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Abstract: A theoretical model of the nanoscale spin-Seebeck power device (SSPD) is proposed based on the 

longitudinal spin-Seebeck effect in bilayers made of a ferromagnetic insulator and a normal metal. 

Expressions for the power output and thermal efficiency of the SSPD are derived analytically. The 

performance characteristics of the nanoscale SSPD are analyzed by using the numerical simulation. The 

maximum power output density and efficiency are calculated numerically. The effect of the spin Hall angle on 

performance characteristics of the SSPD is analyzed. The choice of materials and the structure of the device 

are discussed. The optimum criteria of some key parameters of the SSPD, such as the power output density, 

efficiency, thickness of the normal metal, and load resistance, are given. The results obtained here can provide 

a theoretical basis for the optimal design and operation of nanoscale SSPDs.  
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1. Introduction 

The conventional semiconductor thermoelectric generator is able to convert a part of the heat absorbed by the 

hot junction of the thermoelectric device directly into electrical power, based on the Seebeek effect [1]. 

Recently, the spin-Seebeck effect (SSE) involving spintronics and spin calorironics was proposed by Uchida 

who observed the spin current induced by the temperature gradient in the metallic magnet and the spin voltage 

generated by the inverse spin Hall effect in the normal metal [2]. The analogous SSEs were investigated 

theoretically and experimentally in the ferromagnetic metal [3], ferromagnetic zigzag α -graphyne 

nanoribbons [4], ferromagnetic semiconductor [5], ferromagnet superconductor junction [6], and ferromagnetic 

insulator [7]. The mechanism of the SSE is that a temperature difference between the magnons in the magnetic 

insulator and the electrons in the metal contact leads to thermal pumping of a spin current. This spin current is 

transformed into an observable voltage by the inverse spin Hall effect [8]. On the other hand, the theories of 

spin-pumping [9], phonon-drag spin current [10], magnon-drag spin current [11], and acoustic spin pumping 

[12] were applied to investigate the SSE and design the spin nano-devices such as the nanoscale spin Seebeck 

effect diode [13], spin thermoelectric coating [14], spin valve [15], magnetic tunneling junction [16], spin wave 

logic device [17], spin field effect transistor [18], etc. The spin current produced by the SSE can be 

perpendicular or parallel to the temperature gradient, so the SSE can be divided into two types: transverse and 

longitudinal SSEs [19]. The longitudinal SSE was observed in the structure with a ferromagnetic insulator 

material in contact with a normal metal and investigated intensively by many researchers in the recent years 

[19-28]. Uchida et al. observed firstly the longitudinal SSE in the device composed of an Y3Fe5O12 (YIG) and a 

Pt film and discovered a spin current generated in the Pt film along the temperature gradient and a spin voltage 

generated at the YIG/Pt interface [20]. They studied the longitudinal SSE in various garnet ferrite samples 

Y3−xRxFe5−yMyO12 (R=Gd, Ca; M=Al, Mn, V, In, Zr). The obtained results showed that the longitudinal SSE 

voltage in those samples has a positive correlation with the Curie temperature and the saturation magnetization, 
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but no clear correlation with the gyromagnetic ratio and the Gilbert damping constant of the samples [21]. 

Agrawal et al. experimentally verified the magnon spin-current theory for the longitudinal SSE in the YIG/Pt 

system [22]. Kikkawa et al. proved that intrinsic longitudinal SSE in Au/YIG and Pt/Cu/YIG systems are free 

from the anomalous Nernst effect caused by an extrinsic proximity effect and showed that the longitudinal SSE 

appears even when the mechanism of the proximity Nernst effect is clearly removed [23]. Xu et al. designed 

devices NiFe/Cu/Pd(Ta) that can convert the heat-driven spin current to a transverse electric voltage and 

isolated the longitudinal SSE, anomalous Nernst effect generated by the ferromagnetic metal, and anomalous 

Nernst effect induced by proximity in the non-magnetic metal [24]. Mendes et al. investigated experimentally 

the longitudinal SSE in YIG/Ir20Mn80 and compared it with YIG/Pt. The obtained results showed that Ir20Mn80 

has a spin Hall angle similar to Pt, the voltage generated in Ir20Mn80 by the inverse spin Hall effect is quite 

larger than that in Pt [25]. Rezende et al. proposed a model for controlling the heat of the spin pumping 

damping and calculating the distributions of the temperatures of the magnon, phonon, and electron in 

ferromagnetic insulator/normal metal hybrid structures [26, 27]. Li et al. presented a significant structure 

composed of a hexagonal ferrite thin film BaFe12O19, a Pt, and a sapphire substrate, which can be applied to the 

spin battery that converts light into electric voltage [28]. Recently, Flipse observed the spin Peltier effect in 

magnetic insulators and verified the reciprocity between the SSE and the spin Peltier effect [29]. The discovery 

of the spin Peltier effect is attractive for designing nanoscale thermoelectric generators and refrigerators. In 

addition, Cahaya [30] proposed two models of the spin Seebeck power device (SSPD) and derived expressions 

for the efficiency of the SSPD based on spintronics and spin caloritronics. By using the thermal analysis 

method of the conventional thermoelectric generator, the figures of merit of two SSPDs were estimated. 

In the present paper, the performance characteristics of a nanoscale SSPD are investigated. The maximum 

power output density and efficiency are calculated. The optimum problems related to the choice of materials, 

geometry structure of the normal metal, and matching of the load resistance are discussed in detail. The choice 
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criteria of key parameters are given.  

 

2. Model description  

The model and effective circuit of the SSPD consisting of a ferromagnetic insulator, a normal metal, a load 

resistance 
LR , and an external magnetic field H  are shown in Fig. 1, where M  is the magnetization, 

IR  

and E  are the internal resistance and electromotive force of the SSPD, 
SJ  and QJ  are the spin current and 

average heat flow, 
cJ  and V  are the average transverse charge current and transverse voltage across 

LR , 

Fd  and Nd  are the thicknesses of the ferromagnetic insulator and normal metal, L  and W  are the length 

and width of the ferromagnetic insulator/normal metal bilayer. Fig. 1(a) shows clearly that when the external 

magnetic field is applied to the x  direction, a temperature gradient between the ferromagnetic insulator and 

the normal metal leads to a part of the heat flow QJ  to convert into a spin current 
SJ  [29], which can be 

transformed into the charge current 
cJ  in the normal metal with the help of the inverse spin Hall effect, and 

the average transverse charge current cJ  goes through an external resistance to generate electricity power. It 

should be pointed out that the amount of the spin current flowing through the ferromagnetic insulator/normal 

metal interface is governed by the complex spin-mixing conductance G
↑↓

. It is assumed in the model that H  

is parallel to M  (the angle between the magnetic field and the magnetization 00α = ). 

 

3. Power output and efficiency 

The magnon temperature ( )mT z  and phonon temperature ( )pT z obey the following equations [27, 31-35] 

( ) ( ) ( )
2

p mm

p m2

T m mp

1
0

c cd T z
T z T z

cdz κ τ
 + − =                              (1) 

and 

( )
( ) ( )

2

p p m

m p2

T p mp

1
0

d T z c c
T z T z

cdz κ τ
 + − =  ,                             (2) 
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 5

where 
mc , pc , and T m pc c c= +  are the magnon, phonon, and total heat capacities per unit volume, 

mκ  and 

pκ  are the magnon and phonon thermal conductivities, and 
mpτ  is the magnon-phonon relaxation time. 

Because there are a substrate attached to the bottom ( Fz d= − ) of the ferromagnetic insulator and normal metal 

on the top ( 0z = ) of the ferromagnetic insulator, it may be assumed that fixed phonon temperatures 

p

b constT =  at 
Fz d= −  and p

t constT =  at 0z = , and that the phonon temperature is equal to the electron 

temperature at two interfaces, i.e., p e

b t b t b t constT T T= = = , where subscripts b/t indicate bottom and top. The 

boundary conditions of the phonon and magnon systems are, respectively, given by [35] 

( )
( )

( )
( )

th,b

F

th,t

p p

p b p F

p p

p p t

0

0

z d

z

dT z
T T d

dz

dT z
T T

dz

κ κ

κ κ

=−

=


 − = − −  





 − = −  


                                  (3) 

and 

( ) ( )

( ) ( )

th,b

F

th,t

m m

m b m F

m m

m m t

0

0

z d

z

dT z
T T d

dz

dT z
T T

dz

κ κ

κ κ

=−

=


− = − −   



− = −  


,                                (4) 

where 
th,b

pκ  and 
th,t

pκ  are the phonon interfacial thermal conductances, and 
th,b

mκ  and 
th,t

mκ are the magnon 

interfacial thermal conductances. With the help of these boundary conditions, ( )m 0T  can be calculated from 

Eqs. (1) and (2).  

Based on the above theory, the SSE current 
SJ  pumped from the ferromagnetic insulator into the normal 

metal is proportional to the temperature difference ( )e

t m 0T T T∆ = −  and the interface spin Seeebeck 

coefficient 
SL  and is given by [29, 30] 

                               ( ) e

m t0S SJ L T T = −  ,                                    (5) 

where ( )2S B r s cL k G eM Vγ π= h , h  is the reduced Planck constant, e  is the elementary positive charge, γ  

is the gyromagnetic ration, 
sM  is the saturation magnetization, 

Bk  is the Boltzmann constant, 
rG  is the real 
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 6

part of the spin mixing conductance G
↑↓

[36], and 
cV  is the magnetic coherence volume [35]. 

Because the Onsager symmetry can be reflected by a linear response matrix, the spin current and average 

heat flow over the ferromagnetic insulator/normal metal interface are given by [30]  

                               
( )

2Ss S S

Q S S S

L TJ G e

J L T K L T T T

µ −    
=     + ∏ −∆   

,                     (6) 

where sµ µ µ
↑ ↓

= −  is the spin accumulation, µ
↑

 and µ
↓

 are spin-up and spin-down electrochemical 

potentials, 
S SS T∏ =  is the spin Peltier coefficient due to the Onsager reciprocity, ( ) e

m t0 2T T T = +  , 

S S SS L G=  is the spin Seebeck coefficient, 
SG  is the interface spin injection conductance, and K  is the 

thermal conductance coefficient in the ferromagnetic insulator/normal metal interface. 

The relation between the transverse charge current density ( ) ( ) ( )c c Nj z J z d W=
rr

 and the spin current 

density ( ) ( )s sj z J z A=
rr

 inside the normal metal at distance z  induced by the inverse spin Hall effect can be 

given by [11] 

                                ( ) ( ) ˆ
c SH sj z j z mθ= ×
r r

,                                      (7) 

where A LW= is the area of the ferromagnetic insulator/normal metal interface, m̂  is the spin-polarization 

vector, and the spin Hall angle 
SHθ  quantifies the conversion efficiency from the spin to the charge current 

and is determined by the ratio of the spin Hall conductance to the charge conductance. 

The spin current and charge current densities in the normal metal can be given by [30] 

                          
( )
( )

1

1 2

cc SH

N

SHs s

e yj

j e z

µθ
σ

θ µ

∂ ∂    
= −      − ∂ ∂    

,                           (8) 

where ( ) 2cµ µ µ
↑ ↓

= +  is the charge electrochemical potential and 
Nσ  is the spin conductivity. 

The spin accumulation 
sµ  obeys the spin diffusion equation in the normal metal [37], i.e., 

                                   
22

s sµ µ λ∇ = ,                                        (9) 

where sDλ τ=  is the spin-flip relaxation length, sτ  is the spin relaxation time, and D  is the spin 

diffusion coefficient. 
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By using boundary conditions ( )0s Sj z J A= =  and ( ) 0s Nj d = , the spin diffusion equation can be 

expressed as [30] 

                
1

1
sinh cosh cosh

2

s N

SH S N SH N S

d zz z
V G G VG L T

e a L L

µ λ λ
θ θ

λ λ λ
−    = + − + ∆    

    
,         (10) 

where ( ) cV L e yµ= − ∂ ∂  is the induced transverse voltage, 
N NG WLσ λ=  is the spin conductance, and 

1 cosh( / ) sinh( / )S N N Na G d G dλ λ= +  

By using Eqs. (8) and (10), the relation between the average transverse charge current 
cJ  and the transverse 

voltage V  in the normal metal is derived as [30]  

                
2

3
0

2

1
tanh

2

Nd N S N N SH

c c N SH

N

G L d d V V
J j d Wdz T a

d L a L L

λ θ λ
θ

λ
 

= = − ∆ + + 
 

∫ ,               (11) 

where 
2 coth N

N S

d
a G G

λ
= +  and 

3 ( 2 tanh ) / ( coth )
2

N N

S N N S

d d
a G G G G

λ λ
= + + . 

Equation (11) shows that the average transverse charge current cJ  is not an independent variable but a 

function of variables 
Nd , L , and V . When the circuit is opened, 

cJ =0 and the open voltage 
openV  is given 

by 

                 
( )2

2 3

tanh
2

S SH N

open

N SH

LL T d
V

a d a

θ
λλ λ θ

− ∆
=

+
,                                         (12) 

which varies with Nd λ  and /L λ  for other given parameters, while /openV Lλ  is only a function of Nd λ . 

It is seen from Eq. (12) that both openV  and /openV Lλ  are not of monotonic functions of 
Nd λ . When 

Nd λ =0 or 
Nd λ →∞ , both 

openV  and /openV Lλ  are equal to zero. This means that there exists an optimal 

value of Nd λ  at which both openV  and /openV Lλ  attain their maximums, as shown in Fig. 2. When the 

circuit is shortened, V =0 and the average transverse charge current ,c shJ  at the short circuit is given by  

,

2

tanh
2

S N

c sh N SH

L d
J G T

L a

λ
θ

λ
= − ∆ ,                                           (13) 

which varies with
Nd λ  and L λ  for other given parameters, while ,c shJ L λ  increases with the increase of 

Nd λ , as shown in Fig.3, showing both
,c shJ  and

,c shJ L λ  are of monotonically increasing functions of 
Nd λ . 

By using Eq. (11), the power output P of the SSPD is expressed as  
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 8

               2

3

2

( ) tanh
2

N S N N

open I c c c SH SH

G V L d dV
P V R J J VJ T a

L a L

λ λ
θ θ

λ λ
  

= − = = − ∆ + +  
  

,         (14) 

where 
IR  is the internal resistance of the SSPD and 2

I cR J  is the Joule heating produced by the electric 

current flowing through the internal resistance. By substituting 0z =  into Eq. (10) and combining Eq. (6), the 

averaged heat in the ferromagnetic insulator/normal metal interface is given by 

                ( )
1

1 cosh coshS N N

Q SH N S S S

L T d dV
J G L T T L S T K

a L

λ
θ

λ λ
  

= − − − ∆ − ∆ +  
  

,             (15) 

and consequently, the efficiency of the SSPD can be expressed as 

                
( ) ( )

( )

2

1 2

3 4Q

c V L c V LP

J c V L c

λ λ
η

λ

+
= =

+
,                                           (16) 

where 2

1 3

N

N SH

d
c G a θ

λ
 

= + 
 

, 
2

2

tanh
2

S N

N SH

L d
c G T

a
θ

λ
= ∆ , 3

1

1 coshS SH N NL T G d
c

a

θ
λ

 
= − 

 
, and 

( )
2

4

1

coshS N

S S

L T T d
c T L S T K

a λ
∆

= ∆ + − . Equations (14) and (16) show clearly that the effect of the Joule heating 

on the power output and efficiency has been considered in the present model. 

 

4. Maximum power output and efficiency 

It can be proved by Eqs. (14) and (16) that 0Nd λ = , 0V Lλ = , 
Nd λ→∞ , or V Lλ →∞ , both P  

and η  are equal to zero. This means that both P  and η  are not of monotonic functions of 
Nd λ  and 

V Lλ . Using Eqs. (14) and (16), we can plot the three-dimensional projection graphs of the power output 

density *P P A=  and efficiency η  of the SSPD varying with V Lλ  and 
Nd λ , as shown in Fig. 4.  

Fig. 4(a) shows that there exist a maximum power output density *

maxP  and the optimal values of V Lλ  

and 
Nd λ . The physical causes may be explained as follows. When the thickness 

Nd  increases from zero, the 

spin current injecting into the normal metal increases quickly, leading to the increase of the average transverse 

charge current and the power output density. When Nd  is large, the electromotive force generated by the 

inverse spin Hall effect will decrease as 
Nd  increases continuously, resulting to the decrease of the average 

transverse charge current and the power output density. Thus, there is an optimal value for Nd λ  so that the 
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 9

power output density attains its maximum. On the other hand, when V Lλ  is small, the increment of V Lλ  

is larger than the reduction of the average transverse charge current, leading to the increase of the power output 

density. When V Lλ  is large, the increment of V Lλ  is less than the reduction of the average transverse 

charge current, resulting to the decrease of the power output density. Thus, the power output density firstly 

increases and then decreases as V Lλ  increases, and consequently, there is a maximum value of the power 

output density for the optimal value of V Lλ . Using Eq. (14), we can derive the optimal values of V Lλ at 

the optimized power output density 
optP as 

                2

12 2

open

P

VcV

L c L

λλ −  = = 
 

.                                                   (17) 

Equation (17) shows that ( )/
P

V Lλ  is not a monotonic function of 
Nd λ , as shown in Fig. 2 (b). In such a 

case, the optimized power output and the average transverse charge current at the optimized power output 

density are, respectively, given by  

                
2

2

14
opt

c
P

c
= ,                                                             (18) 

and 

                
,2

2 2

c shc

P

J LJ L c

λ λ
− 

= = 
 

.                                                   (19) 

Equation (19) indicates that like the average transverse charge current at the short circuit, the average 

transverse charge current at the optimized power output density is also a monotonically increasing function of 

Nd λ , as shown in Fig.3(b). Using Eq. (18), one can conveniently generate the *~N optd Pλ  curve for different 

values of the spin Hall angle SHθ , as shown in Fig.5.  

Fig. 4(b) shows that there exist a maximum efficiency 
maxη  and the optimal values of V Lλ  and 

Nd λ . 

Using Eq. (16), we can derive the optimal values of V Lλ at the optimized efficiency optη as  

                   ( ) 1 4 5 1 3
/ ( ) / ( )V L c c c c c

η
λ = − + ,                                          (20) 

where ( )2

5 1 2 3 4 1 4
c c c c c c c= − + . In such a case, the value of /cJ L λ  at the optimized efficiency and the 

optimized efficiency optη can be, respectively, derived as 
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 10

                    ( ) 1 4 5 3 2
/ ( )/

c
J L c c c c c

η
λ = + −                                            (21) 

and 

                   
2

2 3 1 4 5 1 4 5

2 2

1 4 3 3 1 4 5

( ) ( )

( )
opt

c c c c c c c c

c c c c c c c
η

− + + +
=

− +
.                                       (22) 

Using Eqs. (20)-(22), we can generate the curves of ( )/V L
η

λ , ( )/
c
J L

η
λ , and 

optη  varying with
Nd λ , as 

shown by Figs. 2(b), 3(b), and 5, respectively. 

It can be seen from Fig. 5 that the optimized power output density *

optP  and efficiency optη increase as 
SHθ  

increases. With the increase of the doping of nonmagnetic metal, 
SHθ  can increase and the performance of the 

SSPD can be improved. Fig. 5 shows that for an SSPD, when the value of Nd λ  is designed to be equal to 

( )N Pd λ , the power output density can attain its maximum and the corresponding efficiency is equal to 
Pη ; 

when the value of Nd λ  is designed to be equal to ( )Nd ηλ , the efficiency can attain its maximum and the 

corresponding power output density is equal to *Pη ; when ( )N N Pd dλ λ< , both the power output density and 

the efficiency decrease with the decrease of 
Nd λ ; when ( )N Nd d ηλ λ> , both the power output density and 

the efficiency decrease with the increase of Nd λ . It indicates that the regions of ( )N N Pd dλ λ<  and 

( )N Nd d ηλ λ>  are not optimal for an SSPD, because one always hopes to obtain a power output density and 

an efficiency as large as possible. Thus, the optimal region of an SSPD should be 

                          ( ) ( )N N NP
d d d

η
λ λ λ≤ ≤ .                                     (23) 

It is clearly seen from Fig. 5 that both ( )N Pd λ  and ( )Nd ηλ are very close. Only when an SSPD is carefully 

designed, can Nd λ  be in the optimal region determined by Eq. (23). Combining Eq. (23) with Fig. 5, we can 

further determine the optimal regions of other parameters as 

                        * * *

maxP P Pη≥ ≥ ,                                                (24) 

                         maxPη η η≤ ≤ ,                                                  (25) 

and  

                        ( ) ( )
, ,m P m

V L V L V L
η

λ λ λ≤ ≤ ,                                     (26) 
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where ( )
,P m

V Lλ and ( )
,m

V L
η

λ are the values of V Lλ at the maximum power output density and efficiency 

and can be calculated from Eq. (17) and ( )N Pd λ  and Eq. (20) and ( )Nd ηλ , respectively. When an SSPD is 

operated in the region mentioned above, the power output density will decrease as the efficiency increases, and 

vice versa. These results show that *

maxP , 
maxη , 

Pη , *
Pη , ( )N P

d λ , ( )N
d

η
λ , ( )

,
/

P m
V Lλ , and ( )

,
/

m
V L

η
λ  

are some important parameters of the SSPD. It is seen from Eq. (26) that both V  and Lλ are coupled together 

and their optimal regions are shown by the shaded area in Fig. 6. 

According to the optimal criteria obtained above, one can availably choose the desired materials and 

optimally design the structure of an SSPD. Besides, one must control the voltage output of an SSPD which is 

directly dependent on the load resistance. Thus, it is necessary to discuss the optimal matching of the load 

resistance. 

 

5. Load matching 

From Fig. 1(b) and Eqs. (15) and (16), we can obtain the between the average transverse charge current cJ  

and the load resistance 
LR  as 

         ( )c L I LJ V R E R R= = + .                                   (27) 

By using Eqs. (11) and (27), V , E , and IR  can be, respectively, expressed as 

                             2

1

L

L

R

R L

c
V

c Lλ λ
−

=
+

,                                        (28) 

( ) ( )2 1 openE c L c Vλ= − = ,                                    (29) 

and 

         ( )2 2

1IR L cλ= .                                            (30) 

From Eqs. (17), (20) and (28), we can derive the optimal values of 2

LR W Lλ at the optimized power output 

density 
optP  and the optimized efficiency 

optη as 

                          ( )2

1L P
LR cW Aλ =                                          (31) 
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and 

( ) ( )
( )

1 4 52

1 2 3 1 4 5

L

c c c A
L

c c c c
W

c
R

cη
λ

+
=

− +  
.                             (32) 

Using Eqs. (26) and (30)-(32), we can determine the optimal regions of 2

LR W Lλ  and 2

IR W Lλ  as 

( ) ( ) ( )1 1 1 4 5 2 3 1 4 5 ,,m ,m

2 2

,

2

m
/ {( / )( ) / [ ( )]}

L L mP LP
A c L L L A c c c c c cR W R c cW R W c ηη

λ λ λ= ≤ ≤ = + − +    (33) 

and 

 ( ) ( )1 1 ,m

2

,m
/ /

IP
Rc LWA A c

η
λ≤ ≤ ,                               (34) 

where ( )2

,mL P
R W Lλ and ( )2

,mL
R W L

η
λ  are the values of 2

LR W Lλ  at the maximum power output density 

and efficiency, and 1 ,m( / )PA c  and 1 ,m( / )A c η  are the values of 2

IR W Lλ  at the maximum power output 

density and efficiency. Eqs. (33) and (34) show that when the SSPD is operated at the maximum power output 

desnsity, the optimal matching condition of the load resistance is  ( )1 ,

2

m
)/ / (

PL I
R R A c L Wλ= = , and that 

when the SSPD is operated at the maximum efficiency, the optimal matching condition of the load resistance 

is ( ) 2

1 ,m
( )/ /

L I
A cR LR W

η
λ≈ =  because 1 4 5 2 3 1 4 5 ,{( ) / [ ( )]} 0.9996 1mc c c c c c c c η+ − + = ≈ . Eq. (33) also shows 

that both LR  and 2W Lλ  are coupled together and their optimal regions are shown by the shaded area in Fig. 

7. It means that the optimal value of the load resistance 
LR is closely dependent on the choice of both W L  

and λ . It is seen from Eq. (30) that the larger both W L  and λ  are, the smaller the internal resistance IR . 

λ  is determined by the properties of materials and W L  is determined by the structure of the SSPD. Thus, 

one should choose the suitable materials, determine the rational structure of the SSPD, and match the load 

resistance so that 2

LR W Lλ  satisfy the criterion given by Eq. (33). When both W L  and λ  are given, the 

optimal values of other parameters at the maximum power output density and efficiency can be determined and 

are listed in Table 1. 

 

6. Conclusions 
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We have analyzed the performance characteristics of a nanoscale SSPD based on spintronics and spin 

caloritronics. It is found that the performance of the SSPD is dependent on not only the choice of materials and 

the structure of the normal metal but also the matching of the load resistance. Using the selective criteria of 

main parameters given above, we can optimally design an SSPD. Improving the spin Hall angle and the 

interface spin-exchange efficiency, we can further enhance the performance characteristics of the SSPD. The 

results obtained may provide a better understanding of the coupling between thermoelectric and 

thermomagnetic properties and help engineers design nanoscale spin Seebeck thermoelectric conversion 

devices and spin Peltier refrigerators in the future.  
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Figure captions 

Fig. 1. (a) The schematic diagram and (b) the effective circuit of an SSPD.  

Fig. 2. (a) The three dimensional projection graph of openV  varying with 
Nd λ  and L λ  and (b) the curves 

of V Lλ at the open circuit, maximum power output, and maximum efficiency varying with 
Nd λ , where 

15 1 -210 mNG A −= Ω , 13 1 -26 10 mSG A −= × Ω , 9 -1 -24 10 AK mSL A = × , 0.1SHθ = , p

b 300KT = , and e

t 295KT =  

are chosen [30]. 

Fig. 3. (a) The three dimensional projection graph of 
,c shJ  varying with 

Nd λ  and L λ  and (b) the curves 

of cJ L λ at the short circuit, maximum power output, and maximum efficiency varying with Nd λ , where the 

values of other parameters are the same as those used in Fig.2. 

Fig. 4 Three-dimensional graphs of (a) the power output density *P  and (b) efficiency η  of the SSPD as the 

functions of /V Lλ  and 
Nd λ , where the values of other parameters are the same as those used in Fig. 2. 

Fig. 5. The curves of the optimized power output density *

optP  and the optimized efficiency optη  versus 

Nd λ  for different values of the spin Hall angle SHθ , where the values of other parameters are the same as 

those used in Fig. 2. 

Fig. 6. The Lλ ~V  curves satisfying ( )
,P m

V L V Lλ λ= and ( )
,m

V L
η

λ , where the optimal values of V  

and Lλ are determined by the shaded region surrounded by two curves. 

Fig. 7. (a) The 2W Lλ ~ LR  curves satisfying ( )2 2

,mL L P
LR W R W Lλ λ= and ( )2

,mLR W L
η

λ , where the 

optimal values of 
LR  and 2W Lλ  are determined by the shaded region surrounded by two curves. 

 

Table caption 

Table 1. The optimal values of some parameters at the maximum power output density and efficiency. 
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Fig. 1.  
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Fig. 2. 
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Fig. 3. 
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Fig. 4 
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Fig. 5 
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Fig. 6. 
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Fig. 7. 
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Table 1.  

 

*

maxP  maxη (%) λ ( nm) ( )
,N P m

d ( nm) ( )
,N m

d
η

( nm) W L  ( ) ( )
, ,L IP m P m

R R=  ( ) ( )
, ,L Im m

R R
η η

≈  

259 0.0025 

 

1.4 

 

3.07 

 

3.11 

5 45.9 46.3 

10 22.9 23.1 

15 15.3 15.4 

 

1.5 

 

3.29 

 

3.33 

5 39.9 40.3 

10 20.0 20.2 

15 13.3 13.4 

 

1.6 

 

3.50 

 

3.55 

5 35.1 35.4 

10 17.6 17.7 

15 11.7 11.8 
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