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Today graphene nanoribbons and other graphene-based nanostructures can be synthesized with atomic precision. But while
investigations have concentrated on straight graphene ribbons of fixed crystal orientation, ribbons with intrinsic curvature have
remained mainly unexplored. Here, we investigate electronic transport in intrinsically curved graphene nanoribbons coupled
to straight leads, using two computational approaches. Stationary approach shows how transport gaps are affected both by the
straight leads and by the degree of edge asymmetry in the curved ribbons. An advanced time-dependent approach shows that
behind the façade of calm stationary transport the currents run violently: curvature triggers temporally and spatially focused
electric currents, to the extent that for short durations single carbon-carbon bonds carry currents far exceeding the steady-state
currents in the entire ribbons. Recognizing this focusing is pivotal for a robust design of graphene sensors and circuitries.

1 Introduction

Graphene is a nanomaterial that can be tailored extensively
for device fabrication purposes. It has already been used in
field-effect transistors1, non-volatile memory elements2, log-
ical switches3, among other electronic components4. A cen-
tral part in the making of graphene leads, components, and
circuitries is the patterning. Today experiments can routinely
fabricate graphene nanoribbons (GNRs) in a variety of shapes,
widths, and curvatures—even with atomic precision.5,6 For
this reason especially straight GNRs have been investigated
much both theoretically and experimentally.5,7–11 However,
in addition to the straight GNRs, patterned graphene nanorib-
bons can also contain intrinsic curvature.

Curvature has been demonstrated as semicircular graphene
ribbons grown on a templated silicon carbide substrate12, as
kinked and folded graphene with well-defined kink angles9,
and as nanoribbons sculptured by meniscus-mask lithography
with customized edge curvatures13. In addition, curvilinear
graphene microcircuits or stamps have been imprinted directly
on graphene oxide films14. But even though experiments have
frequently realized curved structures, their transport proper-
ties have been remained unexplored. The stationary conduc-
tance simulations by Wurm et al.15, Yin et al.16, and Qiu et
al.17,18 are among the few investigations on curvature effects.
However, the additional degrees of freedom created by curva-
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ture deserve far more attention than previously invested; iden-
tifying simple and experimentally invaluable rules of thumb
for these effects still remain elusive. Extending the views
beyond straight graphene ribbons would help to improve the
design of devices and nanocircuits. In this work we inves-
tigate electronic transport through curved graphene nanorib-
bons (CGNRs) using two theoretical approaches. First, we
model CGNRs using density-functional tight-binding and cal-
culate their transport properties by the regular Landauer ap-
proach19. These calculations are performed for a systematic
set of CGNRs with different ribbon widths, edge curvatures,
and lead couplings. Second, with the same set of CGNRs, we
simulate transport using an advanced dynamic approach20,21,
a recent generalization of the Landauer-Büttiker formula for
time-dependent transport22,23. This approach provides a trans-
parent analysis of the spatial and temporal dependence of elec-
tric currents, including their transient dynamics. The analy-
sis reveals that the stationary approach overlooks the complex
processes that occur during hundreds of femtoseconds after
switching on the bias voltage: in the time-dependent picture
the currents in CGNRs show strong focusing both spatially
and temporally.

2 Curved graphene nanoribbons in transport
calculations

To create models for the CGNRs, graphene disks were first
cut out of pristine graphene by setting the origin at a hol-
low site, removing atoms below a minimum radius Ri and
above a maximum radius Ro, and then removing the result-
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ing singly-coordinated edge atoms. These disks were then bi-
sected to yield 60◦, 90◦, or 180◦ arcs, to constitute the central
scattering part for the transport calculation. Finally, to create
the lead electrodes, the arcs were coupled to straight, semi-
infinite graphene nanoribbons. The leads were of armchair
type (AGNR) or zigzag type (ZGNR), depending on the bi-
section angle24. The 60◦ and 180◦ arcs were coupled to two
AGNRs and the 90◦ arcs to AGNR on one side and to ZGNR
on the other side.

The three-part systems were saturated by hydrogen to re-
move the dangling bonds. Note that the systems have no in-
plane stresses. We follow the convention to call the three parts
the source electrode (S), the central conducting device (C),
and the drain electrode (D) (Fig. 1).

We focus our discussion on a representative set of four
CGNR samples (Fig. 1). The samples include two 60◦ arcs of
different curvature (samples Va and Vb, Fig. 1a). They both
have 8-AGNR legs but in Va the curved parts are shorter and
only the outer edge contains zigzag section; in Vb both inner
and outer edges contain zigzag sections. The sample U con-
tains a 180◦ arc and the sample L a 90◦ arc (Figs. 1b and c).
These four samples are representative to illustrate the effects
in transport properties caused by curvature. However, while
the discussion focuses on these four samples, the general re-
sults are supported by calculations and detailed characteriza-
tions of a systematic set of different CGNRs, as presented in
Supplementary Information (SI).25

3 Computational methods for stationary and
time-dependent transport

To model the stationary transport, we used density-functional
tight-binding (DFTB) method26. DFTB has been shown to
capture the essential features of graphene-based materials
well27–32. To prepare the samples, CGNRs were coupled to
semi-infinite leads (lengths ∼ 88 Å were sufficient), all edges
were hydrogen-passivated to avoid finite-size effects, and the
systems were relaxed. The Hamiltonians for the curved parts,
two principal layer units of source and drain electrodes as
well as their respective coupling matrices were taken from
self-consistent DFTB calculations at Γ-point (k = 0). These
Hamiltonians were then used to construct the Green’s func-
tions and self-energies for the three parts (L, C, and R) in or-
der to calculate the stationary conductance by the Landauer
formula.19

To model the time-dependent transport, we used the ad-
vanced approach of Refs.20,21. In this approach Kadanoff-
Baym equations33 are solved analytically to yield a time-
dependent generalization of the Landauer-Büttiker for-
mula22,23. This approach assumes noninteracting electrons in
a system composed of a central scattering part coupled to leads

Fig. 1 (Color online) Curved graphene nanoribbons in transport
calculations. Left panels: Schematics of curved ribbons attached to
straight ribbons of the same width, forming a typical two-terminal
transport device: source (S) and drain (D) electrodes connected via a
central conducting device (C). Right panels: Atomic structures of
the samples Va, Vb, U, and L. Hydrogen atoms are omitted from the
figure for clarity.

that are described within wide-band limit. The noninteract-
ing picture is expected to be sufficiently good approximation
for the ballistic transport that only includes states at the close
vicinity of the Fermi level. The approximation is supported
by recent studies on small monolayer graphene devices that re-
vealed ballistic transfer lengths ranging typically from 100 nm
at room temperatures to 1 µm at low temperatures34,35. Ini-
tially all the system parts were in thermal equilibrium at a cer-
tain chemical potential µ . At a given time the bias voltage
VSD =VS −VD was switched on symmetrically around µ . Af-
ter the switch-on the reduced one-particle density matrix ρ(t)
was evaluated directly from the closed-form expression with a
time parameter t.21 Remarkably, the solution for ρ(t) appears
in closed form and requires no time propagation.

This approach provides a powerful tool for a transparent
analysis of electron dynamics. Expressing the density matrix
in a localized basis (of the system’s Hamiltonian) the diago-
nal elements yield local charge densities in individual atoms,
whereas the off-diagonal elements yield currents in individual
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Fig. 2 (Color online) Stationary conductance of the four CGNRs of
Fig. 1.

bonds. The approach thus provides a direct access to spatial
and temporal information of electron dynamics.

While the stationary transport was calculated using the full
multi-orbital DFTB Hamiltonian, the time-dependent trans-
port was calculated by a single π-orbital tight-binding approx-
imation with the hopping parameter γcc =−2.7 eV. Originally
we began by using the full DFTB Hamiltonian also with the
time-dependent approach, but it only added complexity to the
analysis by giving noisy and complex current profiles within
the transient regime. The π-orbital approximation was chosen
because it simplified the analysis but still captured the cen-
tral features of the time-dependent dynamics, even quantita-
tively36,37 (See also Sec. 5.1.)

4 Transport in stationary picture

In Fig. 2 we show the conductance of the four CGNR samples
as a function of energy. There are significant differences in the
stationary transport of curved and straight ribbons, when com-
pared directly (SI).25 Differences result from a pronounced
electronic scattering that takes place at the interfaces between
armchair and zigzag sections.15 The transport characters of
CGNR are governed by a combination of effects from the
semiconductor or metallic nature of the AGNR or ZGNR leads
and from the edge asymmetry the curved parts, which we next
discuss.

The transport gap increases when the angle between the
leads is increased. The gap is smallest for samples Va and
Vb because the leads are symmetric and the central part cre-
ates relatively little scattering. In samples L and U the current
has to turn a larger angle, which results in more scattering in
the curved part and a larger transport gap.

In straight ribbons the conduction channels open and close
abruptly25, but in CGNRs the channel energies are broadened
by the asymmetry between outer and inner edges. Thus, one

Fig. 3 (Color online) Electron wave functions for LUMO (lowest
unoccupied molecular orbital) and HOMO (highest occupied
molecular orbital) in the CGNRs of Fig. 1.

effect of curvature is to blur the transport gap. The blurring
can be understood in a simple picture: an incident electron
wavefunction propagating in the lead at a certain energy de-
flects in response to the curvature and creates an energy broad-
ening. This broadening depends on the atomic details of the
curved part.

The stationary conductance can be understood via electron
wavefunction visualizations at the Γ point. The highest oc-
cupied (HOMO) and lowest unoccupied (LUMO) molecular
orbitals reveal both localized and delocalized characteristics
(Fig. 3). States relevant for transport show wavefunctions
delocalized across the entire system. The electrons in short
zigzag segments are trapped by the neighboring semiconduct-
ing AGNR leads, leading to donor-like states near conduction
bands and acceptor-like states near valence bands. Moreover,
larger angle between the leads creates stronger localization of
the frontier orbitals in the curved section, which is part of the
origin for the observed large transport gap in L and U samples.

5 Transport in time-dependent picture

5.1 Transient behavior of currents in curved ribbons

The stationary results suggest that the currents may run
less smoothly through curved ribbons than through straight
ribbons. To get a more complete microscopic picture of
the current dynamics, we used the advanced time-dependent
Landauer-Büttiker formula, described in Section 3. This time-
dependent picture does not reduce full transport characteris-
tics to a mere number, the energy-dependent conductance, but
gives a more transparent access to both temporal and spatial
dependence of the current.

In the time-dependent approach, the bias voltage VSD was
switched on at t = 0 and the transient dynamics was calcu-
lated at zero temperature until a steady state was reached.
The bias voltages ranged from VSD = 0.2 eV to 2.0 eV. The
coupling strengths were chosen so that the dissipation rate to
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Fig. 4 (color online) Time-dependent currents in CGNRs. (a) Top
figure shows the atomic structure of sample Va with bridges B1 and
B2. The four panels show time-dependent currents through B1 (left)
and B2 (right) at VSD = 1.0 eV (middle) and at VSD = 2.0 eV
(bottom). (b) Same as panels a for sample Vb. Dashed lines mark
the steady-state currents.

the semi-infinite leads was γ = 0.1 eV, for both source and
drain. For our samples these conditions required saturation
times up to 1 ns (see Fig. 7 and Ref.25). The transient dy-
namics were first analyzed as currents through two bridges,
B1 and B2, which were calculated as the sum over individual
bond-currents (Fig. 4).

From the moment the bias is switched on, the current at
B1 grows rapidly and starts to oscillate over hundreds of fem-
toseconds until the oscillations damp towards a steady state.
To reach B2 the wavecrest needs to travel ∼ 30 Å, which is
seen as a short delay in the bridge current. This delay implies
current velocity of ∼ 10 Å/fs, which equals the Fermi-velocity
in graphene, as expected.38 The transients at both bridges are
characterized by slow oscillations superimposed by fast oscil-
lations associated with multiple intra-ribbon and ribbon-lead
state transitions. The slowest oscillations originate from lead-
to-lead reflections created by the charge density wave after
switching on the bias. These slow oscillations are visible in the
long-time plots of bridge currents (Fig. 7 and SI25). High bias
reveals another type of slow oscillation that originates from
multiple scatterings of the charge density waves trapped in the
curved part.

In straight GNRs the currents are regular and flow in the
same direction21, but in CGNRs they are more complex. The
curved parts act as strong scattering centers for the electronic
current and cause direction reversal, especially at low bias.
Such backward currents are evident when looking at anima-

Fig. 5 (color online) Fourier transforms of time-dependent B2
currents of Fig. 4. Samples are Va (left panels) and Vb (right panels)
at the shown biases.

tions of bond current (see SI25). The dynamics of backward
currents in CGNRs are governed by two length scales: lead-to-
lead and lead-to-curved part distances. These distances create
rich interference patterns upon multiple scatterings at the in-
terfaces. The interference results in dense frequency spectra
of the Fourier-transformed (FT) currents (Fig. 5).

It is instructive to investigate some transitions more closely.
For instance, the time-dependent currents of Vb at VSD =
1.0 eV exhibit well-defined oscillations at 30 fs period, and the
FT spectra shows an intense peak at the corresponding energy
ω ≈ 0.15 eV. This transition can be identified by looking at
the local density of states (LDOS) at energies suggested by the
spectral function. The local density of states at energies 0 eV
and −0.15 eV show elongated edge states at inner and outer
edges of the curved part (Fig. 6). Thus, the observed electronic
excitations at ω ≈ 0.15 eV corresponds to edge-state transi-
tions taking place inside the CGNR. This oscillation becomes
masked if VSD is increased because additional electronic tran-
sitions start taking place within the enlarged bias window.

Here we note that the single π-orbital model compares well
with the full DFTB model. Both models yield frontier or-
bitals of similar edge-localized nature and similar level struc-
ture (Figs. 3 and 6), even if quantitative differences exist. Our
central results are not affected by the choice of the model.

In Fig. 7 we compare the transient currents in samples Va,
L and U. Currents are calculated at VSD = 1.0 eV through
bridges in the middle of the curved parts. As a result, smaller
angle CGNRs yield larger oscillation amplitudes in the tran-
sient regime. The sample Va with the shortest arc reaches the
steady-state current fast, within ∼ 300 fs. This is because the
curved part is relatively short, with a zigzag section only on the
outer edge, which means a strong coupling between the lead
electrodes and a short equilibration time. The sample U, on the
contrary, has a curved part that is longer and more structured,
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Fig. 6 (color online) Density of states (DOS) of sample Vb. Shaded
region shows the 1.0 eV bias window. Right insets show the local
density of states (colormaps) for the selected DOS peaks at 0 eV and
−0.15 eV.

which means weaker coupling between the lead electrodes:
current scatters more, creating smaller current fluctuations due
to interference between scattered currents, and ultimately a
longer equilibrium time. Sample L, with the same reason-
ing, has an equilibration time intermediate between samples
Va and U.

The spectral analysis for sample U shows an intense tran-
sition at ω ≈ 0.14 eV, followed by several weaker transitions
at higher energies (Fig. 8). Sample L shows richer Fourier
spectrum. Consider, in particular, the triplet of intense transi-
tions at 0.10 eV, 0.16 eV, and 0.18 eV. These transitions can be
tracked down to the triplet-like edge states at 0 eV that origi-
nate from three zigzag-sections in the structure (see Fig. 1 and
spectral function in SI25). Therefore, this triplet of excitations,
as well as the other triplets at higher energies, correspond to
transitions between the edge states at 0 eV and states at other
energies.

The above analysis shows how FT provides some insight to
the transitions during current transients. However, it misses
all the temporal information. FT is unable to provide either
the times or the durations for the activities of certain transi-
tions. FT peak intensities give sort of averaged-out informa-
tion about how long durations certain frequencies are present;
a more accurate temporal analysis however requires an alter-
native analysis tool.

Fig. 7 (color online) Left: Short-time behavior of currents through
samples Va, U, L at VSD = 1.0 eV. Right: The corresponding
long-time behaviors, showing current saturation. Currents were
calculated through a bridge in the middle of the curved section.

5.2 Temporal and spatial characterization:
Wavelet analysis

The alternative analysis tool that gives better insight into the
complex back-and-forth currents in CGNR is Wavelet de-
composition39–41. In this method the time-domain signal is
convolved by an element of a set of basis functions called
wavelets. For our current results we tested three types of
wavelets: Haar42, Morlet43,44, and Ricker45,46, the last one
being the second derivative of a Gaussian function. We will
show only results using Ricker wavelet, as it provided the
cleanest analysis.

The continuous wavelet transform (CWT) of the current I(t)
convolved by a given wavelet ψ is defined as

C(s,τ) =
1√
s

∫ ∞

−∞
I(t)ψ∗

(
t − τ

s

)
dt,

where ψ∗ is complex conjugate of the wavelet shifted by τ and
scaled by the dimensionless parameter s. This transformation
maps the data into s×τ space, where τ is related to time and s
can be related to frequencies via fs = fc/(s∆), where ∆ is the
sampling period and fc is the center frequency of the wavelet.
This frequency is calculated by associating a periodic function
of frequency fc with the respective wavelet in such way that
the function approximately delineates the wavelet form. The
frequency is related to real time directly as τs = 1/ fs. With
fs as our time unit, we used Ricker wavelets with a center
frequency of 0.25 fs−1 and sampling of ∆ = 0.16 fs.

The advantage of wavelet analysis is that it enables us to
distinguish between rapid and slow current fluctuations by
choosing the scale s. Currents can thus be analyzed simul-
taneously at different frequencies and at different times. By
searching and analyzing intense wavelet coefficients we can
identify instants and frequencies for eminent and possibly in-
teresting events. We calculated CWT on the currents by using
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Fig. 8 Fourier transforms of the time-dependent currents in Fig. 7
for (a) sample U and (b) sample L at VSD = 1.0 eV.

Fig. 9 Wavelet coefficients (colormap) as a function of scale (s) and
time (τ) for currents through bridges B2 in (a) sample Va and (b) in
sample Vb at VSD = 1.0 eV.

the Wavelet Toolbox in Matlab47 and scales large enough to
scan all the frequencies relevant to our samples.

5.3 Spatial character of time-dependent currents

The wavelet analysis of bridge currents in samples Va and
Vb reveals frequency-dependent periodic structures of intense
patterns (Fig. 9). For sample Va the most intense wavelet com-
ponents around s = 13-15 correspond to periods of τs ≈ 9.0 fs
and energy of 0.46 eV. This energy agrees quantitatively with
the fourier peak at ω ≈ 0.45 eV (Fig. 5). Wavelet analysis also
gives the “life time” of this mode: intensity peaks repeat every
∆τ ∼ 14−20 fs and they dominate over other modes until 300
fs after which intensity starts to fade away. The modes with
scales s > 35 are the low-frequency modes with ω < 0.065 eV
that correspond to the background oscillations seen in the long
run simulations25. Similarly, for sample Vb the most intense
wavelet components around s = 41 correspond to τs ≈ 27 fs

Fig. 10 Snapshots of bond currents (black arrows) and charge
variations (colormap; units of electron charge) for samples Va (a and
b) and Vb (c and d) at VSD = 1.0 eV and at the instants shown in the
panels.

and energies ≈ 0.15 eV, in agreement with the spectral analy-
sis (Fig. 6). Intensity peaks repeat every ∆τ ∼ 55-60 fs and re-
main pronounced up to ∼ 650 fs. The general current features
in Vb are simpler than in Va and most wavelet components re-
tain their relative intensities during the course of time. The dif-
ferences in these features can again be attributed to the longer
curved part in Vb that more effectively delays the transmission
of the current. The observed timescales provide a valuable in-
formation to help optimizing the detection of such transient
responses; one could use a probing wave with the same period
∆τ to discern the characteristic modes.

As discussed above, the wavelet analysis gives the possi-
bility to choose interesting instants to further investigate not
only currents through chosen bridges but bond current patterns
within the entire samples. Wavelet analysis also enables iden-
tifying current “fingerprints” for each sample. Let us inves-
tigate few current pattern snapshots for samples Va and Vb,
with instants chosen so that one instant involves an intense
wavelet amplitude and the other instant does not (Fig. 10).
In both samples currents follow straight paths along the arm-
chair leads and go through the inner zigzag edge in the curved
part. Atoms directly connected to source and drain show the
largest positive and negative charge density variations, and the
spreading of the charge depends on the applied bias, on the
length of the curved part, and on the electronic character of
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the AGNR lead. In sample Va the charge profile has more in-
ternal contrast, with density variations occurring within the
entire sample, but with an extremely sharp transition from
positive to negative density variations. This is because the
leads are metallic 8-AGNRs that enable quick spreading of
the charge density waves from the electrodes all the way to
the short curved part. In sample Vb the leads are also metallic
but the curved part is longer, creating a more gradual transi-
tion from positive to negative charge variations and a smoother
localization of the current along the inner edge.

However, the striking feature in the snapshots discussed
above is the strong localization or focusing of the current.
We analyzed the current in samples Va, U, and L at instants
that were the first occurrences of the first visible peaks in the
wavelet amplitudes. By creating a simple list of bond currents
at those instants, we observe extreme spatial focusing of the
currents (Fig. 11); depending on the structure, as few as two
bonds may carry instantaneous currents that can amount up to
250 % of the overall steady-state current through the sample.
These observed focusings are consistent and result from nu-
merically stable computations. Another instants with smaller
wavelet amplitudes shows much weaker and less inhomoge-
neous currents. Therefore, the curvature seems to generate
electric currents that show high temporal and spatial focusing.
This is our central result. Such focusing is absent in straight
GNRs, which show temporally and spatially far more homo-
geneous currents.21

The current focusing is a generic feature common to all
curved samples. For example, corresponding to the currents
in samples U and L (Fig. 7), Fig. 12 shows the wavelet analy-
sis and Fig. 13 selected snapshots of two instants. The wavelet
amplitudes and snapshots show current focusing, which is par-
ticularly evident in animations (see SI25). Sample U shows
strong currents along the armchair leads and along the inner
edges of curved section. Sample L has one lead zigzag and the
other lead armchair, and this asymmetry becomes clearly vi-
sible. Charge density variations occur along the sample irreg-
ularly, which happens because the zigzag lead supports more
current paths than the armchair lead, at least for this type of
CGNR. The difference in the propagation speeds in the dif-
ferent leads quickly create a non-uniform and irregular charge
variations distributions across the sample.

The wavelet analysis can also provide information about
impurities. We repeated the calculations with sample Va, but
this time with a model for an impurity atom adsorbed on top
of a carbon at the bridge B2. The impurity is modelled by
an on-site energy of −0.2 eV and a modified nearest-neighbor
hopping parameter γi = 0.8γcc = −2.16 eV. This is a crude
model for an impurity that causes weaker bonding to its neigh-
boring carbon atoms.48 As a result of the impurity, the fea-
tures of wavelet amplitudes get notably perturbed (compare
Fig. 9a with Fig. 12c). The fairly regular wavelet patterns of
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Fig. 11 (color online) Instantaneous bond currents for samples (a)
Va at t = 12.6 fs, (b) U at t = 19.7 fs and (c) L at t = 16.5 fs with
bias VSD = 1.0 eV as a function of bond index (red circles). Panels
also include the corresponding bond currents at the steady-state
(blue diamonds) and the overall steady-state current through the
sample (dashed line). Bonds are indexed wrt. increasing current.

the pristine sample Va get disrupted, as becomes evident al-
ready within the first 100 fs. For instance, the second large-
intensity region in s− τ -space shifts towards larger scales,
indicating that this particular mode becomes red-shifted. This
shifting was confirmed by FT spectrum, which showed a peak
at 0.20 eV for the pristine sample and at 0.18 eV for the im-
purity sample. The shifting occurs with scales s ≈ 21-39, cor-
responding to periods between 13.8 fs and 25.7 fs. However,
the most important effects of the impurity are the changes in
current paths. Figure 14 as well as animations25 show how
the impurity affects the charge distributions within the entire
sample and even alters the current paths from inner to outer
edge of the curved section. In CGNRs the electric currents
can be extremely sensitive to single impurities: if impurities
get adsorbed to sites with focused currents, the entire current
patterns may have to rearrange. This can drastically change
sample conductance.
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Fig. 12 Wavelet amplitudes (colormaps) as a function of scale (s) and time (τ) for currents through the curved sections in (a) sample U, (b)
sample L, and (c) sample Va with an impurity site, all at VSD = 1.0 eV.

Fig. 13 (color online) Snapshots of the bond currents (black arrows)
and the charge variations (colormap; units of electron charge) for
samples U (a and b) and samples L (c and d) at VSD = 1.0 eV and at
times shown in the panels.

6 Discussions: edge-state detectors

Today experiments, by using sophisticated microscopy tech-
niques, are able to investigate the dynamics of nanoscale ma-
terials at nanosecond49 and at picosecond50 time scales, even
if not yet quite at femtosecond time scales. However, even if
direct measurements at the femtosecond scale should still re-
main out of reach, the events and dynamics at that scale never-
theless reflect behavior also in longer time scales. Our theoret-
ical approach provides a transparent and intuitive perspective
into the femtosecond dynamics and it also scales efficiently
with respect to system size; it can be used to study experi-
mentally relevant systems for phenomena with scales ranging
from femtosecond dynamics to steady-state properties. In the
future we will extend the method for other elements and other
types of time-dependent perturbations.

The simulations using this method show that curvature

Fig. 14 (color online) Snapshots of bond currents (black arrows)
and charge variations (colormap; units of electron charge) for
sample Va with an impurity adsorbed on the top of the carbon atom
enclosed by a bold line (magenta) located at the center of the
curvature. VSD = 1.0 eV and the respective instants are shown in the
panels.

in graphene nanoribbons causes significant scatterings via
impurity-like states, degrading the conducting channels in the
vicinity of the transport gap. These scatterings cause strong
temporal and spatial focusing, as seen in the visualizations
enabled by wavelet analysis. The temporal focusing related
to transient phenomena, also observed in other studies and
even in straight GNRs21,51,52, highlights the necessity of time-
dependent approach to quantum transport. The curvature-
generated spatial focusing is of fundamental importance and
could be exploited in various applications, such as in chemi-
cal sensing and in the design of graphene circuitries in gen-
eral. The focusing could also act as the origin for detrimental
Joule heating and ultimate burning of graphene-based edge-
detecting devices. This could be avoided by low biases and by
ultra-fast time scales to allow for heat dissipation. The relia-
bility of the device upon heating could be probed by resistive
heating maps, as conducted by a recent work by Grosse et
al.53

Scanning transmission electron microscopy (STEM) im-
ages of graphene constrictions exposed to adatoms have re-
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vealed that their sensitivity, as characterized by susceptible
edge-states, can be superior to ’bulky’ graphene.54 Edge-
state detectors, such as solid-state nanopore sensors applied
to ultrafast DNA decoding, are currently under intense re-
search.55–57. Decoding with single base resolution is chal-
lenging58, and one of the related critical challenges is a suffi-
cient spatial and temporal resolution. In this regard curved
graphene structures might be suitable systems: currents at
their edges are intense and highly focused.

7 Conclusions

In summary, we aimed at providing a comprehensive under-
standing of stationary and time-dependent electronic transport
properties of nanoribbons with intrinsic curvature. The curved
parts greatly influenced the transport features of graphene rib-
bons. Conductance gaps were governed both by the electronic
character of the leads and by the presence and by the amount
of curvature. In the time domain, our results showed that
the curvature induces temporally and spatially focused elec-
tric currents that mostly flow at the edges. This focusing cre-
ates great sensitivity to perturbations: the presence of even a
small and localized impurity may cause a complete rearrange-
ment of current paths within the sample. Focusing can also
create strong local Joule heating and cause burning of devices.
These findings can benefit the development of sensing devices
that make use of materials edges for probing ultrafast mod-
ifications in the environment and also the general design of
graphene circuitries.

8 Acknowledgement

The authors thank the Academy of Finland for funding
(projects 283103, 251216) and the CSC - IT Center for Sci-
ence in Finland together with the Trinity Centre for High
Performance Computing (TCHPC) in Ireland for the compu-
tational resources. R.T. thanks Väisälä Foundation of The
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