0.

One new feature detected in Fig. 5(c)-(d) is the presence
of a resonant peak right at the start of the second plateau at
E ≃ 0.05 t0, and which replaces the conductance plateau of the
unstrained system. The dips and resonances in the conductance
are just two particular manifestations of a Fano resonance in the
electron’s scattering cross-section30–32 that are imprinted in the
conductance. In simple terms, a Fano resonance is characterized
by a transmission probability of the form

T (E) ∝
(ε +q)2

ε2 +1
, ε = E −Eres (6)

in the neighborhood of E = Eres, where ε is the reduced energy
and q the phenomenological Fano asymmetry parameter measur-
ing the degree of coupling between a localized (evanescent) state
and propagating states31,67. Whereas in general the line shape
described by eq. (6) has a characteristic asymmetric profile, if the
coupling is strong (|q| → ∞) the shape reduces to a resonant sym-
metric peak (Breit-Wigner), while in weak coupling (|q| → 0) it
becomes a dip, or anti-resonance.

To elucidate the origin of the low-energy resonance it is instruc-
tive to inspect the LDOS at that energy, which is shown in left pan-
els of Fig. 6. The LDOS in the presence of the circular bubble on h-
BN is strongly peaked in the regions between the top and bottom
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edges of the aperture and the outer edges of the ribbon. Such an
enhancement of the LDOS at the edges constitutes a fingerprint
of coupling between states68. For this energy E ≃ 0.05 t0 at the
threshold of the 1st to 2nd conductance plateau, the current is
carried by a single mode (one can notice that G = G0 throughout
the 1st plateau) which is strongly localized around the edges of
the nanoribbons because it is one of the characteristic edge states
of a ZGNR. The LDOS profile in Fig. 6(a) shows the tendency to
localize electrons between the perimeter of the circular bubble
and the ribbon edges, which means that the entire current path
coming from the ZZ edge mode overlaps spatially with the local-
ized state, leading to a strong-coupling scenario between the con-
fined and propagating modes. This, of course, is a consequence
of the underlying PMF for this case: the considerable “leakage”
of the PMF between the aperture and the outer edge drives elec-
tron confinement in that region of strong field and promotes the
localization of electrons in a region through which all the current
would be passing, thus promoting a strong coupling that leads to
a well-defined resonance. A comparison between panels a and c
at the same energy for the triangular bubble shows, for the latter,
an asymmetric enhancement of the LDOS in the vicinity of the
upper and lower edges of the ribbon. As a result, the coupling
to the propagating mode will not be as strong, which explains
the fact that the resonance at E ≃ 0.05 t0 in Fig. 5(d) is not as
sharp as it is for the circular bubble. In contrast to the conduc-
tance resonances, the LDOS snapshots associated with dips are
characterized by a strong enhancement in the central area, as
can be seen in panels b and d of Fig. 6 for the conductance dip
at E = 0.116 t0. For completeness, we show in Fig. 7 the respec-
tive current densities at the E = 0.116 t0 dip, which support the
previous interpretation but show that the tendency for current lo-
calization is diminished in comparison with the rigidly clamped
scenario, a consequence of the reduced strain in the present case.

Finally, we note that the type of graphene lead considered in
computing the conductance has no bearing on the validity of the
discussion and conclusions above. To illustrate this, we show in
Fig. 8 the conductance of the same nanobubbles obtained with
AC graphene nanoribbons as leads. This was done by connecting
metallic AC leads to the vertical sides of the square system cell.
The resulting conductance profiles are entirely similar to those
seen in the ZZ transmission configuration, and the differences ob-
served in the triangular case are due to the different orientation of
the triangle (a 90o rotation) with respect to the incoming current.

3 Conclusions

Using a combined molecular dynamics – tight-binding simulation
scheme we have investigated the electronic transport properties
of graphene nanostructures containing circular and triangular
nanobubbles and under two graphene-substrate adhesion condi-
tions. The local strain that develops within and near the bubble
leads to rich patterns of strong PMF with alternating polarity on
length scales of a few nm. The combination of both a strong
field and spatially sharp reversal of its polarity intuitively sug-
gests a tendency for electron localization at certain energies. We
have determined how this localization manifests itself in (and im-
pacts) the electronic transport. Analyses of the LDOS and local
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Fig. 7 (Color online) Current density in the vicinity of the (a) circular and

(b) triangular bulges when graphene lies on h-BN substrate, both at

E = 0.116 t0. The red outline marks the portion of the system

corresponding to the bubble region.

current distribution reveal the microscopic details of this localiza-
tion process and establish that low-energy electrons can be con-
fined in the vicinity of or within the nanobubbles by the interplay
of the specific PMF barrier created by the geometry of the bubble,
mode mixing, and substrate interaction. Interestingly, graphene
substrate interaction – unavoidable in real samples – facilitates
the appearance of confined states at the same time that it de-
termines their coupling to the propagating ones. At low energies,
the coupling of the evanescent electron states in the vicinity of the
nanobubbles leads to two distinct signatures in the conductance
as a function of EF : (i) the appearance of peaks, or Breit-Wigner
resonances, when the evanescent states spread considerably to
the outside of the nanobubble; and (ii) dips, or anti-resonances,
when these states are confined mostly inside the nanobubble by
the back and forth scattering of electrons between the PMF and,
consequently, couple less effectively to the continuum. We con-
clude that, even though under realistic conditions the interac-
tion between graphene and the substrate is seen to modify the

8 | 1–10

Page 8 of 10Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



0 0.1 0.2
E/t

0

0

5

10

15

20

G
 (

2
e2

/h
)

BN
clamped
pristine

Fig. 8 (Color online) Conductance of a 20 nm AC nanoribbon with a

triangular bubble in the central region. The different curves correspond

to the conductance of a pristine ribbon (red), a bubble under clamped

conditions (blue), and a bubble on the h-BN (black) substrate.

magnitude and spatial profile of the PMF in relation to an ideal
(clamped) scenario22, there remains a significant tendency for
electron confinement under the rearranged local strain.
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