Nanoscale

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Md Mokhlesur Rahman,* Irin Sultana, Zhiqiang Chen, Mateti Srikanth, Lu Hua Li, Xiujuan J. Dai, Ying Chen

Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co₃O₄/CNTs from carbon nanotubes (CNTs) and clusters of Co₃O₄ nanoparticles in deionized water. The crucial feature of the composite's structure is that Co_3O_4 nanoparticles clusters are uniformly dispersed and anchored with CNTs networks in which Co_3O_4 guarantees high electrochemical reactivity towards sodium and CNTs provides conductivity and stabilizes the anode structure. We demonstrate that $Co_3O_4/CNTs$ nanocoposite is capable of delivering a stable and high capacity of 403 mA h $g⁻¹$ at 50 mA $g⁻¹$ after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting *ex-situ* techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h $g⁻¹$ at 1.6 A $g⁻¹$ and 190 mA h $g⁻¹$ at 3.2 A $g⁻¹$, respectively. Due to the simple synthesis technique with high electrochemical performance, $Co₃O₄/CNTs$ nanocomposites have a great potential as anode materials for sodium-ion batteries.

Introduction

Grid-scale electrical storage requires low cost, safe, and environmentally benign battery systems. Sodium-ion (Na-ion) batteries (SIBs) fulfil these requirements better than Li-ion batteries because Na is an earth abundant material.¹⁻³ However, widespread implementation of Na-ion batteries is significantly hindered by several major technological barriers, including low Na ion diffusion kinetics in electrodes, large volume changes, and structural pulverization during repeated charging/discharging, which are related to the larger size of Na⁺ ions as compared to that of the Li⁺ ions (1.02 vs 0.59 Å).^{1, 4-7} As electrode materials are the key ingredients of any battery, therefore, the identification of materials suitable for effective use as anodes and cathodes of these devices is critical.

Most Na-ion battery research are focused on exploration of stable and low-cost cathode materials, ⁸ whereas less attention are paid to anode materials. Currently, there are increasing efforts on exploring the anode material, most of which are limited in nongraphitic carbonaceous materials. Hard carbon is the top ranked nongraphitic carbonaceous materials for sodium storage due to the large interlayer distance and the disorder structure, 2 but some disadvantages are revealed for non-graphitic carbonaceous materials such as the large irreversible capacity and poor capacity retention. It was found that anodes based on Na-alloying reaction

Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia

E-mail: m.rahman@deakin.edu.au

can dramatically improve sodium storage capacity, however, large volume variation occurs with Na-alloy compounds during the charge/discharge process, which leads to rapid capacity loss. ^{9, 10}

Recently, as anodes for Na-ion batteries, many metal oxides with intercalation or conversion chemistries have been examined. Among them, most Ti-based oxides including TiO₂ (B), 11 Na₂Ti₃O₇, ¹²⁻¹⁵ Na₂Ti₆O₁₃,¹⁶ Na₄Ti₅O₁₂,¹⁷ Li₄Ti₅O₁₂, 18-20 and P2- $\text{Na}_{0.66}[\text{Li}_{0.22} \text{Ti}_{0.78}]\text{O}_2$, 21 store of Na⁺ ions through intercalation chemistry and thus deliver relatively small reversible capacities of less than 300 mAh g^{-1} because of the limited number of storage sites in their crystalline structures. On the other hand, metal oxides which store Na⁺ ions *via* a conversion reactions are of particular interest due to their high theoretical specific capacities of > 600 mAh g^{-1} . ²² Among metal oxides, transition metal oxides group are well known for lithium storage based on a conversion reaction mechanism,²³ but still seldom uninvestigated for analogous sodium storage. For example, $Co₃O₄$, follows a conversion reaction mechanism with lithium and has long been considered as one of the promising potential anode materials for Li-ion batteries due to its high theoretical capacity of 890 mAh g^{-1} . $^{24-27}$

Regarding Na-ion batteries, a little attention has been paid to study electrochemical behaviors of $Co₃O₄$ with sodium. In 2014, we first attempted to extend the electrochemical investigation of cobalt oxide ($Co₃O₄$) with sodium and demonstrated a possible conversion reaction with a reversible capacity of 447 mA h g^{-1} . ²⁸ Therefore, this work was undoubtedly helpful to further advance towards sodium electrochemistry of Co₃O₄ based electrodes. Later on, Wen et al. 29 also synthesized bowl-like hollow spherical $Co₃O₄$ structure and

AL SOCIETY
CHEMISTRY

studied their sodium-storage behavior, however, electrochemical performance was unsatisfactory. It is widely accepted that the overall performance of Na-ion batteries is highly dependent on the inherent properties of the electrode materials. $2, 30$ Metal oxides, especially transition metal oxides suffer from several problems when used as anode materials which limit their use, such as swelling and shrinking of active material particles upon the insertion and extraction of $Li⁺$ or Na⁺ ions, which induce poor contact due to pulverization between the active materials and the electron conducting agents, leading to low electric and ionic conductivity, 31 which directly affect their cycling stability and rate capability. Therefore, it is still a challenge to further improve sodium storage properties of $Co₃O₄$ based electrodes.

To solve these problems, one effective strategy is to fabricate composites of metal oxides with electronically conductive agents, such as carbon nanofibers, carbon nanotubes, and graphene, in which carbon materials act as a buffer matrix and a good electron transfer medium, and nanosized metal oxides particles alleviate the pulverization of the active material.³²⁻³⁶ Moreover, the use of nanostructured metal oxide as electrode leads to improved electrochemical performances as it provides large surface area, numerous active sites, short mass and charge diffusion distance, and efficient accommodation of volume variation during repeated cycling process.^{30, 31} Inspired by this strategy, Jian et al.³¹ have developed $Co_3O_4@CNTs$ composite where monodispersed hierarchical $Co₃O₄$ spheres intertwined with carbon nanotubes, which are capable to provide both facile electron and $Na⁺$ ion diffusions in the system simultaneously. As a consequence, composite $Co₃O₄@CNTs$ electrode exhibited improved cycling and rate performance. Recently, mesoporous Co₃O₄ sheets/3D graphene networks nanohybrids (Co₃O₄ MNSs/3DGNs) have been reported. 37 It is noticed that Co_3O_4 MNSs/3DGNs nanohybrids exhibit better SIBs performance with enhanced reversible capacity, good cycle performance and rate capability as compared to Co_3O_4 MNSs and $Co₃O₄$ nanoparticles, but rate capability was not as good as $Co_3O_4@CNTs$ composite, which may be due to different conductive agents in both cases. It was found that Na-ion storage properties in carbon nanotubes (CNTs) is better than those of other carbon materials such as activated carbon, mesoporous carbon, and graphene nanosheets. ³⁸

In this work, we report a new "liquid plasma" method to fabricate $Co₃O₄/CNTs$ nanocomposite using a nanosecond pulse atmospheric pressure plasma system (NPAPP) in a single step process. To the best of our knowledge, there is no report on the preparation of metal oxide based nanocomposite by adopting pulsed plasma in liquid. The sodium storage performance of the composite $Co₃O₄/CNTs$ electrode is superior to that of the $Co₃O₄$ based electrode assembled *via* a conventional procedure. When used as a SIB anode, the nanocomposite exhibits a high reversible capacity of 403 mA h g^{-1} at 50 mA g^{-1} current after 100 cycles and shows a remarkable rate capability of 212 mA h g^{-1} at 1.6 A g^{-1} and 190 mA h g^{-1} at 3.2 A g^{-1} , respectively. Such a high rate capability is understood to be a consequence of incorporation of CNTs into $Co₃O₄$ clusters to form $Co₃O₄/CNTs$ composite. In this composite, $Co₃O₄$ guarantees high electrochemical reactivity towards sodium, while the CNTs improves conductivity and stabilizes the anode structure. On the other hand, the electrochemical

ARTICLE Journal Name

sodiation/desodiation process in $Co₃O₄/CNTs$ system is determined by *ex-situ* X-ray diffraction (XRD) combined with high resolution TEM. Direct experimental evidence shows that $Co₃O₄$ undergoes reversible conversion reaction during cycling. This insight provides a significant advance for the understanding of electrochemical sodiation/desodiation process in transition metal oxide system.

Experimental

Synthesis of Co3O⁴ nanoparticles

The Co_3O_4 powder was synthesized by mixing together $CoCl_2 \cdot 6H_2O$ (Sigma-Aldrich, 98%), LiNO₃ (Sigma-Aldrich, 99.9%), LiOH·H₂O (Sigma-Aldrich, 98%), and H_2O_2 (Sigma-Aldrich, 35%) with a molar ratio of 0.01: 0.1: 0.02: 0.05, respectively, followed by grinding the mixture in a mortar with a pestle until it became homogenous. The mixture was immediately transferred to a muffle furnace and heat treated in air at 300° C for 3 h. At this temperature, the $LinO₃:LiOH·H₂O:H₂O₂$ mixture melted to become a molten salt solution. This is significantly different from an aqueous solution, and the water content in the molten salt solution was reduced as much as possible. After cooling naturally in air, the solid mass was washed with a large amount of DI water to dissolve unreacted salts and $Co₃O₄$ solid particles were separated by centrifugation. The product was then dried under vacuum at 100° C overnight to remove the residual water.

Preparation of Co3O4/CNTs nanocomposite

Liquid plasma was used to produce $Co₃O₄/CNTs$ nanocomposite. Liquid plasma is a system that consists of a nanosecond pulse generator, two output channel electrodes, and the reaction chamber with 10 mL of DI water. 39 The two electrodes, with one electrode inside the liquid (bottom) and the other electrode 3 mm above the liquid (top). The molten salt synthesised $Co₃O₄$ powders and multi-walled carbon nanotubes (MCNTs) with a weight ratio of 10:1 were added to 10 mL of deionized water and magnetically stirred at a constant 1000 rpm for 5 min to make a uniform suspension. These uniformly suspended mixtures of $Co₃O₄$ and CNTs were then treated by the liquid plasma for 15 min with an argon gas flow rate of 0.083 L/min. The final product of $Co₃O₄/CNTs$ was separated by centrifugation. The product was then dried under vacuum at 100°C overnight to remove the residual water. The schematic illustration of the composite preparation procedure is shown in Fig. 1.

Fig. 1 Schematic view of composite preparation procedure: (a) starting ingredients of $Co₃O₄$ and CNTs; (b) nanosecond pulse atmospheric pressure plasma system using argon gas; and (c) final product of $Co₃O₄/CNTs$ nanocomposite.

Material characterization

X-ray diffraction (XRD) data were collected from powder sample on a PANalytical X'Pert Pro instrument using a CuKa radiation source (λ = 1.54181 Å) and operated at 40 kV with 50 mA current. The X'Pert

Nanoscale Accepted ManuscriptNanoscale Accepted Manuscrip

Journal Name ARTICLE ARTICLE

data collector software in combination with the Joint Committee on Powder Diffraction Standards (JCPDS) powder diffraction files was used to identify the phases present. The morphology of each sample was examined using scanning electron microscopy (SEM, Carl Zeiss Supra 55 VP). Transmission electron microscopy (TEM) analysis was performed on a JEOL JEM 2100F instrument operated at 200 kV. Elastic image and energy-filtered elemental maps were acquired using a Gatan Quantum ER 965 Imaging Filter installed on the microscope, and a three-window method was used for acquiring elemental maps.

To test the electrochemical performance, $Co₃O₄$ and $Co₃O₄/CNTs$ powder samples were mixed with acetylene carbon black (AB) and a binder, carboxymethyl cellulose (CMC), in a weight ratio of 80: 10: 10 in a solvent (distilled water), whereas CNT electrode was prepared by mixing only CNT powders and binder (CMC) with a weight ratio of 90:10, respectively. The slurry was spread onto Cu foil substrates and these coated electrodes were dried in a vacuum oven at 100° C for 24 h. The average loading mass of active materials in the electrodes was ~1.4 mg. The electrode was then pressed using a disc with a diameter of 25 mm to enhance the contact between the Cu foil and active materials. Subsequently, the electrodes were cut to 1×1 cm². The electrochemical half cells were assembled in an Ar-filled glove box (Innovative Technology, USA) using CR 2032 coin cells with Na metal as the counter electrode, 1M NaClO⁴ dissolved in propylene carbonate (PC) with 2 % FEC (fluoroethylene carbonate) additive as the electrolyte, and Whatman Glass Microfibre Filter (Grade GF/F) as a separator. The cells were galvanostatically discharged-charged in the range of 0.01-3.0V with a Land battery testing system. Cyclic voltammogram (CV) tests were performed on a Solartron Analytical electrochemical work station. For the *ex-situ* XRD measurements, the tested electrochemical cells were disassembled in an Ar-filled glove box. The cycled electrodes were taken out and washed with propylene carbonate (PC) to remove the residual electrolyte.

Results and discussion

XRD data were collected to study the crystal structure and purity of $Co₃O₄$ and composite $Co₃O₄/CNTs$ samples (Fig. 2). Diffraction patterns indicate that both samples are consistent with the cubic phase of Co₃O₄ [JCPDS no. 00-043-1003, space group Fd-3m (no. 227)]. No peaks of any other phases or impurities were detected, demonstrating that materials with high purity could be obtain using the present synthesis strategy. The diffraction peaks at 19.0, 31.2, 36.8, 44.8, 59.3 and 65.21° are associated with the 111, 220, 311, 400, 511, and 440 reflections of $Co₃O₄$, respectively, indicating successful synthesis of $Co₃O₄$.

Fig. 2 X-ray diffraction patterns of $Co₃O₄$ and composite $Co₃O₄/CNTs$ samples.

Fig. 3 shows SEM images of the samples. It is clearly seen that Co_3O_4 sample is composed of agglomerated clusters of nanoparticles (Fig. 3 (a)). A significant change in morphology is observed between $Co₃O₄$ and $Co₃O₄/CNTs$ samples. For the $Co₃O₄/CNTs$ composite sample, the SEM image (Fig. 3(b)) reveals that sample consists of numerous $Co₃O₄$ clusters and CNTs. It is very obvious that clusters are tightly wrapped in the CNTs networks. The homogeneous dispersion and intimate connectivity between $Co₃O₄$ clusters and CNTs can be expected to significantly increase conductivity and to stabilize the anode structure of the $Co₃O₄/CNTs$ composite. A SEM image of CNTs is also depicted in Fig. 3 (c).

Fig. 3 SEM images of (a) $Co₃O₄$; (b) $Co₃O₄/CNTs$; and (d) CNTs samples.

The structure of each sample was visualised using TEM. Bright-field imaging of the $Co₃O₄$ sample reveals dense agglomerates of fine (< 20 nm) and much coarser $(> 50$ nm) crystalline Co₃O₄ (Fig. 4 (a)). The corresponding selected area electron diffraction (SAED) pattern is also depicted in Fig. 4 (b)). The SAED pattern consists of a single component of Co₃O₄ with *d* spacings of 0.476, 0.292, and 0.211 nm which can be referred to the crystallographic directions of (111), (220), and (400), respectively. These results are consistent with the XRD pattern obtained for this sample, as shown in Fig. 2. TEM observation of the composite $Co₃O₄/CNTs$ sample is shown in Fig. 4 (c-e). It is found that the clusters of $Co₃O₄$ are not only anchored to the carbon nanotubes networks (Fig. 4 (c)), but also tightly wrapped

ARTICLE Journal Name

by the CNT networks (Fig. 4 (d)), ensuring that most of the particles can contribute to the charge/discharge process. The HRTEM image of the composite sample reveals lattice fringes of $Co₃O₄$ crystal (Fig. 4(e)).

Fig. 4 TEM characterization: TEM images (a, b) of the $Co₃O₄$ sample: (a) a bright-field image and (b) SAED pattern of the sample; TEM images (c-e) of the composite $Co₃O₄/CNTs$ sample: (c, d) bright-field images and (e) HRTEM image.

To obtain more detailed chemical information of the $Co₃O₄/CNTs$ composite, additional TEM analysis was carried out. A bright-field STEM image and the corresponding energy-filtered elemental maps are shown in Fig. 5. The carbon map (Fig. 5(b)) and cobalt map (Fig. 5(c)) describe the location of CNTs networks and $Co₃O₄$ in the local area of Fig. 5(a), respectively. Fig. 5(d) depicts an overlay of carbon (CNTs) and cobalt (Co) maps, directly showing the distributions of CNTs (magenta colour) and $Co₃O₄$ (green colour) in the composite.

A series of comparative electrochemical measurements are performed to investigate the anode performance of $Co₃O₄$ and $Co₃O₄/CNTs$ electrodes. Cyclic voltammograms (CV) of the electrodes are measured at a scan rate of 0.05 mV s^{-1} in the potential range of 0.01-3.0V (vs Na/Na⁺) at room temperature (Fig. 6). In the CV curves, both electrodes exhibit a broad cathodic peak at \sim 0.4V and a shoulder peak at \sim 0.7V in the first cycle. This first cycle sodiation process corresponds to the reduction of Co_3O_4 to metallic cobalt (Co), the electrochemical formation of $Na₂O$, and the formation of an irreversible solid electrolyte interphase (SEI) layer. $28, 37$ In the oxidation process (de-sodiation process), there is a peak at ~1.6 V for both electrodes, which corresponds to the re-oxidation of Co to $Co₃O₄$ and decomposition of Na₂O.

Fig. 5 Elemental maps of the $Co₃O₄/CNTs$ composite: (a) a brightfield STEM image; (b, c) energy-filtered elemental maps of carbon (CNTs) and Co; and (d) an overlay of carbon and cobalt (colour scheme: carbon-magenta, cobalt-green).

The sodiation/de-sodiation process in the electrodes can be summarised by the following electrochemical reaction.

 $Co_3O_4 + 8Na^+ + 8e^- \leftrightarrow 4Na_2O + 3Co$ (1) From the second cycle, only one cathodic peak can be observed at \sim 0.55 and \sim 0.57 V for the Co₃O₄ and Co₃O₄/CNTs electrodes, respectively. The peaks intensity and the integral areas of all cycles (except first cycle) are very close to each other. These results show that the electrochemically reversibility of the electrodes is gradually improved after the first cycle. However, it is very hard to yield a strong redox peaks like that of lithium-ion batteries (LIBs) because of the large size, heavy mass, and poor mobility of Na⁺.^{28,37,40-42}

Fig. 6 Cyclic voltammogram of the (a) $Co₃O₄$ and (b) $Co₃O₄/CNTs$ electrodes recorded at a scan rate of 0.05 mV s^{-1} between 0.01 and 3.0 V.

Journal Name ARTICLE ARTICLE

To evaluate the cycling performance of the electrodes, the galvanostatic charge and discharge measurements of the assembled cells are performed at a rate of 50 mAg $^{-1}$ in the voltage range of 0.01-3V (vs Na/Na⁺) at room temperature. Fig. 7 (a) shows the cycling stability of Co_3O_4 , CNTs, and Co_3O_4 /CNTs electrodes at a current density of 50 mA g^{-1} . It is clearly seen that composite $Co₃O₄/CNTs$ electrode exhibits superior cycling performance, delivering the discharge capacity of 403 mAh $g⁻¹$ after 100 cycles with a capacity retention of \sim 96% in respect to the 2nd cycle discharge capacity of 420 mAh $g⁻¹$. It is important to note that capacity contribution from CNTs (\sim 20 mAh g^{-1}) is also considered because total weight of electrode active materials includes both $Co₃O₄$ and CNTs. In the case of pure $Co₃O₄$ electrode, a significant capacity fading is observed over the extended cycles. The discharge capacity is calculated to be approximately 208 mAh g^{-1} which represents only \approx 70% capacity retention. Compared with the Co₃O₄ electrode, the cycling performance (in terms of stability and discharge capacity) of $Co₃O₄/CNTs$ electrode is much better, showing that the carbon nanotubes (CNTs) matrix have a positive effect to the system. Fig. 7 (b, c) shows the corresponding chargedischarge voltage profiles of the electrodes for the selected first, second, $50th$, and $100th$ cycles. The first discharge curve displays all the characteristic features related to the various stages of sodiation. The first discharge profile exhibits a plateau around 0.8 V (SEI layer formation) followed by tail at a lower voltage, which confirms the existence of conversion process for the sodiation of $Co₃O₄$ and $Co₃O₄/CNTs$ electrodes. However, the SEI layer formation voltage of the $Co₃O₄$ based electrode is different for Na-ion and Liion systems. $43, 44$ In charging state, a significant plateau at $^{\sim}1.6V$ is observed for both electrodes which is related to de-sodiation process due to decomposition of $Na₂O$. A commendable improvement of Coulombic efficiency of ~65% is measured in the first cycle for the $Co₃O₄/CNTs$ electrode with respect to the Coulombic efficiency of $Co₃O₄$ (51%) electrode (Fig. 7 (d)). After initial few cycles, both electrodes exhibit high Coulombic efficiency of > 95%.

Fig. 7 Electrochemical performance of the electrodes in the voltage range of 0.01-3.0 V: (a) cycling stability up to 100 cycles at 50 mA g-1; (b, c) corresponding galvanostatic discharge-charge voltage profiles for the first, second, 50th, and 100th cycles; and (d) Coulombic efficiency up to 100 cycles.

Additional examination of the electrochemical performance of the $Co₃O₄$ and $Co₃O₄/CNTs$ electrodes is shown in Fig. 8. The consecutive cycling behaviour at different charge-discharge rates, measured after 5 cycles in ascending steps from 0.05 to 3.2 A g^{-1} , followed by a return to 0.05 A g^{-1} , is presented in Fig. 8 (a). At the initial 5th cycle, the $Co₃O₄/CNTs$ electrode shows a high discharge capacity of 410 mA h g^1 at 0.05 A g^1 , which is changed to 333 mA h g^{-1} at 0.1 A g^{-1} , 313 mA h g^{-1} at 0.3 A g^{-1} , 253 mA h g^{-1} at 0.8 A g^{-1} , 212 mA h g^{-1} at 1.6 A g^{-1} , and 190 mA h g^{-1} at 3.2 A g^{-1} . On the other hand, consecutive cycling performance of the pure $Co₃O₄$ electrode is unsatisfactory. After 35 cycles with different charge-discharge rates, the discharge capacity of the $Co₃O₄/CNTs$ electrodes at 0.05 A g^{-1} is still 408 mA h g^{-1} which represents above 99 % capacity recovery. It can be seen that the $Co₃O₄/CNTs$ electrode could tolerate a very high current rate and its reversible capacity is 212 mA h g^{-1} at 1.6 A g^{-1} and 190 mA h g^{-1} at 3.2 A g^{-1} , which is not only better than $Co₃O₄$ electrode but also much higher than that of the hard carbon anode materials currently used for Na-ion batteries.⁴⁵ The electrochemical impedance spectra of the $Co₃O₄$ and $Co₃O₄/CNTs$ electrodes are shown in Fig. 8 (b). In the spectrum, the inclined lines in lower frequency region correspond to the Na diffusion process inside the electrode material and semicircle in the medium-frequency region is related to the charge-transfer resistance (*Rct*) on electrolyte and the electrode interface. The Nyquist plots in the medium frequency range (100 kHz to 0.01 Hz) clearly show that the diameter of the semicircle of Co_3O_4 /CNTs electrode is much smaller than that of the $Co₃O₄$ electrode, indicating that the $Co₃O₄/CNTs$ electrode provides much easier charge transfer at the electrode-electrolyte interface and, consequently, decrease the overall cell's internal resistance. The incorporation of CNTs into $Co₃O₄$ by pulsed plasma in liquid medium significantly enhances the conductivity of the $Co₃O₄/CNTS$ composite, since the CNTs provide conductive paths in the vicinity of the $Co₃O₄$ clusters, which is considered a key factor in improving the rate capability and cycling stability of the $Co₃O₄/CNTs$ composite.

Fig. 8 Consecutive cycling performance and electrochemical impedance spectroscopy of $Co₃O₄$ and composite $Co₃O₄/CNTs$ electrodes: (a) consecutive cycling performance at different current rates, ranging from 0.05 to 3.2 A g^{-1} , followed by a return to 0.05 A g^{-1} ; and (b) electrochemical impedance spectroscopy of fresh cells (without cycling).

To realize the structural robustness and electrochemical sodiation/de-sodiation of the electrodes, a post-cycling investigations (Fig. 9) were carried out on the electrodes after 100 cycles at a current density of 50 mA g^{-1} . Fig. 9 (a, b) show the SEM and TEM images of the $Co₃O₄$ electrode and Fig. 9 (c-e) represent images of the $Co₃O₄/CNTs$ electrode, respectively. It is obvious that the Co_3O_4 electrode develops large crack (Fig. 9 (a)) with particles aggregate (Fig. 9 (b)) which leads to active materials detachment from current collector, resulting in the deterioration in performance. In contrast, no obvious cracks are visible in the $Co₃O₄/CNTs$ electrode (Fig. 9 (c)). However, the role of CNT as well as its distribution in the electrode are very difficult to understand from this SEM image. It seems that CNT is embedded in particles during cycling process. Therefore, additional TEM analysis was required for this purpose. Fortunately, morphology of the Co₃O₄/CNTs electrode sample remains well-preserved after sodiation/de-sodiation. Compared with the original morphology, clusters of $Co₃O₄$ nanoparticles still anchored with carbon nanotubes networks (Fig. 9 (d)), demonstrating that the CNTs matrix and $Co₃O₄$ nanoparticles can effectively accommodate the volume variation during cycling and alleviate the pulverization and aggregation of nanoparticles. The HRTEM image further demonstrates the distribution of CNTs and $Co₃O₄$ particles after cycling (Fig. 9 (e)).

ARTICLE Journal Name

Fig. 9 Post-cycling investigations of the electrodes after 100 discharge-charge cycles at 50 mA g^{-1} : (a, b) images of Co₃O₄ electrode: (a) SEM image and (b) a bright-field TEM image; (c-e) images of $Co₃O₄/CNTs$ electrode: (c) SEM image, (d) a brightfield TEM image, and (e) HRTEM image.

To determine the products after discharge-charge, *ex-situ* HRTEM and XRD were performed on electrodes after ten cycles. The SAED pattern of the $Co₃O₄/CNTs$ electrode at discharging to 0.01V is shown in Fig. 10 (a). The SAED pattern shows the discharge products of $Na₂O$ (200) and Co (111), respectively. When the electrode is charged back to 3.0 V, the SAED pattern (inset in Fig. 10 (b)) shows a single component of $Co₃O₄$ with a *d* spacing of 0.472, 0.290, 0.247, and 0.207 nm which are well matched with crystallographic directions of (111), (220), (311), and (400), respectively. The charge product of $Co₃O₄$ is also further confirmed by HRTEM analysis (Fig. 10 (b)) with a *d* spacing of 0.292 nm, which is in good agreement with (220) plane of $Co₃O₄$. To support the results obtained from *ex-situ* HRTEM investigation, the *ex-situ* XRD analysis of the fully discharged-charged electrodes for the $10th$ cycle is shown Fig. 10 (c). Being discharged to 0.01 V, there is an evidence of diffraction peak of Na₂O (JCPDS no. 00-003-1074). No Co peaks are observed. Unfortunately, there is significant overlap of these peaks with copper current collector peaks in the measured XRD patterns. When electrode was charged back to 3.0 V, all diffraction peaks for the Co_3O_4 phase reappeared. The above results clearly demonstrate that the electrochemical sodiation/de-sodiation of the Co3O4/CNTs electrode undergoes *via* reversible conversion reaction as described in equation (1).

Fig. 10 *ex-situ* TEM and XRD on $Co₃O₄/CNTs$ electrodes at 10th cycle: (a) SAED pattern at fully discharge state; (b) HRTEM image and inset

6 | *J. Name*., 2012, **00**, 1-3 This journal is © The Royal Society of Chemistry 20xx

Journal Name ARTICLE ARTICLE

SAED pattern at fully charge state; and (c) XRD patterns at fully discharge and charge state.

The superior electrochemical performance of the $Co₃O₄/CNTs$ electrode is attributed to the composite microstructure of the $Co₃O₄/CNTs$ sample. In this composite structure, $Co₃O₄$ nanoparticles clusters anchored CNTs give a number of advantages such as (i) $Co₃O₄$ nanoparticles clusters significantly decrease the absolute stress/strain during the discharge-charge process; (ii) $Co₃O₄$ nanoparticles clusters anchored carbon nanotubes networks effectively accommodate the large volume change and prevent the aggregation of nanoparticles during Na-ion insertion and extraction processes; (iii) CNTs matrix provides electronic conductivity and stabilizes the anode structure; and (iv) both $Co₃O₄$ nanoparticles and carbon nanotubes (CNTs) reduce the traverse time for both electrons and sodium ions. These advantages result in a stable and increased reversible capacity as well as an improved rate capability. It is expected that this novel composite preparation technique can be extended to produce nanocomposites of other functional oxides. **Conclusions**

A composite architecture of Co_3O_4 /CNTs based on clusters of Co_3O_4 nanoparticles anchored carbon nanotubes (CNTs) has been prepared by combining a molten salt precipitation process and a liquid plasma for the first time. Microscopy investigation reveals that larger clusters of $Co₃O₄$ nanoparticles are reduced to smaller clusters under UV radiation in deionised water and uniformly dispersed along the chains of CNTs networks. Therefore, this novel composite structure plays a crucial role in the enhancement of electrochemical properties in sodium-ion batteries where both electron transfer and Na^+ ion diffusions take place simultaneously. The $Co₃O₄/CNTs$ composite with a micro-nanostructure exhibits a stable cycling performance and superior rate capability. Hence, our smart electrode design enables $Co₃O₄/CNTs$ composite to be a potential anode material for sodium-ion batteries.

Acknowledgements

Financial support from an Alfred Deakin Fellowship Award 2015 is acknowledged. Authors also acknowledge the support from Deakin Advanced Characterization Facility. The authors thank Dr Alexey M Glushenkov and Mr Debasis Poddar for their help with TEM.

Notes and references

- 1 S.W. Kim, D.H. Seo, X. Ma, G. Ceder and K. Kang, *Adv. Energy Mater.*, 2012, **2**, 710.
- 2 M.D. Slater, D. Kim, E. Lee and C.S. Johnson, *Adv. Funct. Mater.*, 2013, **23**, 947.
- 3 H. Pan, Y.S. Hu and L. Chen, *Energy Environ. Sci*., 2013, **6**, 2338.
- 4 M. D. Slater, D. Kim, E. Lee and C. S. Johnson, *Adv. Funct. Mater.*, DOI: 10.1002/adfm.201200691.
- 5 A. Langrock, Y. Xu, Y. Liu, S. Ehrman, A. Manivannan and C. Wang, *J. Power Sources*, 2013, **223**, 62.
- 6 L. Fu, K. Tang, K. Song, P. A. Van Aken, Y. Yu and J. Maier, *Nanoscale*, 2014, **6**, 1384.
- 7 Y. Lu, N. Zhang, Q. Zhao, J. Liang and J. Chen, *Nanoscale*, DOI: 10.1039/c4nr06432a.
- 8 V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. C. Gonzalez and T. Rojo, *Energy Environ. Sci.*, 2012, **5**, 5884.
- 9 J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai and H. Yang, *Chem. Commun.*, 2012, **48**, 7070.
- 10 Y. Xu, Y. Zhu, Y. Liu and C. Wang, *Adv. Energy Mater.*, 2013, **3**, 128.
- 11 J. P. Huang, D. D. Yuan, H. Z. Zhang, Y. L. Cao, G. R. Li, H. X. Yang and X. P. Gao, RSC Adv., 2013, **3**, 12593.
- 12 A. Rudola, K. Saravanan, C. W. Mason and P. Balaya, *J. Mater. Chem. A*, 2013, **1**, 2653.
- 13 P. Senguttuvan, G. Rousse, V. Seznec, J. M. Tarascon and M. R. Palacin, *Chem. Mater.*, 2011, **23**, 4109.
- 14 W. Wang, C. Yu, Z. Lin, J. Hou, H. Zhu and S. Jiao, *Nanoscale*, 2013, **5**, 594.
- 15 W. Wang, C. Yu, Y. Liu, J. Hou, H. Zhu and S. Jiao, *RSC Adv.*, 2013, **3**, 1041.
- 16 A. Rudola, K. Saravanan, S. Devaraj, H. Gong and P. Balaya, *Chem. Commun.*, 2013, **49**, 7451.
- 17 S. H. Woo, Y. Park, W. Y. Choi, N.-S. Choi, S. Nam, B. Park and K. T. Lee, *J. Electrochem. Soc.*, 2012, **159**, A2016.
- 18 X. Yu, H. Pan, W. Wan, C. Ma, J. Bai, Q. Meng, S. N. Ehrlich, Y.S. Hu and X.Q. Yang, *Nano Lett.*, 2013, **13**, 4721.
- 19 Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.-S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen and X. Huang, *Nat. Commun.*, 2013, **4**, 1870.
- 20 L. Zhao, H. L. Pan, Y. S. Hu, H. Li and L. Q. Chen, *Chin. Phys.*, 2012, **21**, 028201.
- 21 Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao, Y.S. Hu, H. Li, X.Q. Yang, L. Chen and X. Huang, *Nat. Commun.*, 2013, **4**, 2365.
- 22 Y. Kim, K. H. Ha, S. M. Oh and K. T. Lee, *Chem. Eur. J.*, 2014, **20**, 11980.
- 23 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon, *Nature*, 2000, **407**, 496.
- 24 L. Li, K. H. Seng, Z. Chen, Z. Guo and H. K. Liu, *Nanoscale*, 2013, **5**,1922.
- 25 N. Du, H. Zhang, B. D. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. R. Yang, X. H. Huang and J. P. Tu, *Adv. Mater.*, 2007, **19**, 4505.
- 26 J. S. Chen, T. Zhu, Q. H. Hu, J. Gao, F. Su, S. Z. Qiao and X. W. Lou, *ACS Applied Materials & Interfaces*, 2010, **2**, 3628.
- 27 X. W. Lou, D. Deng, J. Y. Lee and L. A. Archer, *J. Mater. Chem.*, 2008, **18**, 4397.
- 28 M. M. Rahman, A. M. Glushenkov, T. Ramireddy and Y. Chen, *Chem. Commun.*, 2014, **50**, 5057.
- 29 J.W. Wen, D.W. Zhang, Y. Zang, X. Sun, B. Chen, C.X. Ding, Y. Yu and C.H. Chen, *Electrochim. Acta*, 2014, **132**, 193.
- 30 V. Palomares, M. C. Cabanas, E. C. Martínez, M.H. Hanb and T. Rojo, *Energy Environ. Sci.*, 2013, **6**, 2312.
- 31 Z. Jian, P. Liu, F. Li, M. Chen and H. Zhou, *J. Mater. Chem. A*, 2014, **2**, 13805.
- 32 L. Wu, X.H. Hu, J.F. Qian, F. Pei, F.Y. Wu, R.J. Mao, X.P. Ai, H.X. Yang and Y.L. Cao, *Energy Environ. Sci*., 2014, **7**, 323.
- 33 D.Y.W. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev and O. Lev, *Nat. Commun.*, 2013, **4**, 2922.
- 34 Y.J. Zhu, X.G. Han, Y.H. Xu, Y.H. Liu, S.Y. Zheng, K. Xu, L.B. Hu and C.S. Wang, *ACS Nano*, 2013, **7**, 6378.
- 35 D.W. Su, H.J. Ahn and G.X. Wang, *Chem. Commun.*, 2013, **49**, 3131.
- 36 M.H. Liang and L.J. Zhi, *J. Mater. Chem.*, 2009, **19**, 5871.
- 37 Y. Liu, Z. Cheng, H. Sun, H. Arandiyan, J. Li and M. Ahmad, *J. Power Sources*, 2015, **273**, 878.
- 38 Y. Wang, D. Su, C. Wang and G. Wang, *Electrochem. Commu*., 2013, **29**, 8.
- 39 S. B. Ponraj, Z. Chen, L. H. Li, J. S. Shankaranarayanan, G. D. Rajmohan, J. Plessis, A. J. Sinclair, Y. Chen, X. Wang, J. R. Kanwar and X. J. Dai., *Langmuir*, 2014, **30** (35), 10712.
- 40 M. M. Rahman, J. Z. Wang, X. L. Deng, Y. Li and H. K. Liu, *Electrochim. Acta*, 2009, **55**, 504.
- 41 J. Chen , L. N. Xu , W. Y. Li and X. L. Gou, *Adv. Mater.*, 2005, **17**, 582.
- 42 M. Valvo, F. Lindgren, U. Lafont, F. Björefors and K. Edström, *J. Power Sources*, 2014, **245**, 967.
- 43 X. Guo, W. Xu, S. Li, Y. Liu, M. Li, X. Qu, C. Mao, X. Cui and C. Chen, *Nanotechnology*, 2012, **23**, 465401.

ARTICLE Journal Name

- 44 X. Yang, K. Fan, Y. Zhu, J. Shen, X. Jiang, P. Zhao and C. Li, *J. Mater. Chem*., 2012, **22**, 17278.
- 45 K. Tang, L. Fu, R. J. White, L. Yu, M. M. Titirici and M. Antonietti, J. Maier, *Adv. Energy Mater.*, 2012, **2**, 873.