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The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for predicting and engineering

the properties of advanced nanocomposite materials. Here we develop a quantitative image analysis software to characterize key

structural properties of NP clusters from experimental images of nanocomposites. This analysis can be carried out on images

captured at intermittent times during assembly to monitor the time evolution of NP clusters in a highly automated manner.

The software outputs averages and distributions in the size, radius of gyration, fractal dimension, backbone length, end-to-end

distance, anisotropic ratio, and aspect ratio of NP clusters as a function of time along with bootstrapped error bounds for all

calculated properties. The polydispersity in the NP building blocks and biases in the sampling of NP clusters are accounted for

through the use of probabilistic weights. This software, named Particle Image Characterization Tool (PICT), has been made

publicly available and could be an invaluable resource for researchers studying NP assembly. To demonstrate its practical utility,

we used PICT to analyze scanning electron microscopy images taken during the assembly of surface-functionalized metal NPs

of differing shapes and sizes within a polymer matrix. PICT is used to characterize and analyze the morphology of NP clusters,

providing quantitative information that can be used to elucidate the physical mechanisms governing NP assembly.

1 Introduction

A significant challenge in nanoscience and emerging nan-

otechnologies is the ability to guide nanoparticle (NP) self-

assembly with precise structural and functional control. Re-

search efforts to control the spatial distribution of NPs spans a

vast range of nanomaterials, physical properties, and applica-

tions. For example, diffuse networks of C60 and carbon nan-

otubes reinforce the mechanical stability of polymer films to

prevent damage or dewetting1, and percolating networks of

CdSe NPs serve as paths for electron transport within the ac-

tive layer of bulk heterojunction photovoltaic cells2. We and

others have pursued the hierarchical assembly of plasmonic

metal NP clusters and strings for novel electromagnetic mate-

rials that serve to confine light3,4. In all of the above cases,

NP assembly is highly dependent on interfacial and interparti-

cle interactions, both of which dictate assembly events such as

nucleation, growth, and coarsening. NP assembly is a highly

dynamic process in which NPs aggregate to form larger clus-

ters whose morphologies evolve with time. The ability to char-

acterize these evolving NP cluster morphologies has important

consequences for not only understanding the assembly mech-

anisms at work, but also for learning how to program these

mechanisms for achieving desired NP cluster architectures.
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plementation of unbiased feature measurement, calculation of empirical dis-

tribution of single particle areas, calculation of self-similarity dimensions by

regression on cluster data, and validation of image analysis algorithms.

The use of image analysis to characterize particle assem-

blies is a well-established practice in materials science. As

early as in 1979, Forrest and Witten Jr. used image analysis

of transmission electron micrographs to identify and study the

fractal structure of smoke particle aggregates5. Since then,

image analysis has been used to characterize colloidal and

NP aggregates in terms of various properties. For example,

the size distribution of such aggregates has been analyzed by

indigenously developed image analysis procedures6–8 or via

public-domain image-processing software9. While several of

the public image analysis software, such as ImageJ10, are able

to perform the kind of particle identification and counting re-

quired for calculating NP aggregate sizes, these software are

generally not amenable to calculating other properties spe-

cific to NP assemblies. In particular, NPs are known to as-

semble into complex, higher-order structures such as strings,

fractal trees, sheets, and percolating networks that requires

more elaborate metrics for characterizing their shape, self-

similarity, and topology. While some studies have analyzed

the fractal dimension8,11 and shape metrics12,13 of NP aggre-

gates through image analysis, the related algorithms were not

made publicly available as part of a software package, and, in

many cases, the procedures were not automated. Thus, to the

best of our knowledge, there does not exist at present a public-

domain image analysis tool specifically tailored towards NP

assembly.

Here we develop an automated image analysis tool capa-

ble of extracting in a high throughput manner useful data on

NP assembly from images representing static snapshots of the

material sample taken during the assembly process. Our Par-
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ticle Image Characterization Tool (PICT) is coded in MAT-

LAB R2012b and is freely available at the MATLAB File

Exchange server14. PICT allows users to carry out various

statistical analyses regarding the size, shape, and morphol-

ogy of NP clusters for a given assembly time interval. It

implements a novel algorithm to account for the variability

in the NP building block and for biases in cluster sampling.

To demonstrate the power of such a tool in analyzing NP as-

sembly, we apply PICT to a series of assembly experiments

that look at the evolution of plasmonic NP-polymer compos-

ites composed of metal NPs with different sizes and shapes.

Previously, these NPs have been observed to assemble into

structures ranging from interconnected NP networks to one-

dimensional NP strings to NP clusters. By analyzing scan-

ning electron microscope (SEM) images captured during the

assembly process, we demonstrate how PICT can be used to

characterize NP assembly morphologies and to determine the

underlying assembly mechanisms.

2 Software Development

2.1 Overview

The automated image analysis software developed here is

coded in MATLAB R2012b and takes advantage of several

functions present in MATLAB’s Image Analysis Toolbox, in

addition to our own algorithms. These are described or noted

in the following sections wherever appropriate. All MATLAB

functions, both existing and those developed here, are indi-

cated in typewriter font. The software is designed with extend-

ability in mind, and thus we attempted to maintain a modular

structure throughout. The overall structure is summarized in

Fig. 1. The software is split into five MATLAB files, each of

which performs specific tasks:

• PICT import images imports and preprocesses the

SEM images, preparing them for further analysis.

• PICT calibrate lets the user calibrate our particle

detection algorithm via a graphical user interface.

• PICT analyze images identifies particles and clus-

ters, based on the calibrated settings, and measures clus-

ter properties.

• PICT get stats combines data from all images and

calculates bias-corrected size distributions and mean val-

ues for particle- and cluster-based properties along with

bootstrapped error bounds for all calculated properties.

• PICT export results contains routines to create

and save a variety of images and figures for visualization

of the results.

Numerical Error Estimation 

Calculate Magnification 

Crop and Binary Transform 

Connected Component 
Analysis 

Fractal Dimension Size 

Anisotropy Morphology 

Growth Scaling 

Size Distribution 

5.  Output Results 

1. Image Import and 
Preprocessing 

2. Particle / Cluster 
Identification 

3. Cluster Property 
Extraction 

4. Statistical Analysis 

Fig. 1 Flowchart summarizing our image analysis algorithm. Blue

boxes contain some of the cluster properties and statistics calculated

by the program. Red boxes contain some of the more general

processes implemented.

In each stage, the software organizes data into suitably named

nested data structures that are saved to .mat files in the spec-

ified output directory and that are loaded by subsequent stages

as needed. This ensures that all data can be loaded into MAT-

LAB and accessed directly by the user at any time and should

enable easy integration with external functions.

The software is straighforward to use. The user collects

all images taken during an experiment into a single directory.

The images need to be named according to a simple conven-

tion, which encodes essential information used by the soft-

ware. The user then sets a few parameters, specifies the input

and output path, and runs the five functions in turn. Further

human interaction is required only during the calibration step.

We have prepared a detailed user’s guide, included with the

software distribution as a PDF file, describing how to install

and use the tool. This guide also includes the file-naming con-

vention and complete documentation of all parameters, data

structures, and exportable figures related to our software.

Below we describe how the software preprocesses the im-

ages, identifies individual NPs and their clusters, accummu-

lates weights to correct for biases in cluster sampling and for

polydispersity in NP sizes, and calculates various cluster prop-

erties.
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Table 1 Property ranges used in identification of particles.

Species Area (nm2) Solidity Eccentricity

Cubes 2000-12000 0.8-1.0 0-0.7

Spheresa 200-2000 0.85-1.0 0-0.7

Rods 200-1200 0.8-1.0 0.9-1.0
a ∼30 nm diameter in 28k PS matrix (see Methods).

one used in the Analyze Particles tool in the popular ImageJ

software10.

To identify clusters, we first note that particles within a

cluster may sometimes be separated from one another by

small gaps. The whole collection of particles should still be

properly identified as a single cluster, rather than as two or

more smaller chains, as would occur if one naively found

connected components in the original binary image (as in

Fig. 3b). To achieve this, we implement a procedure for

“almost-connected-component labelling” described by Ed-

dins15. Starting again from the binary image, the software

performs a morphological “closing” (imclose) with a small

structuring element. This joins any particles that are not quite

touching, yet are close enough to be considered part of a

cluster. The user may either specify the gap below which

particles are joined in this manner, or the software will at-

tempt to determine it automatically based on measured parti-

cle sizes. Next, each connected foreground region is identified

(bwconncomp) and labeled (labelmatrix), and regions

that extend beyond the field of view are removed. This re-

moval introduces a bias, since larger clusters are more likely

to extend beyond the edges of the image than are smaller clus-

ters; this bias is corrected by attaching weights to each ob-

served cluster, as explained in the next section. Finally, a

logical AND operation between the “dilated image” and the

original binary image recovers any fine details of the cluster

shape.

2.4 Unbiased feature measurement.

Objects that appear to extend beyond the edges of an image

cannot be measured because their size and shape outside the

image area is unknown. If only objects that are fully contained

within the image are considered, however, the proportion of

large and small objects will be inaccurately computed, since

it is more likely for larger objects to touch an edge. This bias

may be compensated for by attaching size-dependent weights

to each object that is measured16.

To estimate these weights, we assume that for each object

measured in the image, a large number of identical objects

exist in the sample, with equal fractions oriented in any given

direction. Imagine that we randomly pick a field of view that

contains the centroid of one of these objects. If the centroid

is located far enough from the edges of the image, the entire

object will fit within the field of view and will be measurable.

The conditional probability of this happening is simply the

area of the region where the centroid can be located so that the

object is fully contained, relative to the total area of the image:

P =
(Wx −Fx)(Wy −Fy)

WxWy

(1)

where Wx and Wy are the dimensions of the image in the x and

y directions, and Fx and Fy are the maximum dimensions of

the object in those directions16.

If ni objects of type i exist per unit area of the sample, we

would expect to fully observe only niPi of them per unit area

that we image. Therefore, we attach a weight of wi = 1/Pi to

each measured object. In principle, this recovers an unbiased

estimate of the true sample statistics. The objects are oriented

at random, however, so Eq. 1 must first be averaged over all

possible orientations θ . The bias-correction weights are then

given by

wi =
1

〈Piθ 〉θ

=
WxWy

〈(Wx −Fθ )(Wy −Fθ+ π
2
)〉θ∈[0,π)

(2)

where Fθ is the extent of the object along the θ -direction, an-

gle brackets denote averaging, and only angles smaller than π

radians need to be considered in the average because Fθ+π =
Fθ . When calculating statistics, the program assigns each

measured cluster a weight according to Eq. 2. The precise

formula that we used for computing wi in the software and its

derivation are provided in the Supplementary Information.

2.5 Calculation of cluster size distribution

The cluster size distribution Ns(t), the number of s-particle

clusters observed at time t, is a fundamental quantity in all

assembly experiments. The details of this distribution can of-

ten reveal a great deal about the underlying assembly process.

Size distributions at different time points or from different ex-

periments can only be meaningfully compared with one an-

other after they have been normalized. Our software computes

the relative size distribution

νs(t) =
Ns(t)

∑s sNs(t)
(3)

Theoretical and simulation results17,18 frequently employ the

number concentration ns(t), the number of clusters of size s

per unit area. This is related to the quantity defined above

via ns(t) = νs(t)Φ(t)/ā, where Φ(t) is the total occupied area

fraction and ā is the mean particle area.

The cluster size distribution may also be characterized via

its moments. In particular, the number-average cluster size

S1(t) =
∑s sNs(t)

∑s Ns(t)
(4)
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find that

p(A|s) = 1√
2πsσa

exp

(

− (A− sā)2

2sσ2
a

)

(9)

In principle, Eq. 8 together with Eq. 9 allow us to construct

the best possible estimate of the true cluster size distribution

Ns(t), given our area measurements. The overall algorithm

may be summarized as follows:

• Identify all single particles and compute ā and σa
2.

• For each distinct cluster j found,

1. Measure its area A j.

2. Calculate the bias-correcting weighting factor w j,

as described previously.

3. Update the size distribution according to

Ns(t j) = Ns(t j)+
p(A j|s)

∑s′ p(A j|s′)
w j

with p(A j|s) and p(A j|s′) given by Eq. 9.

• Normalize Ns(t) according to Eq. 3 to obtain νs(t).

Our software implements the above algorithm with slight

modifications to improve code performance. Figure 4 com-

pares the cluster size distribution obtained without bias correc-

tion or Bayesian estimation (Fig. 4a) against the correspond-

ing distributions obtained with bias correction (Fig. 4b) and

with both bias correction and Bayesian estimation (Fig. 4c).

The above distributions were all obtained at one representa-

tive time point during the assembly of 80 nm Ag nanocubes

(see Methods).

It is sometimes the case that the size distribution of primary

NPs in an experiment is better described by a log-normal dis-

tribution (or some other distribution) than by a Gaussian. Our

Bayesian algorithm may be generalized to handle an arbitrary

probability distribution p(a) of single-particle areas; one sim-

ply needs to replace Eq. 9 for p(A|s) by the appropriate dis-

tribution for A = ∑
s
j=1 a j, where the a j are independent and

identically distributed according to p(a). This p(A|s) may be

computed by standard methods described in books on proba-

bility theory or statistics.

2.6 Calculation of cluster dimensions and anisotropy

Our software calculates the eigenvalues (principal moments)

R2
1 ≥ R2

2 of the gyration tensor for each cluster (see Fig. 5b)

by using MATLAB’s regionprops function. The eigen-

values are then used to compute the radius of gyration of the

clusters, which characterizes their spatial extent, and various

other useful properties, such as aspect ratio, anisotropy ratio,

elongation, and fractional anisotropy, which all characterize

the anisotropy of clusters in different ways:

ν
s
  

  NAIVE
a

0

2

4

6

x 10
−3

ν
s
  

  BIAS−CORRECTED
b

0

2

4

6

ν
s
  

  

s

BAYESIAN
c

10 20 30 40

0

2

4

6

Fig. 4 Comparison of normalized size distributions obtained by

different methods. (a) Simple accumulation of cluster sizes

computed with Eq. 6. (b) Same, except that each cluster is weighted

according to Eq. 2 when constructing the histogram. (c)

Accumulation by Bayesian inference (also bias-corrected). Notice

that bias-correction decreases the relative count of smaller particles.

The Bayesian distribution is visibly smoother due to elimination of

statistical artifacts present in the other methods.

1. Radius of gyration

Rg =
√

R2
1 +R2

2 (10)

2. Aspect ratio

AR =
R1

R2
(11)

3. Anisotropy ratios, as defined by Botet and Jullien 22

A1 =

〈

R2
1

〉

〈

R2
2

〉 and A′
1 =

〈

R2
1

R2
2

〉

(12)

Here, angle brackets denote averages over a set of clus-

ters. Note that A′
1 is the mean square aspect ratio.

4. Elongation, also known as Relative Anisotropy23

ε =
R2

1 −R2
2

R2
1 +R2

2

(13)

5. Fractional Anisotropy23

κ =
R2

1 −R2
2

√

R4
1 +R4

2

(14)
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f

(R)
 = 1.34 ± 0.02

a
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1
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log
10

(r/nm)

lo
g

1
0
 C

(r
)

 

 

D
f

(C)
 = 2 + slope

 = 1.343     

b

1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

C(r) data

y = −0.657x
      + 0.464

Fig. 6 (a) Log-log plot of cluster size s versus normalized radius of

gyration Rg/r1. Data points represent all clusters observed during

the experiment labelled E1, colored by time of observation (see

Fig. 7a–d). r1 is the mean single-particle radius of gyration. The

best-fit line is shown and the fractal dimension D
(R)
f given by the

slope of this line is listed; error bounds indicate 95% confidence

interval for the slope. (b) Plot showing the decay of C(r) with

distance r for the NP cluster shown in Figure 5, and the computed

fractal dimension D
(C)
f .

A plot depicting the calculation of D
(R)
f is shown in Fig. 6a.

Other computed dimensions are described in the documenta-

tion included with our software.

2.8.2 Calculation for individual clusters. Another

method for computing the fractal dimension of an object in-

volves calculating its radial cumulative distribution function

C(r)24. Essentially, C(r) is the fraction of space occupied by

the object within a circle of radius r centered at any reference

point in the object. For a fractal, this function should decay as

C(r)∼ r(D
(C)
f

−d) (18)

where d is the dimension of the space in which the fractal

is embedded. The r-domain over which this scaling relation

holds is exactly the range of length-scales over which the ob-

ject is self-similar. Note that we explicitly distinguish the frac-

tal dimension D
(C)
f entering into the above relation from the di-

mension D
(R)
f described previously, because the values are in

general different for finite objects or for objects whose struc-

ture is only approximately fractal, such as NP clusters.

In a binary (thresholded) digital image of a two-dimensional

NP, each cluster is a set of pixels. These pixels are points

on a lattice and their coordinates are pairs (xi,yi) of integers.

Let f (r) be the number of arbitrary pairs (x,y) of integers for

which x2 + y2 does not exceed r. A circle of radius r drawn

around any reference pixel (xk,yk) will contain f (r) lattice

points, but only Nk(r) of these will be occupied by the ag-

gregate. The radial cumulative distribution function C(r) is

then given by

C(r) =
〈Nk(r)〉k

f (r)
(19)

where we have averaged over reference points. The average

must be defined with care; if the aggregate is finite, all refer-

ence points are not equivalent. That is, a given point can only

contribute to C(r) over the interval 0 ≤ r < Rk, where Rk is the

radius of the largest circle that can be drawn around (xk,yk)
without extending beyond the edges of the finite aggregate.

To determine this upper limit explicitly, we first calculate the

distance of each point in the aggregate from its centre of mass:

rc
k =

√

(xk −〈xi〉)2 +(xk −〈yi〉)2
(20)

A circle of radius max
{

rc
k

}

drawn around (〈xi〉,〈yi〉) would

just contain the whole aggregate, and we use this circle as our

boundary. Therefore, we have

Rk = max{rc
k}− rc

k (21)

With this restriction on the domain of r to which each refer-

ence point k can contribute, we construct C(r) by applying

Eq. 19. Then, we can extract the fractal dimension of the

aggregate from a plot of log(C) versus log(r), in accordance

with Eq. 18. Empirically, we find that such a plot is linear for

d1 < r < Rg, where d1 = 〈
√

4a/π〉 is the mean “equivalent di-

ameter” of a single nanoparticle (a is the single-particle area)

and Rg is the radius of gyration of the aggregate. A represen-

tative plot is shown in Fig. 6b.

2.9 Statistics and error analysis

The entire set of statistics calculated by our software, includ-

ing those mentioned above, are described in the documenta-

tion distributed with our code. The software also computes

and returns standard errors and confidence intervals for most

calculated quantities. These are obtained by the nonparamet-

ric bootstrap method29, which allows for easy and reliable un-

certainty estimation for statistics, such as weighted means and

ratios, for which simple analytical error expressions are not

available30.

2.10 Software validation

We have carried out various tests to validate the three main

components of our software: the algorithms for detecting in-

dividual particles and their clusters; the calculation of various

structural properties of the particle clusters; and the Bayesian

algorithm for the estimation of cluster size distributions. A

detailed discussion of all three forms of validation is provided

in the Supplementary Information.
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3 Results and Discussion

To demonstrate the applicability of our image analysis tool,

we have used it to investigate similarities and differences in

the assembly of NPs carried out with particles of different

sizes and shapes within polymer films of different molecular

weights. Specifically, we analyzed five different experiments

involving the assembly of: silver nanocubes of edge length

80 nm in polystyrene (PS) thin films of molecular weight

(Mw) ≈ 11,000 (11k) (we refer to this experiment as E1);

gold nanorods of length 40 nm and diameter 10 nm (E2) and

Gold nanospheres of diameter 13 nm in PS films of the same

Mw (E3); and silver nanospheres of diameter 30 nm in PS

films with shorter chains of Mw ≈ 3,000 (E4) and with longer

chains of Mw ≈ 28,000 (E5). The NPs were synthesized using

wet chemical methods to yield a colloidal dispersion of uni-

formly sized and shaped particles surface-functionalized with

poly(vinyl pyrrolidone) (PVP) chains of Mw ≈ 55,000. The

NP dispersion was spread onto an air-water interface to pro-

duce a monolayer of uniformly distributed NPs, which was

then transferred onto the surface of a thin PS film. The NPs

were embedded into the underlying polymer through solvent

annealing, whereupon the NPs sank into the film and began to

diffuse within it and assemble into higher-order NP clusters.

In each experiment, we captured on the order of 100 SEM im-

ages, spread across all time points; Figure 7a shows smaller

sections of a representative SEM image captured from each of

the five experiments. Details on the synthesis, assembly, and

imaging of NPs are provided in Methods.

Figure 7b–g summarizes the results from our analyses of

the above five NP assembly experiments. The total NP area

fraction Φ calculated for each SEM image that was analyzed

is plotted in Fig. 7b. As discussed earlier, Φ is calculated as

the fraction of foreground pixels in a thresholded image. On

the whole, the mean area fraction remains largely constant as

a function of time for each experiment, as it should. Varia-

tions in Φ on the order of 1–2% between images may be ex-

plained as the result of local inhomogeneities induced by the

stochastic motion of the particles and clusters. The few out-

liers are likely the result of slightly nonuniform sample prepa-

ration. Also, as mentioned in Methods, the data for different

time points must come from different samples due to the re-

quirement of the polymer samples to be frozen during imag-

ing. Note that the area fractions in our experiments are high

enough that shape effects are significant, and mean-field the-

ories, such as the classical Smoluchowski model of particle

aggregation17, may not apply.

The growth rates of the number-average mean cluster size

S1(t) with time are plotted in Fig. 7c. In all experiments,

chloroform vapor annealing of the polymer-NP films begins

at t = 0, but we observe a significant dormant period preced-

ing the onset of aggregation. Prior work has shown that the

well-dispersed NPs, which are initially deposited on top of

the polymer film, slowly sink into the film as it becomes mo-

bile, until they are fully embedded by the polymer3. It is un-

clear why aggregation does not occur simultaneously during

this process. It is possible that the grafted chains on the NP

surface prevent immediate aggregation, or that the lateral dif-

fusion coefficient of the particles slowly increases from zero

as the polymer becomes mobile over larger length scales. The

delayed start times for the larger particles (E1) and higher Mw

polymer matrix (E5), are consistent with this theory, but the

late start-time for the smaller nanorods (E2) is unusual.

The exponential shape of the growth curves is suggestive of

reaction-limited aggregation kinetics31, but the uncertainty in

start times makes it difficult to extract exponents, or to quanti-

tatively compare rates between experiments. It is possible that

diffusion-limited kinetics, conspiring with a time-dependent

diffusion coefficient, could also lead to growth scalings of this

kind. The overall growth rates, once aggregation begins, are

comparable across experiments E1, E4 and E5. Nanorods (E2)

and small 13-nm nanospheres (E3) seem to exhibit faster ki-

netics, but in the latter case, limited data makes it difficult to

conclude this with certainty. Faster growth in these cases may

be explained on the basis of faster diffusion of smaller parti-

cles through the polymer matrix, resulting in higher collision

rates, and hence faster growth.

Cluster size distributions (Fig. 7d) are strikingly similar

across all five experiments, exhibiting a characteristic mono-

tonic decay of νs(t) with s at all times. The absence of a peak

in the distributions suggests that the dominant mode of cluster

growth at later times is via cluster-cluster, rather than particle-

cluster collisions. If the latter were predominant, then we

should expect to observe a depletion of single particles, which

we do not. The similarity in shape of the distributions is some-

what remarkable, given that the aggregating particles differ

widely in shape and size as well as in the properties of the sur-

rounding matrix. Our observation of cluster-cluster collisions

is also consistent with the step-growth polymerization mecha-

nism reported by Liu et al.32 for polymer-functionalized gold

nanorods. It should be noted that at high enough NP densities,

large clusters collide to form nearly interconnected networks,

which can make cluster sizes difficult to determine accurately.

The scatterplots in Fig 7e show shape data (fractal dimen-

sion D
(C)
f versus aspect ratio AR) for all NP clusters larger than

s = 20 observed in each experiment. The points are sized and

colored according to the size of the corresponding cluster. The

overall shape of the cloud of points is similar for all experi-

ments and shows that there is large variation in shape between

individual clusters. Low fractal dimensions and high aspect

ratios suggest extended chain-like morphologies, while the op-

posite combination of properties suggests compact, globular

shapes. Low Df and AR together imply loose dendritic struc-

tures. In all five experiments, small clusters can be found that
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Fig. 7 Results from automated image analysis of data from five sets of experiments organized in columns. (a) Representative sections of

analyzed SEM images. Scalebars are 250 nm. (b) Scatterplot of particle number density in each analyzed image as function of time. The

points are sized relative to image area. (c) Mean cluster size versus time in minutes. Axes scales are identical to aid visual comparison of the

growth rates. (d) Normalized cluster size distributions. (e) Scatterplot of fractal dimension versus aspect ratio. Points correspond to individual

clusters, and are sized/colored relative to cluster size. (f) Mean fractal dimension D
(C)
f versus cluster size. Overall values obtained for D

(R)
f and

chemical dimension dL are also plotted. (g) Anisotropy ratio A1 and mean aspect ratio AR versus cluster size.
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exhibit each of these morphologies; as the clusters grow larger,

they tend to converge to fractal dimensions near 1.4 and aspect

ratios near 2–3.

As noted earlier, self-similarity dimensions provide a con-

cise and powerful characterization of the shape of aggregat-

ing clusters. The fractal dimension D
(R)
f , and the chemical

(or spreading) dimension dL calculated in each experiment are

marked respectively as orange and green horizontal lines in

Fig 7f. These lines indicate the values obtained by regres-

sion on all clusters (larger than a lower cutoff size) observed

during the respective experiments. The calculated dimensions

are, within error bars, approximately equal across experiments

E1 and E3–E5, but are lower than the values predicted by

both diffusion-controlled Brownian aggregation models (Df ≈
1.44) and reaction-controlled models (Df ≈ 1.55)26. This

lower dimensionality likely reflects the steric interactions be-

tween grafted polymer, which have been proposed to favor lin-

ear rather than branched configurations in clusters composed

of polymer-grafted nanoparticles33. It is interesting that both

dimensions are significantly higher for nanorods (E2) than for

the other particle species studied. This somewhat counterintu-

itive result may be due to rods starting to align side-by-side in

larger aggregates.

Less data is available in the literature for the chemical di-

mension dL than for Df. This dimension appears to have been

studied mostly in the context of percolation clusters, a par-

ticular type of model that is not really applicable to our ex-

periments. Nevertheless, we find that the ratio dmin = Df/dL,

computed from our results, matches the reported value for per-

colation clusters in two dimensions (dmin = 1.13)34. Further

work is needed to determine whether there is a physical expla-

nation behind this result or if it is merely a coincidence. The

mean D
(C)
f values as functions of cluster size are also plotted

(in blue) in Fig 7f. These appear to slowly converge to the

corresponding D
(R)
f values at large cluster sizes, as expected.

Figure 7g shows anisotropy ratios A1 and mean aspect ra-

tios AR as functions of cluster size. These values start off large

for nanorods (E2), and then equilibrate to smaller values as

cluster size increases, while for the other particle species the

opposite trend is observed. This merely reflects the inherent

anisotropy of individual nanorods, as compared with the rel-

ative isotropy of nanocubes and nanospheres. The high mean

anisotropy of the clusters in all five experiments rules out cer-

tain models, such as Witten and Sander’s particle-cluster ag-

gregation (PCA), which yield aggregates that are isotropic and

dendritic on average35. However, the results match those for

the cluster-cluster aggregation (CCA) model36,37 extremely

well. The anisotropy of clusters generated in different vari-

eties of CCA was studied in detail by Botet and Jullien, who

obtained A1 = 5.7 ± 0.2 in the diffusion-controlled version

and A1 = 4.7±0.2 in the reaction-limited case22. Our results

are certainly in this range, and lean towards the former value.

However, it is also possible that reaction-limited kinetics, cou-

pled with restructuring due to repulsive steric interactions be-

tween grafted polymer, could produce clusters with the ob-

served anisotropies. Further studies are needed to decide the

issue.

The results presented and discussed above represent only a

subset of the data and statistics that our tool calculates. Other

results may be useful for exploring specific questions about

nanoparticle aggregation, and in such cases, similar plots can

be easily generated. We have included routines for generating

several of these plots in the PICT export results func-

tion of our software package. It should also be noted that our

experiments were planned and performed before the image

analysis tool was conceived. Thus, there is significant room

for further improving the reliability of the data presented in

Fig. 7 and of the conclusions derived from this data. For in-

stance, in each of our experiments, we captured roughly one

hundred SEM images, spread across all time points. This

number is sufficient for analysis, but more images would yield

even better statistics, without any significant increase in the

time needed to process the additional data. In principle, the

ideal method of capturing images would be to pick a large

number of non-overlapping image locations at random, and

have the microscope automatically image the sample at those

coordinates. Such a method minimizes otherwise unavoidable

biases on the part of the researcher searching for “good” spots

to image.

4 Conclusions

We have introduced a quantitative image analysis software for

studying the assembly of NPs. The software inputs a set of

experimental electron microscopy images captured during as-

sembly and outputs various structural properties of the NPs

and their clusters as a function of time. In particular, the soft-

ware computes both averages and distributions in various met-

rics characterizing the size, morphology, anisotropy, and self-

similarity of NP assemblies along with error bounds in each

computed property. To demonstrate its applicability, we have

used the software to analyze particle assembly carried out with

NPs of different shapes and sizes in polymer films of different

molecular weights. Our results illustrate how the software can

be used to not only characterize NP assembly but to also dis-

sect the role of different assembly parameters and elucidate

underlying mechanisms of NP assembly.

We envision that our image analysis tool will become an in-

valuable tool for researchers studying NP assembly in various

media; the software is already almost fully automated and user

friendly. By minimizing the time and effort required for data

analysis, our tool should enable researchers to more rapidly

study many interesting problems in this field and to also col-

lect larger, more statistically reliable datasets. In fact, other
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members of our group are already using the tool to explore

some of these questions. Future applications that we plan to

pursue include a systematic analysis of the effect of various

system parameters on the growth and morphology of NP ag-

gregates: parameters such as particle size, number density, and

lengths of the grafted and matrix polymer. We also intend to

perform a more detailed comparison of our experimental re-

sults with simulations and theoretical models of aggregation.

In our demonstration, we used PICT to analyze SEM im-

ages of noble metal NPs; however, PICT is not limited to char-

acterization of only these images/materials. PICT can be used

to analyze any image [e.g., SEM, transmission electron micro-

scope (TEM), and optical] as long as the imaging contrast can

be made high enough to resolve individual particles and that

the particles are reasonably uniform in size and shape. For

TEM images where NPs are supported on a mounted grid (typ-

ically backed with amorphous carbon), PICT may encounter

limitations for analyzing NPs that possess limited contrast

with the grid backing, namely small NPs (< 5 nm) that are

composed of low electron density materials such as polymers

or oxides. In this limiting case, setting threshold contrast val-

ues too high may lead to the incorrect recognition of parts of

grid background as small particles.

The software has room for further extension and improve-

ment. For instance, it cannot at present handle multiple NP

species in the same experiment, such as a binary mixture of

nanospheres and nanocubes. However, our software code is

written with extendability in mind, and it should be possible

to add this functionality fairly easily. We also plan to incorpo-

rate other features into the tool in the future, including kernel-

based detection of particles within clusters, correlation func-

tions for nanoparticle or cluster orientations, and additional

methods like box-counting for calculating self-similarity di-

mensions. We hope that other researchers will use the tool and

actively help us to develop it by sending us their suggestions,

or code modifications, for us to incorporate.

5 Methods

5.1 Synthesis of poymer-grafted nanoparticles

Spherical Au NPs were synthesized according to the well-

known Turkevich method38. The as-synthesized citrate-

capped Au nanosphere were then coated with poly(vinyl

pyrrolidone) (PVP, Mw = 55k, Sigma-Aldrich) chains in aque-

ous solution under stirring at room temperature as previ-

ously described39,40. To remove excess polymer, the Au

nanospheres were precipitated by centrifugation (Eppendorf

Centrifuge 5804) and redispersed in ethanol. This process was

repeated two times. Au nanorods were synthesized by seed-

mediated growth as previously reported41. The as-synthesized

Au nanorods were then coated with PVP polymer in aqueous

solution using the same method mentioned above. The lig-

and exchange process was confirmed by UV-visible absorp-

tion spectroscopy, infrared spectroscopy, and dynamic light

scattering. PVP-grafted Ag nanocubes were synthesized using

a previously reported polyol reaction.42 The as-synthesized

nanocubes were further purified by filtration and concentrated

to the desired concentration in pure ethanol as previously de-

scribed3.

5.2 Composite film fabrication

The NP-polymer composite film was fabricated using previ-

ously described methods3,39. Specifically, about 180–200 nm

thick polystyrene (PS, Mw range from 3k to 28k) films were

spun coated onto clean Si substrates and film thickness was

measured by atomic force microscopy (Veeco, Multimode

Nanoscope IV). PVP-coated NPs were typically precipitated

in ∼100 µL ethanol before diluting with 1–2 ml CHCl3. NP

dispersions were then added dropwise to an air-water inter-

face until a floating monolayer of nanoparticles was obtained.

The NP monolayer was then transferred onto supported PS

thin-films by dip-coating. The NP-PS composite was then ex-

posed to CHCl3 vapor in a closed vessel at room temperature

according to previous methods33,43. For monitoring the time-

dependent evolution of assembly structures, the nanocompos-

ite films were enclosed in individual vessels during the vapour

exposure step and removed from the vessel after the desired

time interval. Assembly time is limited by degradation of the

NP-polymer composite. The metal NPs experience signifi-

cant polymer dewetting at later assembly times, which stops

growth altogether by preventing NP diffusion and pinning the

NPs against the underlying solid support (this occurs earlier

in experiments E3 and E4, as noted from the growth curves in

Fig. 7). This dewetting is primarily controlled by polymer-NP

interactions that are difficult to control uniformly across NPs

with different sizes, shapes, and compositions.

5.3 Sample characterization

NP assembly was characterized by scanning electron mi-

croscopy (SEM) using a FEI UHR Field Emission SEM

equipped with a field emission cathode with a lateral reso-

lution of approximately 2 nm. The acceleration voltage was

chosen between 5 and 30 kV.

List of Symbols

s Cluster size (# of constituent particles)

t Experiment time

Φ(t) Total NP area fraction in an image

wi Bias-correction weight for cluster i [Eq. 2]

Ns(t) Cluster size distribution (# of s-particle clusters)

12 | 1–13

Page 12 of 13Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



νs(t) Relative cluster size distribution [Eq. 3]

(# of clusters / total # of NPs)

ns(t) Cluster number concentration

(# of s-particle clusters / unit area)

S1(t) Number-average mean cluster size [Eq. 4]

S2(t) Mass-average mean cluster size [Eq. 5]

p(a) Distribution of NP (projection) areas

R2
1, R2

2 Principal moments of the gyration tensor

Rg Radius of gyration [Eq. 10]

AR Aspect ratio [Eq. 11]

A1 Anisotropy ratio [Eq. 12]

ε Elongation (relative anisotropy) [Eq. 13]

κ Fractional anisotropy [Eq. 14]

L Backbone length (graph diameter)

Lee End-to-end distance

D
(R)
f Fractal scaling dimension of s with Rg [Eq. 16]

dL Scaling dimension of s with L [Eq. 17]

(“chemical” or “spreading” dimension)

D
(C)
f Fractal dimension obtained from decay of cluster

radial cumulative distribution function [Eq. 18]
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