NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

1,4-Dihydrophosphinolines and Their Complexes with Group 10 Metals

Margarita A. Klingenberg,^a Alexander S. Bogachenkov,^a Mikhail A. Kinzhalov,^{*a} Aleksander V. Vasilyev,^{a,b} and Vadim P. Boyarskiy^{*a}

Syntheses and characterizations of novel phosphaheterocycles, 1-phenyl-4,4-dimethyl-1,4-dihydrophosphinoline (**2a**) and 1-phenyl-2-bromo-4,4-dimethyl-1,4-dihydrophosphinoline (**2b**), and their complexes with Pd(II) and Pt(II) are described. Reduction of 1-phenyl-4,4-dimethyl-1,4-dihydrophosphinoline 1-oxide (**1a**) and 1-phenyl-2-bromo-4,4-dimethyl-1,4-dihydrophosphinoline 1-oxide (**1b**) using trichlorosilane in refluxing benzene gave the target phosphines in a yield of 83–87%. Reactions of phosphines with acetonitrile complexes of Pd(II) (**3**) \ltimes Pt(II) (**4**) yielded *bis*(phosphine) species [MCl₂L₂] (**5–8**). Complexes **5–8** were characterized by ¹H, ¹³C, ³¹P, ¹⁹⁵Pt NMR and HRMS. The structures of all these new complexes were determined with single crystal X-ray diffraction. The configuration of the complexes in a CDCl₃ solution was investigated via comparing of ³¹P NMR data in solution and solid state.

Introduction

Complexes of group 10 metals (especially palladium) with phosphine ligands have long been attracting the attention of researchers as objects for theoretical study and as homogeneous metal-complex catalysts.¹ They were one of the first catalysts of the most famous cross-coupling reactions (such as Suzuki,² Sonogashira,³ and Heck⁴), which became a powerful tool of organic synthesis.⁵ And, despite the fact that now some other types of ligands (for instance, diaminocarbenes) have forced phosphines to make room, phosphine complexes of palladium continue to figure prominently in the field of catalysis.⁷ They gained a new impulse thanks to works of several researchers who have developed obtaining new phosphine ligands (such as, tri-tertbutylphosphine,⁸ Buchwald's biarylphosphines,⁹ Hartwig's Q-Phos,¹⁰ 2-phosphino-substituted 1-arylpyrroles (PAPs),¹¹ and 2arvlindoles¹²) and showed interesting properties of various metal complexes with these ligands. This shows that synthesis of new phosphines and complexes of group 10 metals with these ligands is still important research thrust.

Results and Discussion

Scheme 1. Synthesis of 1,4-dihydrophosphinolines 2a, 2b from 1,4-dihydrophosphinoline 1-oxides 1a, 1b.

We used HSiCl₃ in a benzene solution to reduce the P=O group in **1a**, **1b** (analogous to the known phosphine oxides reduction¹⁴) that afforded the desired phosphines in good yields (83–87%). Compounds **2a,b** were also obtained by the other method¹⁵ using PPh₃ as the reducing agent. However, in this case yields of the reaction products were lower (49–56%), due to difficulties in chromatographic separation of **2a**, **2b**, which have very close retention parameters R_f with triphenylphosphine. Apart from that, elution of **2a**, **2b** on silica-gel for long time led to partial back oxidation of these compounds. Structures of compounds **2a**, **2b** were determined by ¹H, ¹³C, ³¹P NMR and HRMS (see Experimental and Supplementary Information). Additionally the structure of phosphine **2b** was confirmed by X-ray analysis (Figure 1).

(AL SOCIETY **CHEMISTRY**

^a St. Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 Russia. E-mail: v.boiarskii@spbu.ru

^{b.} Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021 Russia.

Electronic Supplementary Information (ESI) available: ¹H, ¹³C, ³¹P, ¹⁹⁵Pt NMR spectra, X-ray data. See DOI: 10.1039/x0xx00000x

Figure 1. View of 2b with the atomic numbering schemes. Thermal ellipsoids are drawn at the 50% probability level.

More rigid structure of phosphine **2b** decreases the C–P–C angles (98.3 °, 100.6 °, and 101.3 °) compared to PPh3 (102.1 °, 103.6 °.¹⁶ Lower magnitudes of the valence angles indicate increased s-character of the lone pair orbital of the phosphorus (by which it can be coordinated to the metal centers) and thereby arisen electronegativity of the phosphorus atom.

The reaction of phosphines **2a**, **2b** and nitrile complexes of Pd(II) **3** and Pt(II) **4** proceeded at room temperature for *ca* 24 h and resulted in the formation of phosphine complexes [MCl₂L₂] **5–8** (Scheme 2). After recrystallization from the mixture of CH₂Cl₂/Et₂O these compounds were isolated as *trans*-[PdCl₂L¹₂] (*trans*-5, yield of 82 %), *cis*-[PtCl₂L¹₂] (*cis*-6, yield of 87 %), *trans*-[PdCl₂L²₂] (*trans*-7, yield of 86 %), trans-[PtCl₂L²₂] (*trans*-8, yield of 94 %). The latter was quantitatively isomerized into *cis*-8.

[MCI ₂ (NCR) ₂]	+ 2 L	-2 NCR [MCl ₂ (L) ₂]			
3, 4	2a, b	5–8 (82–94%)			
3: M = Pd, R = Cl	H ₃	5 : M = Pd, L ¹ = 2a			
4 : M = Pt, R = C_2	H5	6: M = Pt, L ¹ = 2a			
		7: M = Pd, L ² = 2b			
		8: M = Pt. L ² = 2b			

Scheme 2. Synthesis and numbering of [MCl₂L₂].

The composition and the structures of compounds **5–8** were determined by means of high-resolution mass spectrometry (HRMS), ¹H, ¹³C, ³¹P, ¹⁹⁵Pt, solid state ³¹P NMR spectroscopy (see Experimental and Supplementary Information), and X-ray analysis (Figures 2–6).

Figure 2. View of *trans*-5 with the atomic numbering schemes. Thermal ellipsoids are drawn at the 50% probability level.

Figure 3. View of *cis*-6 with the atomic numbering schemes. Thermal ellipsoids are drawn at the 50% probability level.

Journal Name

Figure 4. View of *trans*-7 with the atomic numbering schemes. Thermal ellipsoids are drawn at the 50% probability level.

Figure 6. View of *cis*-8 with the atomic numbering schemes. Thermal ellipsoids are drawn at the 50% probability level.

Figure 5. View of *trans*-8 with the atomic numbering schemes. Thermal ellipsoids are drawn at the 50% probability level.

Table 1. Selected bond lengths [Å] and angles [°] for trans-5, cis-6, trans-7, trans-8 and cis-8.

	trans-5	cis-6	trans-7	trans-8	cis-8
M-P	2.3150(8)	2.244(2)	2.3281(12)	2.3131(7)	2.2501(8)
		2.258(2)			2.2552(8)
M-Cl	2.3093(9)	2.350(2)	2.2916(12)	2.3047(7)	2.3518(8)
		2.342(2)			2.3518(8)
P1-M1-P1A	180.0	98.90(7)	180.0	180.0	98.79(3)
Cl1-M1-Cl1A	180.0	88.06(8)	180.00	180.0	87.31(3)
P1-M1-Cl1	86.48(3)	90.08(8)	91.06(4)	89.02(2)	168.48(3)
P1-M1-Cl1A	93.52(3)	178.01(8)	88.94(4)	89.02(2)	88.77(3)
P1A-M1-Cl1	93.52(3)	170.71(8)	88.94(4)	90.98(2)	87.31(3)
P1A-M1-Cl1A	86.48(3)	82.99(8)	91.06(4)	90.98(2)	166.33(3)

Table 2. ³¹P and ¹⁹⁵Pt NMR data for *trans-5, cis-5, cis-6, trans-7, trans-8* and *cis-8*.

t	trans-5	cis-5	cis-6	trans-7	trans-8	cis-8

This journal is © The Royal Society of Chemistry 2015

ARTICLE						Journal Name
δ _P , CDCl ₃	-9.7, -6.9	-14.3, -13.8	-27.1	4.1, 4.3	1.9	-7.9, -6.9
δ_P , solid state	-5.2	-	-27.4, -23.7	3.9, 5.9	1.9	-9.2, -5.6
δ_{Pt} , CDCl ₃	-	-	-4380, -4365	-	-4028	-4401, -4398
¹ J _{P,Pt} , Hz	-	-	3635, 3638	_	2782	3840, 3880

The X-ray data gave us possibility to calculate cone angles for new phosphine ligands **2a** and **2b** and to compare their steric features with PPh₃.^{1b} These phosphines are bulkier than PPh₃ (**2a** Θ = 152 °, **2b** Θ = 158 °, PPh₃ Θ = 145 °) but their volumes are not very large. We synthesised bromo-substituted phosphine **2b** due to the high volume of the Br atom (**1b** was the most bulky substituted 1,4dihydrophosphinoline 1-oxide among all available starting compounds for our studying). Really, the cone angle of **2b** is 6 ° more than the one of **2a**.

Complexes trans-5, trans-7, and trans-8 have almost undistorted square-planar structure of the metal centers and C_2 rotation axis while the structures of cis-6 and cis-8 are some distorted squares due to the bulkier phosphines ligands in comparison with the Cl atoms (Figures 2-6, Table 1). The enhanced cone angle of phosphine 2b comparing 2a results the small distortion of the square plane in complex cis-8 (Table S2). Lengths of M-P bonds are typical for Pd-P and Pt-P bonds in other phosphine complexes.¹⁷ The lengths of M-P bonds in the transcomplexes are slightly higher than in the cis-species (trans-5 Pd1-P1 2.3150(8) Å, trans-7 Pd1-P1 2.3281(12) Å, trans-8 Pt1-P1 2.3131(7) Å, cis-6 Pt1-P1 2.258(2) Å and Pt1-P1A 2.244(2) Å, cis-8 Pt1-P1 2.2552 (8) Å and Pt1-P1A 2.2501(8) Å). It can be discussed in relation to the *trans*-influence.¹⁸ In the case of *trans*-[PtCl₂L₂] the phosphorus ligand is trans-oriented to an identical ligand, which exerts a large trans-influence, thereby weakening the Pt-P bond. In cis-[PtCl₂L₂] the phosphorus ligand is trans-located to Cl which has a small trans-influence and, therefore, does not greatly elongate the trans Pt-P bond.

It is worth noting, that the crystals of **trans-7** and **trans-8** are isomorphic. Such isomorphism of Pd and Pt species was reported early for some other phosphine complexes (e.g. *trans*- $[MCl_2(PPh_3)_2]\cdot CH_2Cl_2 M = Pd$,¹⁹ Pt²⁰ or *trans*- $[MCl_2(PPh_2t-Bu)_2]\cdot CH_2Cl_2 M = Pd$,²¹ Pt²¹).

The homogeneity of the reaction products *trans-5, cis-6, trans-*7, and *trans-8* was proven by the solid state ^{31}P NMR spectra of these complexes, which contained one broad signal or two close overlapping signals corresponding to one geometric isomer in each compound.

To determine the geometry of complexes in solution we used ³¹P NMR spectroscopy. It should be noted that, at the coordination of phosphine **2a**, **2b** to metal, a stereogenic center appears on the phosphorus atom, resulting in each of geometric isomers of complexes **5–8** (bearing two stereogenic centres) can exist as a racemate or a *meso*- form. Therefore, "paired" signals with comparable intensity were observed in the ³¹P NMR spectra of complexes **5–8** in solution.

Two sets of signals ($\delta_P = -14.3, -13.8$ and -9.7, -6.9 ppm) were detected in ³¹P NMR spectrum of Pd complex **5** in CDCl₃ that indicated the existence of both *cis*-and *trans*-isomers in solution. It is known that phosphorus atoms in complexes [MX₂L₂] (M = Pd, Pt; X = Cl, Br; L = phosphine) in *trans*-isomers resonate at higher

frequencies than phosphorus atoms in *cis*-isomers.^{17b, 22} Thus, the signals at $\delta_P = -14.3$ and -13.8 ppm correspond to *cis*-isomers, but signals at δ_{P} = –9.7 and –6.9 ppm belong to trans-ones. This conclusion is also confirmed by the fact that in solid state $^{\rm 31}{\rm P}~{\rm NMR}$ spectrum of trans-5 a signal at -5.2 ppm was observed. Based on ³¹P NMR data we found that *cis*- and *trans*- isomers of complex **5** were in equilibrium in a CDCI_3 solution. At 20 °C the equilibrium mixture consisted of 45% of *trans-5* and 55% of *cis-5*, upon heating to 50 °C the content of cis-5 was increased up to 73%, but then subsequent cooling to 20 °C led to the initial ratio of isomers. The other Pd complex 7 in solution in CDCl₃ existed as the trans-isomer only (δ_P = 4.1 and 4.3 ppm). Presumably, this is due to the larger spatial volume of bromo-substituted phosphine 2b compared to 2a. Pt complex $\mathbf{6}$ in solution in $CDCl_3$ was present only in a single geometrical isomer with cis-configuration (at the synthesis from both cis-4 and from trans-4) that followed from the close values of chemical shifts of the phosphorus in ³¹P NMR spectra registered in solution and in solid state. Complex 8 was initially formed only in the trans-form, which in the presence of small amounts of phosphine 2b (10% mol, accordingly to the procedure that reported for phosphine catalysed *trans-*, *cis-* isomerization²³) was completely transformed into cis-8 at room temperature for 24 h (Scheme 3) and crystallized in this form. The signals of phosphorus atoms in ³¹P NMR spectrum of *trans*-8 were at δ_{P} = 1.9 ppm, whereas the signals of phosphorus atoms in ³¹P NMR spectrum of *cis*-8 were located at lower frequencies $\delta_P = -7.9$ and -6.9 ppm. It was also found that at room temperature for solution of complex trans-8 in CDCl₃, even in the absence of phosphine, isomerization slowly occurred leading to cis-8, the content of the latter reached 66% after 6 months keeping. This revealed that the trans-isomer 8 was a kinetically controlled reaction product, while its cis-isomer was thermodynamically controlled one, i.e. more stable in solution.

Scheme 3. Formation of complex 8 from *cis*-4 and *trans*-4.

It was found that the geometric structure of the complexes with phosphine **2b** can also be determined by ¹H NMR spectroscopy. The ligands in the *trans*-complexes are magnetically inequivalent and the signal of the hydrogen atom at the double bond has the structure of a triplet, while in the *cis*-complexes it is a doublet²⁴. That allows figuring out the geometry for complexes **7** and **8**. Such determination of structure for complexes **5** and **6** is difficult due to signal overlapping in their ¹H NMR spectra.

The geometric configuration for platinum complexes **6** and **8** can also be determined from analysis of the P,Pt-coupling constants: for *cis*-[PtCl₂(PR₃)₂] ¹J_{P,Pt} > 3000 Hz,^{17b,22a,25} and for *trans*-[PtCl₂(PR₃)₂] ¹J_{P,Pt} < 2800 Hz.^{17b,22c,26}. Analysis of values of ¹J_{P,Pt} constants confirmed the above conclusion on the structure of complexes **6** and **8** in the CDCl₃ solution.

Usually it is assumed that these coupling constants are dominated by the Fermi contact interaction of nuclei with *s*-orbital electrons²⁷ and are taken as an estimation of bond strength, provided such bonds involves hybrid orbitals with some *s* character. As the magnitude of ${}^{1}J_{P,Pt}$ coupling constants is related to the *s*-character of the Pt–P bond they give information on the geometry of the complexes.²⁷⁻²⁸ For the *cis*-geometry the displacement of the π -acceptor orbitals on phosphorus is such that they overlap with the d_{xy} , d_{zy} , and d_{xz} orbitals of platinum. The geometry of the phosphorus π -orbitals in the *trans*-configuration means that only two metal *d*-orbitals are available for π -bonding.²⁹ The increased π -bonding in the *cis*-isomers leads to a synergic increase in the *s*-character of the Pt–P bond and, hence, to a larger ${}^{1}J_{P,Pt}$ coupling constant relative to the *trans*-isomer.

Conclusions

In conclusion, we have synthesized a new type of phosphine ligands, 1,4-dihydrophosphinolines. They exhibit properties of typical phosphine ligands forming complexes with Pd(II) and Pt(II). Both 1-phenyl-4,4-dimethyl-1,4-dihydrophosphinoline 2a, 1-phenyl-2-bromo-4,4-dimethyl-1,4-dihydrophosphinoline 2b and their complexes with Pd(II), Pt(II) 5-8 have been fully characterized by means of ¹H, ¹³C, ³¹P, and ¹⁹⁵Pt (for the Pt species) NMR and HRMS. Structures of 2b and complexes 5-8 and have been confirmed by Xray analysis. Both in palladium and platinum complexes, the phosphine ligands are coordinated through phosphorus atoms, the C=C double bonds of phosphines are not involved in the coordination. Due to the presence of prochiral phosphorus atom in the ligands, the complexes have formed mixtures of racemate and meso-form in comparable ratios. Palladium complexes are more stable in trans-form, although the complex with ligand 2a (having a smaller spatial volume) exists as a mixture of the *cis-/trans-*isomers. Larger metal center and, consequently, less stringent sterical demands, allow the platinum complexes to exist in cis-form, which is more favorable from the point of view of differences in the transinfluence of phosphine and chloride ligands.

Experimental Section

Materials and Instrumentation. Solvents, PdCl₂, PtCl₂, PPh₃, and HSiCl₃ were obtained from commercial sources and used as received, apart from CH₂Cl₂, which was purified by the conventional distillation over K₂CO₃. Complexes PdCl₂(CH₃CN)₂ (**3**)³⁰ and PtCl₂(C₂H₅CN)₂ (**4**)³¹ were synthesised by the known procedure. C, H, and N elemental analyses were carried out on a Euro EA 3028HT CHNS/O analyzer. The NMR spectra of solutions of compounds in CDCl₃ were recorded on Bruker AVANCE III 400 spectrometers at 25 °C (at 400, 100, 162, and 86 MHz for ¹H, ¹³C, ³¹P, and ¹⁹⁵Pt NMR spectra, respectively). Chemical shifts are given in δ-values [ppm] referenced to the residual signals of non-deuterated solvent (CHCl₃): δ 7.26 (¹H), 77.2 (¹³C), or to the signal of 85% H₃PO₄ δ 0.0 ppm (³¹P) and 1.2 M Na₂PtCl₆ in D₂O. Solid-state NMR experiments

ARTICLE

were performed on a Bruker Avance III NMR spectrometer operating at 9.4 T. ³¹P CP/MAS NMR spectra were acquired using a double-resonance 4 mm MAS Bruker probe at a resonance frequency of 162 MHz under 12 kHz MAS. The CP contact time in all experiments was 2 ms with a delay between acquisitions of 20 seconds. SPINAL-64 proton decoupling was used during spectra acquisition. 256 scans were collected. ³¹P NMR chemical shifts were referenced to 85% H₃PO₄. Mass-spectra were obtained on a Bruker micrOTOF spectrometer equipped with electrospray ionization (ESI) source; MeOH was used as the solvent. The instrument was operated both at positive and negative ion modes using *m/z* range of 50–3000. The capillary voltage of the ion source was set at –4500 V (ESI⁺) or 3500 V (ESI⁻) and the capillary exit at ±(70–150) V. The nebulizer gas pressure was 0.4 bar and drying gas flow 4.0 L/min.

Synthesis of phosphines 2. A solution of phosphinoline oxides 1 (1.49 mmol for 1a; 1.15 mmol for 1b) in 5 ml of benzene was placed into a 20 ml pressure tube followed by addition of $HSiCl_3$ (3 mL, 30 mmol) under argon. The reaction mixture was heated at 100 °C for 5 h, cooled with ice bath, and quenched by dropwise addition of 25% aq. NaOH (30 mL) at cooling. The organic layer was separated; the aqueous solution was extracted with Et_2O (30 mL). The combined organic extracts were washed with brine, dried with MgSO₄, and the solvent was removed to give yellow oil. The product was isolated by flash chromatography with petroleum ether as eluent.

1-Phenyl-4,4-dimethyl-1,4-dihydrophosphinoline (2a). Yield 0.31 g (83%), colorless oil. ¹H NMR (CDCl₃, δ): 1.36 s (3H, CH₃), 1.68 s (3H, CH₃), 6.22 dd (1H, C³H, ³J_{HH} 12.0 Hz, ³J_{HP} 28.0 Hz), 6.37 dd (1H, C²H, ³J_{HH} 12.0 Hz, ²J_{HP} 16.0 Hz), 7.08–7.16 m (2H, H_{arom}), 7.27–7.31 m (1H, H_{arom}), 7.36–7.39 m (3H, H_{arom}), 7.51–7.58 m (3H, H_{arom}). ¹³C{¹H} NMR (CDCl₃, δ): 30.6 d (CH₃, ⁴J_{CP} 2.0 Hz), 31.7 d (CH₃, ⁴J_{CP} 2.0 Hz), 38.3 s (C⁴), 123.3 d (C³, ²J_{CP} 9.0 Hz), 125.2 d (C⁵, ³J_{CP} 1.0 Hz), 125.5 d (C⁷, ³J_{CP} 8.0 Hz), 128.1 s (C^{4'}), 128.5 d (C³, C^{5'}, ³J_{CP} 8.0 Hz), 129.4 s (C⁶), 132.2 d (C⁸, ²J_{CP} 24.0 Hz), 134.0 d (C⁹, ¹J_{CP} 9.0 Hz), 134.7 d (C^{2'}, C^{6'}, ²J_{CP} 5.0 Hz). ³¹P{¹H} NMR (CDCl₃, δ): –39.3. ESI⁺-MS, *m/z*: calcd. for C₁₇H₁₇PH⁺ 253.1141, found 253.1156 [M+H]⁺; calcd. for C₁₇H₁₇PNa⁺ 275.0955, found 275.0979 [M+Na]⁺.

Synthesis of complexes 5–8

Complex 5. A solution of **2a** (0.30 mmol) in CH_2Cl_2 (1 mL) was rapidly added to a suspension of nitrile complex **3** (0.15 mmol) in CH_2Cl_2 (2 mL) at room temperature. The slurry was stirred under argon for 15 min. The solvent was removed and the oily residue treated with diethyl ether. Complex **5** was isolated as a yellow solid and dried at the air. Yield of 82 % (mixture of *cis-, trans-* isomers with two diastereomers for each), m.p. 230 °C (dec.). Anal. Calcd. for $C_{34}H_{34}Cl_2P_2Pd$: C, 59.89; H, 5.03. Found: C, 59.94; H, 5.07. ¹H

ARTICLE

NMR (CDCl₃, δ): 1.30 (s, CH₃), 1.46 (s, CH₃), 1.56 (s, CH₃), 1.58 (s, CH₃), 1.59 (s, CH₃), 1.62 (s, CH₃), 1.63 (s, CH₃), 5.55–5.63 (m, =CH), 6.11–6.88 (m, =CH), 7.10–7.18 (m, H_{arom}), 7.29–7.93 (m, H_{arom}), 8.23–8.25 (m, H_{arom}). ¹³C{¹H, ³¹P} NMR (CDCl₃, δ): 30.4 (CH₃), 30.6 (CH₃), 30.8 (CH₃), 31.0 (CH₃), 31.6 (CH₃), 31.8 (CH₃), 38.7 (C⁴), 38.8 (C⁴), 115.3, 115.7, 116.2, 124.0, 125.4, 125.6, 125.7, 125.8, 125.9, 126.4, 128.3, 128.4, 128.5, 130.2, 130.6, 130.8, 131.2, 131.4, 132.0, 132.3, 132.4, 134.7, 135.1, 135.6, 135.7, 136.3, 148.0, 148.3, 151.8, 151.9, 154.2, 155.4. ³¹P{¹H} NMR (CDCl₃, δ): –14.3 (*cis*-5), –13.8 (*cis*-5), –9.7 (*trans*-5), –6.9 (*trans*-5). ³¹P MAS NMR (δ): –5.2 (*trans*-5). HRMS(ESI⁺), *m/z*: calcd. for C₃₄H₃₄P₂PdCl⁺ 645.0859, found 645.0905 [M–Cl]⁺, calcd. for C₃₄H₃₄P₂PdCl₂Na⁺ 703.0445, found 703.0473 [M+Na]⁺.

Complex cis-6. A solution of 2a (0.30 mmol) in CH₂Cl₂ (2 mL) was rapidly added to a solution of nitrile complex 4 (0.15 mmol) in CH₂Cl₂ (3 mL) and the reaction mixture was stirred overnight at room temperature under argon. The solvent was removed and the colorless residue was washed with diethyl ether and dried at the air. Yield of 87 % (mixture of two diastereomers), m.p. 300 °C (dec.). Anal. Calcd. for C₃₄H₃₄Cl₂P₂Pt: C, 52.99; H, 4.45. Found: C, 53.07; H, 4.47. ¹H NMR (CDCl₃, δ): 1.22 (s, CH₃), 1.45 (s, CH₃), 1.51 (s, CH₃), 1.57 (s, CH₃), 5.49-5.57 (m, =CH), 6.11-6.55 (m, =CH), 6.85-7.15 (m, $H_{arom}),\ 7.30\text{--}7.56\ (m,\ H_{arom}),\ 7.79\text{--}7.90\ (m,\ H_{arom}).\ ^{13}\text{C}\{^1\text{H},\ ^{31}\text{P}\}\ \text{NMR}$ $(CDCI_3, \delta)$: 30.7 (CH_3) , 30.9 (CH_3) , 31.2 (CH_3) , 31.4 (CH_3) , 38.6 (C^4) , 114.7, 115.1, 125.6, 125.7, 125.9, 126.2, 128.1, 128.3, 128.4, 130.4, 130.7, 131.1, 131.2, 131.4, 131.6, 132.6, 133.7, 133.9, 134.3, 134.9, 135.3, 136.1, 148.0, 153.5, 155.4. ³¹P{¹H} NMR (CDCl₃, δ): -27.1 (s + d, ${}^{1}J_{P,Pt}$ = 3635 Hz), -25.3 (s + d, ${}^{1}J_{P,Pt}$ = 3638 Hz). 195 Pt NMR (CDCl₃, δ): -4380 (t, ${}^{1}J_{Pt,P}$ = 3635 Hz), -4365 (t, ${}^{1}J_{Pt,P}$ = 3638 Hz). ${}^{31}P$ MAS NMR (δ): -27.4, -23.7. HRMS(ESI⁺), m/z: calcd. for C₃₄H₃₄P₂PtCl⁺ 734.1472, found 734.1497 $[M-Cl]^+$, calcd. for $C_{34}H_{34}P_2PtCl_2Na^+$ 792.1058, found 792.1087 [M+Na]⁺.

Complex trans-7. A solution of 2b (0.30 mmol) in CH₂Cl₂ (2 mL) was rapidly added to a suspension of nitrile complex 3 (0.15 mmol) in CH₂Cl₂ (3 mL) at room temperature. The slurry was stirred overnight under argon, then the bright yellow solid was filtered, washed with diethyl ether and dried at the air. Yield of 86 % (mixture of two diastereomers), m.p. 257 °C (dec.). Anal. Calcd. for C₃₄H₃₂Br₂Cl₂P₂Pd: C, 48.63; H, 3.84. Found: C, 48.50; H, 3.80. ¹H NMR (CDCl₃, δ): 1.55 (s, 3H, CH₃), 1.56 (s, 3H, CH₃), 1.60 (s, 3H, CH₃), 1.61 (s, 3H, CH₃), 6.85 (t, ${}^{3}J_{P,H}$ = 10.5 Hz, 2H, C³H), 7.25–7.55 (m, 12H, H_{arom}), 7.68–7.71 (m, 4H, H_{arom}), 7.86–7.95 (m, 2H, H_{arom}). ${}^{13}C_{1}^{1}H$, ${}^{31}P$ } NMR $(CDCI_3, \delta)$: 31.2 $(2CH_3)$, 32.1 (CH_3) , 32.2 (CH_3) , 42.6 $(2C^4)$, 110.0 (C³H), 110.1(C³H), 124.2, 124.3, 126.5, 126.7, 127.9, 128.0, 128.2, 129.1, 129.2, 130.9, 131.0, 131.03, 131.06, 134.7, 135.0, 135.1, 147.0, 147.1, 151.3, 151.4. ${}^{31}P{}^{1}H$ NMR (CDCl₃, δ): 4.1, 4.3. ${}^{31}P$ MAS NMR (δ): 3.9, 5.9. HRMS(ESI⁺), *m/z*: calcd. for C₃₄H₃₂P₂Br₂PdCl⁺ 802.9049, found 802.9066 $[M-CI]^{+}$, calcd. for $C_{34}H_{32}P_2Br_2PdCl_2Na^{+}$ 862.8639, found 862.8647 [M+Na]⁺.

Complex trans-8. Complex was prepared as described for **trans-7** starting from **2b** (0.30 mmol) and nitrile complex **4** (0.15 mmol) in CH₂Cl₂ (5 mL) to give pale yellow solid. Yield of 94 %, m.p. 265 °C (dec.). Anal. Calcd. for $C_{34}H_{32}Br_2Cl_2P_2Pt$: C, 43.99; H, 3.47. Found: C, 43.92; H, 3.43. ¹H NMR (CDCl₃, δ): 1.56 (s, 3H, CH₃), 1.61 (s, 3H, CH₃), 6.86 (t, ³J_{P,H} = 10.5 Hz, 1H, C³H), 7.30–7.57 (m, 6H, H_{arom.}), 7.69–7.74 (m, 2H, H_{arom.}), 7.96 (ddd, ³J_{H,H} = 6.9 Hz, ³J_{H,H} = 6.9 Hz, ³J_{H,H} = 6.9 Hz, ¹¹CH₃, 32.3 (CH₃), 42.6 (C⁴), 109.1, 123.9, 126.4, 126.6, 127.9, 128.6, 130.9, 131.0, 134.7, 134.9, 147.1, 151.9. ³¹P{¹H} NMR (CDCl₃, δ): 1.9 (s + d, ¹J_{P,Pt} = 2782 Hz). ¹⁹⁵Pt NMR (CDCl₃, δ): -4028 (t, ¹J_{Pt,P} = 2782 Hz).

Journal Name

MAS NMR (δ): 1.9. HRMS(ESI⁺), *m/z*: calcd. for C₃₄H₃₂P₂Br₂PtCl₂Na⁴ 949.9248, found 949.9254 [M+Na]⁺.

Complex cis-8. A solution of 2b (0.002 mmol, 10 mol%) in CDCl₃ (0.05 mL) was rapidly added to a solution of complex trans-8 (0.02 mmol) in CDCl₃ (0.5 mL) at room temperature. The slurry was kept under argon for 24 h. The solvent was rapidly removed and the solid residue treated with diethyl ether. Yield of 98% (mixture of two diastereomers), m.p. > 300 °C (dec.). Anal. Calcd. for C₃₄H₃₂Br₂Cl₂P₂Pt: C, 43.99; H, 3.47. Found: C, 43.90; H, 3.42. ¹H NMR (CDCl₃, δ): 0.78, 1.30, 1.36, 1.64 (s, 12H, CH₃), 6.36–6.54, 7.07–7.24, 7.28–7.30, 7.37–7.42, 7.47–7.63 8.79–8.89 (m, 20H). $^{13}\text{C}\{^{1}\text{H},~^{31}\text{P}\}$ NMR (CDCl₃, δ): 30.3, 30.5, 30.6, 32.4, 42.6, 42.8, 108.8, 108.9, 123.9, 126.3, 126.8, 126.9, 127.4, 127.5, 127.6, 130.4, 131.7, 132.2, 132.3, 132.8, 136.3, 146.6, 152.2. ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, δ): -7.9 (s + d, ${}^{1}J_{P,Pt}$ = 3880 Hz), -6.9 (s + d, ${}^{1}J_{P,Pt}$ = 3840 Hz). 195 Pt NMR (CDCl₃, δ): -4401 (t, ${}^{1}J_{Pt,P}$ = 3840 Hz), -4398 (t, ${}^{1}J_{Pt,P}$ = 3880 Hz). ${}^{31}P$ MAS NMR (δ): -9.2, -5.6. HRMS(ESI⁺), m/z: calcd. for C₃₄H₃₂P₂Br₂PtCl₂Na⁺ 949.9248, found 949.9254 [M+Na]⁺.

X-ray Structure Determination. Crystals of **2b**, *trans-5*, *cis-6*, *trans-7*, *trans-8*, and *cis-8* suitable for X-ray diffraction were obtained upon slow evaporation of a solution of respective compounds in CH_2Cl_2/Et_2O mixture in air at room temperature. Single-crystal X-ray diffraction experiments were carried out with Agilent Technologies Excalibur Eos and Agilent Technologies SuperNova Atlas diffractometers (monochromated Mo K α and Cu K α radiations). The unit cell parameters and refinement characteristics for the crystal structures are given in **Table S1**. The structures had been solved by the direct methods and refined by means of the SHELXL-97 program³² incorporated in the OLEX2 program package.³³ Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre (CCD 1426280, 1432267-1432271) and can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Acknowledgements

Synthesis of phosphine ligands was supported by Saint Petersburg State University (grants no. 12.50.2525.2013 and 12.38.195.2014). The complexes study was supported by RFBR (grants no. 14-03-00297 and no. 16-33-60123). Spectral studies were performed at the Center for Magnetic Resonance, the Center for Chemical Analysis and Materials Research, and the Research Center for X-ray Diffraction Studies of Saint Petersburg State University.

References

a) R. Ugo, *Coord. Chem. Rev.*, 1968, **3**, 319–344; b) C. A. Tolman, *Chem. Rev.*, 1977, **77**, 313–348; c) M. Kumada, *Pure Appl. Chem.*, 1980, **52**, 669–679.

- 2. N. Miyaura and A. Suzuki, Chem. Commun., 1979, 866-867.
- 3. K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, **16**, 4467-4470.

4. H. A. Dieck and R. F. Heck, J. Am. Chem. Soc., 1974, 96, 1133-1136.

5. C. C. C. Johansson Seechurn, A. DeAngelis and T. J. Colacot, CHAPTER 1 Introduction to New Trends in Cross-Coupling in *New Trends in Cross-Coupling: Theory and Applications*, The Royal Society of Chemistry, 2015, pp. 1–19.

a) V. P. Boyarskiy, K. V. Luzyanin and V. Y. Kukushkin, *Coord. Chem. Rev.*, 2012, **256**, 2029–2056; b) G. C. Fortman and S. P. Nolan, *Chem. Soc. Rev.*, 2011, **40**, 5151–5169; c) C. Valente, M. Pompeo, M. Sayah and M. G. Organ, *Org. Process Res. Dev.*, 2014, **18**, 180–190.

7. a) D. Saha, R. Ghosh, R. Dutta, A. K. Mandal and A. Sarkar, *J. Organomet. Chem.*, 2015, **776**, 89–97; b) N. C. Bruno, M. T. Tudge and S. L. Buchwald, *Chem. Sci.*, 2013, **4**, 916–920; c) S. M. Wong, C. M. So and F. Y. Kwong, *Synlett*, 2012, **2012**, 1132–1153; d) C. C. C. Johansson Seechurn, H. Li and T. J. Colacot, CHAPTER 3 Pd-Phosphine Precatalysts for Modern Cross-Coupling Reactions in *New Trends in Cross-Coupling: Theory and Applications*, The Royal Society of Chemistry, 2015, pp. 91–138.

8. M. Nishiyama, T. Yamamoto and Y. Koie, *Tetrahedron Lett.*, 1998, **39**, 617–620.

9. J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin and S. L. Buchwald, J. Org. Chem., 2000, **65**, 1158–1174.

10. N. Kataoka, Q. Shelby, J. P. Stambuli and J. F. Hartwig, *J. Org. Chem.*, 2002, **67**, 5553–5566.

11. F. Rataboul, A. Zapf, R. Jackstell, S. Harkal, T. Riermeier, A. Monsees, U. Dingerdissen and M. Beller, *Chem.-A Eur. J.*, 2004, **10**, 2983–2990.

12. a) C. M. So, C. P. Lau, A. S. C. Chan and F. Y. Kwong, *J. Org. Chem.*, 2008, **73**, 7731–7734; b) C. M. So, C. P. Lau and F. Y. Kwong, *Angew. Chem. Int. Ed.*, 2008, **47**, 8059–8063.

a) A. S. Bogachenkov, A. V. Dogadina, V. P. Boyarskiy and A. V. Vasilyev, *Org. Biomol. Chem.*, 2015, **13**, 1333–1338; b) A. S. Bogachenkov, A. V. Dogadina, I. A. Boyarskaya, V. P. Boyarskiy and A. V. Vasilyev, *Org. Biomol. Chem.*, 2016, **14**, 1370–1381.

14. C. H. Chen, K. E. Brighty and F. M. Michaels, *J. Org. Chem.*, 1981, **46**, 361–367.

15. H.-C. Wu, J.-Q. Yu and J. B. Spencer, *Org. Lett.*, 2004, **6**, 4675–4678.

16. J. J. Daly, J. Chem. Soc., 1964, 3799-3810.

17. a) H.-K. Fun, S. Chantrapromma, Y.-C. Liu, Z.-F. Chen and H. Liang, *Acta Crystallogr. E*, 2006, **62**, m1252–m1254; b) L. Rigamonti, C. Manassero, M. Rusconi, M. Manassero and A. Pasini, *Dalton Trans.*, 2009, 1206–1213; c) M. Rosales, I. Pacheco, J. Medina, J. Fernández, Á. González, R. Izquierdo, L. Melean and P. Baricelli, *Catal. Lett.*, 2014, **144**, 1717–1727.

18. a) F. R. Hartley, *Chem. Soc. Rev.*, 1973, **2**, 163-179; b) J. K. Burdett and T. A. Albright, *Inorg. Chem.*, 1979, **18**, 2112–2120; c) K. M. Anderson and A. G. Orpen, *Chem. Soc. Rev.*, 2001, **0**, 2682–2683.

19. R. Oilunkaniemi, R. S. Laitinen, M. S. Hannu-Kuure and M. Ahlgrén, *J. Organomet. Chem.*, 2003, **678**, 95–101.

20. K. Sünkel, S. Bernhartzeder and U. Birkand, *Z. Naturforsch., B: Chem. Sci*, 2012, **67b**, 557–563.

21. C. M. DiMeglio, L. A. Luck, C. D. Rithner, A. L. Rheingold, W. L. Elcesser, J. L. Hubbard and C. H. Bushweller, *J. Phys. Chem.*, 1990, **94**, 6255–6263.

22. a) J. A. Rahn, L. Baltusis and J. H. Nelson, *Inorg. Chem.*, 1990, **29**, 750–755; b) R. L. Cowan, D. B. Pourreau, A. L. Rheingold, S. J. Geib and W. C. Trogler, *Inorg. Chem.*, 1987, **26**, 259–265; c) R. Favez, R. Roulet, A. A. Pinkerton and D. Schwarzenbach, *Inorg. Chem.*, 1980, **19**, 1356–1365.

23. a) G. Cavinato and L. Toniolo, *Inorg. Chim. Acta*, 1981, **52**, 39–41; b) G. K. Anderson and R. J. Cross, *Chem. Soc. Rev.*, 1980, **9**, 185-215.

24. a) A. W. Verstuyft, D. A. Redfield, L. W. Cary and J. H. Nelson, *Inorg. Chem.*, 1977, **16**, 2776–2786; b) J. J. MacDougall, J. H. Nelson and F. Mathey, *Inorg. Chem.*, 1982, **21**, 2145–2153.

25. A. L. Rieger, G. B. Carpenter and P. H. Rieger, *Organometallics*, 1993, **12**, 842–847.

26. E. Petruzzella, N. Margiotta, M. Ravera and G. Natile, *Inorg. Chem.*, 2013, **52**, 2393–2403.

27. a) C. J. Jameson, in *Multinuclear NMR*, ed. J. Mason, Plenum Press, New York, 1987, pp. 89–131; b) A. Pidcock, R. E. Richards and L. M. Venanzi, *J. Chem. Soc. A*, 1966, 1707-1710.

28. a) H. Goldwhite, Introduction to Phosphorous Chemistry, Cambridge University Press, UK, 1981; b) L. Rigamonti, A. Forni, M. Manassero, C. Manassero and A. Pasini, Inorg. Chem., 2010, **49**, 123–135; c) J. A. Iggo and K. V. Luzyanin, Multi-Nuclear Magnetic Resonance Spectroscopy in Modern NMR techniques for synthetic chemistry, ed. J. Fisher, Taylor & Francis Group, Boca Raton, FL, USA, 2015, pp. 177–224.

29. D. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Orgel and L. E. Sutton, *J. Chem. Soc.*, 1954, 332-353.

30. M. S. Inkpen, A. J. P. White, T. Albrecht and N. J. Long, *Chem. Soc. Rev.*, 2013, **49**, 5663–5665.

31. P. Svensson, K. Lövqvist, V. Y. Kukushkin and Å. Oskarsson, *Acta Chem. Scand.*, 1995, **49**, 72–75.

32. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112–122.

33. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.

Syntheses and characterizations of novel 1,4-dihydrophosphinolines and their complexes with Pd(II) and Pt(II) are described.