This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Introduction

Metal-organic frameworks (MOFs), which are defined as a class of inorganic-organic hybrid materials formed by the self-assembly of metal ions and polydentate bridging ligands, have attracted much attention for their characteristic of tunability, structural diversity, high specific surface area as well as special photoelectric and magnetic properties. As previous reports, much work was carried out to extend their potential application, such as gas adsorption / separation, catalysis, sensing, luminescent devices, drug delivery and so on. The various choices of central metal ions and organic ligands make it possible to provide MOFs with a variety of properties. However, the luminescent properties of MOFs are widely explored and applied. Allendorf’s review published in 2009 once summarize several modes to generate luminescent in MOFs: (a) luminescence based on linkers, which includes ligand-localized emission and ligand-to-metal charge transfer (LMCT) as well as metal-to-ligand charge transfer; (b) emission based on coordinated metals; (c) weak luminescence enhanced by antenna effects; (d) luminophores bound to the porous of MOFs; (e) broad and featureless emission caused by the formation of exciplex and so on. Among the various coordinated metals, lanthanide ions exhibit unique photoactive properties, such as sharp characteristic emissions and wide range of fluorescence lifetime. Based on these, Lanthanide luminescent metal-organic frameworks draw a lot of attention in recent decades. It is worthy pointing out that lanthanide ions not only can behave as central coordinated metal ions but also can be loaded into MOFs as active species in the formation of lanthanide luminescence MOFs. Unfortunately, the practical application of MOFs is greatly impeded by the low mechanical strength and poor physicochemistry stability. MOF thin films provide great opportunities for application of these fragile materials. Over the past years, several concepts have been developed for the fabrication of MOF thin films: (a) direct growth from solvothermal mother solutions; (b) immobilizing ideal MOFs in stable matrices such as silicon materials or polymers; (c) stepwise layer by layer growth on the substrate; (d) the electrochemical deposition on metal substrates; (e) the deposition of MOF thin films using a gel-layer approach. However, The crystal size plays an important role in the preparation of MOF films, especially for immobilizing MOFs in stable matrices by polymerization reaction. Oversized particles are not suitable for polymerization. In recent years, considerable effort has been given to explore novel methods to control the size of MOFs. Fischer and co-workers realized successfully the size control of MOF-5 by the addition of ligand p-perfluoromethyl benzencarboxylate. Kitagawa and his co-workers adjust the crystal size of carboxylate-based MOFs by changing the concentration of dodecanic acid. In Lu’s paper, a series of MOF-253 with different size (from 300 to 50 nm) were prepared by adding the content of base and acid in the reaction and the MOF in size of 50 nm can be successfully applied in the intracellular.

In this paper, an anionic MOF \(\left\{ \left(\text{Me}_2\text{NH}_3 \right)_2 \left[\text{Cd}_2(5\text{-tbip})_2 \right] \right\}_{\text{n}} \) was chosen as host materials. The existence of \(\left(\text{Me}_2\text{NH}_3 \right)_2 \) in porous makes it possible to encapsulate lanthanide ions into the MOF via cation exchange method. As the introduction of different lanthanide ions into the MOF, it will show different photoluminescence properties, therefore we can modulate and optimize the emission colors by adjusting the kind and content of loaded lanthanide ions, changing the experimental temperature, so...
that it can be further employed for luminescent devices, chemical sensing and so on. Size-reduced Cd-MOF (denoted by Cd-MOF-2) was obtained by the addition of a certain amount of sodium acetate, subsequently. Ln$^{3+}$ ions are introduced into the Cd-MOF-2 via cation exchange. Polymer film is also prepared with the use of as-synthesized Ln$^{3+}$@Cd-MOF-2.

Experimental Section

Materials and instrumentation

Ln(NO$_3$)$_3$·5H$_2$O was prepared by dissolving lanthanide oxide in concentrated nitric acid followed by evaporation and vacuum drying. Other reagents (A. R.) were obtained commercially and used without further purification. A Bruker D8 diffractometer using Cu Kα radiation with 40 mA and 40 kV was employed to obtain the PXRD patterns within the 2θ range of 5-30 °. FTIR spectra were collected on a Nexus 912 ATR spectrophotometer using KBr pellets in the range of 4000-400 cm$^{-1}$. Thermogravimetric analysis (TGA) was performed using a Netzsch STA 449C system with a heating rate of 5 °C/min. The morphology of the samples was obtained on a Philips XL-30 scanning electron microscope (SEM). Excitation and emission spectra of the samples were recorded on a Edinburgh FL920 spectrophotometer using a 450 W xenon lamp as excitation source. Luminescent lifetime was also inspected in the equipment using a microsecond laser pulse (100 mW). The luminescent quantum efficiency was measured by an integrating sphere (150 mm diameter, BaSO$_4$ coating) from Edinburgh FL920 phosphorimeter.

Syntheses

Cd-MOF and Ln$^{3+}$@Cd-MOF

Anionic MOF $\{[(\text{Me}_3\text{NH})_2\text{Cd}(\text{5-tbip})_2]2\text{DMF}\}_n$ was solvothermally synthesized as previous report. Cd(NO$_3$)$_2$·4H$_2$O (1 mmol, 0.3084 g) and 5-tbip ligand (1 mmol, 0.2222 g) were dissolved in 6 mL of dimethylformamide (DMF) in a glass vial which volume is 15 mL. The mixture was heated to 90 °C for 3 days and then cooled down to room temperature. After washing with DMF for several times, the yield was dried under vacuum at 80 °C for 6 h. Ln$^{3+}$@Cd-MOF was prepared via a cation exchange method: 30 mg of Cd-MOF was soaked into the mixed solution of 1 mL of PEMA (Polyethoxyethyl methacrylate) and 10 mL of THF (tetrahydrofuran). The mixture was further stirred for 30 min at 80 °C, 0.0125 g of BPO(benzoyl peroxide) was dissolved in 2 mL of THF was then added into the mixture and reacted for 6 h under refluxing. The radical PEMA and sample monomer was occurred in this process. THF was removed by rotary evaporation. The film was finally obtained by a directly spin-coating method.

Results and discussion

Characterization of Cd-MOF and Ln$^{3+}$@Cd-MOF

Cd-MOF is solvothermally synthesized with a mixture of 5-tbip and Cd(NO$_3$)$_2$·4H$_2$O in DMF. As previous reports, there are (Me$_3$NH)$_3^+$ cations in the pores generating from the in-situ hydrolysis of DMF, which balance the anionic [Cd$_2$(5-tbip)$_4$]$_2^-$ framework (Scheme S1). Based on this, a series of luminescent Ln$^{3+}$@Cd-MOF are collected via postsynthetic cation exchange while Ln$^{3+}$ ions substitute (Me$_3$NH)$_3^+$ cations in the porous. The PXRD patterns (Fig. 1) show that the as-synthesized Cd-MOF and Ln$^{3+}$@Cd-MOF match well with the simulated one, which suggests that we have prepared target compounds and the structures remain unchanged after the introduction of lanthanide ions. ICP-OES analysis indicates successful Ln$^{3+}$ cations incorporation into Cd-MOF (Table S1).

![Fig. 1 PXRD patterns of as-synthesized Cd-MOF and Ln$^{3+}$@Cd-MOF Ln= Eu, Tb, Sm, Dy.](image-url)

The polymer films were prepared as follows: 10 mg of Ln$^{3+}$@Cd-MOF-2 was added into the mixed solution of 1 mL of PEMA (Polyethoxyethyl methacrylate) and 10 mL of THF (tetrahydrofuran). The mixture was further stirred for 30 min at 80 °C, 0.0125 g of BPO was dissolved in 2 mL of THF was then added into the mixture and reacted for 6 h under refluxing. The radical PEMA and sample monomer was occurred in this process. THF was removed by rotary evaporation. The film was finally obtained by a directly spin-coating method.

Polymer films

The FTIR spectra of Ln$^{3+}$@Cd-MOF are similar to Cd-MOF (Fig. S1). The peak appears at ~ 3440 cm$^{-1}$ can be assigned to the stretching vibrations of N-H, the absorption band at ~ 2960 cm$^{-1}$ is ascribed to the stretching vibration of -CH$_3$, while the absorption band located at ~ 1660 cm$^{-1}$ is assigned to the asymmetric stretching vibrations of C=O. Comparing with the free carboxyl groups whose absorption band of C=O is at ~ 1700 cm$^{-1}$, the lower wavenumber indicates the coordination between carboxyl groups and Cd$^{2+}$. The peak at ~ 1370 cm$^{-1}$ may result from C-N stretch of amino. The absorptions at 1050 and 780 cm$^{-1}$ can be ascribed to the C-H deformation vibrations of the aromatic ring.

The TGA diagram of Cd-MOF (Fig. S2) exhibits two main weight losses in the curves. The first weight loss is about in the temperature range of 200 – 300 °C, which may be ascribed to the decomposition of DMF and dimethylammonium cations in the...
channels. The second weight loss occurs about 380 to 600 °C, assigned to the decomposition of the framework. However, when it comes to Eu3+@Cd-MOF, we can find that the weight loss from 200 to 300 °C is hardly to observe, but the thermo-stability of the framework is influenced in a certain degree, corresponding to the cation exchange of (Me\textsubscript{2}NH\textsubscript{2})+ and Eu3+.

Photoluminescent properties of Ln3+@Cd-MOF

The luminescence of the four Ln3+ modified complexes in solid state are investigated at room temperature. As is shown in Fig. 2, all the excitation spectrums are located at about 293 nm, which indicates that the complex can absorb ultraviolet light and sensitize the emission of Lanthanides by energy transfer efficiently. The emission spectra of Ln3+@Cd-MOF exhibit characteristic transitions of different lanthanide ions when excited at 293 nm. For Eu3+@Cd-MOF(Fig. 2a), when excited at 293 nm, it exhibits sharp emission lines located at about 580, 593, 614, 650, 702 nm respectively, which can be ascribed to \(6\)D \(\rightarrow\) \(7\)F(J = 0-4) transitions of Eu3+.17 The KBr pellet of Eu3+@Cd-MOF shows a bright red light under UV-light when it is excited at 254 nm, which can be easily observed by naked eye, as is shown in the inset of Fig. 2a, the emission color can be further proved by Fig. S3a. The emission spectrum of Tb3+@Cd-MOF is demonstrated in Fig. 2b, which can also exhibit characteristic emission lines of Tb3+ when excited at 293 nm. The emission lines located at about 488, 547, 582, and 625 nm respectively can be assigned to \(5\)D \(\rightarrow\) \(7\)F(J = 6, 5, 4, 3) transitions of Tb3+,18 resulting in the green color under the UV light when it is excited at 254 nm, as is presented in the inset of Fig. 2b, CIE diagram(Figure S3b) also present the green color. For both Eu3+@Cd-MOF and Tb3+@Cd-MOF, the emission of ligand is hardly detected when excited at 293nm, which suggests the efficient energy transfer between ligand and Eu3+/Tb3+.

However, the ligand-centered emission bands located at about 365 nm of Sm3+@Cd-MOF and Dy3+@Cd-MOF are obvious, which means the energy transfer between ligand and Sm3+ or Dy3+ is not as strong as Eu3+ and Tb3+. The luminescent emissions of KBr pellet of Sm3+@Cd-MOF and Dy3+@Cd-MOF are hardly to observe under UV-light. As is shown in Fig. 2c, Sm3+@Cd-MOF exhibits characteristic emission of Sm3+ centered at 563, 594, 645, 705 nm respectively, which can be ascribed to \(6\)H \(\rightarrow\) \(7\)F(J = 5/2, 7/2, 9/2, 11/2) transitions of Sm3+.19 CIE diagram (Fig. S3c) shows that it presents the pink, which is nearly to white. For Dy3+@Cd-MOF (Figure 2d), we can observe the emission bands located at about 480 and 574 nm respectively, which can be ascribed to \(7\)F(J = 5/2, 7/2) transitions of Dy3+. Interestingly, CIE diagram (Fig. S3d) shows it exhibits white color, which makes it can be further employed such as LED. Comparing to the emission of pure ligand (5tbp, 410 nm), which is drawn in Fig. S4, there is a blue shift about 45 nm, which can be attributed to the coordination of ligand white central metals Cd2+.

![Image](https://example.com/image.png)

Fig. 2 Room temperature excitation and emission spectra of Ln3+@Cd-MOF. (a) Ln = Eu; (b) Ln = Tb; (c) Ln = Sm; (d) Ln = Dy.

<table>
<thead>
<tr>
<th>Materials</th>
<th>(\tau/\mu s)</th>
<th>(\eta/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu3+@Cd-MOF</td>
<td>1323</td>
<td>11.8%</td>
</tr>
<tr>
<td>Tb3+@Cd-MOF</td>
<td>1873</td>
<td>47.0%</td>
</tr>
<tr>
<td>Sm3+@Cd-MOF</td>
<td>28</td>
<td>2.3%</td>
</tr>
<tr>
<td>Dy3+@Cd-MOF</td>
<td>21</td>
<td>6.0%</td>
</tr>
</tbody>
</table>

According to the phenomenon above, we can see that ligand 5-tbp can effectively sensitize the luminescence of Eu3+, Tb3+ and Dy3+, especially for Tb3+ ions. To further investigate the luminescence properties, luminescence lifetimes and quantum efficiencies are...
measured. As displayed in Table 1, Tb$^{3+}$@Cd-MOF possesses the highest quantum efficiencies, which is much higher than Eu$^{3+}$@Cd-MOF, Dy$^{3+}$@Cd-MOF and Sm$^{3+}$@Cd-MOF.

![Graph](image)

Figure 3 (a) Emission spectra of Sm$^{3+}$ and Tb$^{3+}$ co-activated Cd-MOF when excited at 293 nm; (b) CIE diagram of Sm$^{3+}$ and Tb$^{3+}$ co-activated Cd-MOF.

Meanwhile, we also try to obtain white light by introducing two kinds of lanthanide ions into the Cd-MOF. After immersing 30 mg of Cd-MOF into the mixed solution of Sm$^{3+}$ and Tb$^{3+}$ with the ratio of 98:2 for 24 hours, we monitored the photoluminescence spectra (Fig. 3a), which indicates the successful introduction of both Sm$^{3+}$ and Tb$^{3+}$ since we can observe the characteristic peaks of them. To our surprise, the luminescent Ln$^{3+}$@Cd-MOF can emit white light, as is demonstrated in Fig. 3b.

![Graph](image)

Figure 4 Emission spectra of Eu$^{3+}$ and Tb$^{3+}$ co-activated MOF with a series of ratio.

A series of Eu$^{3+}$ and Tb$^{3+}$ co-activated Ln$^{3+}$@Cd-MOF are prepared by immersing 30 mg of Cd-MOF in the mixed DMF solution of Eu(NO$_3$)$_3$·6H$_2$O and Tb(NO$_3$)$_3$·6H$_2$O for 24 hours. As is shown in Figure S5, The emission colour presents a change from green to yellow gradually as the ratio of Eu: Tb is 1: 9, 2: 8, 3: 7, 4: 5: 5, while the intensity ratio of Tb$^{3+}$.Eu$^{3+}$= 34.17, 10.35, 5.21, 4.09 and 2.94, respectively (Fig. 4). Obviously, the sensitization of ligand to Eu$^{3+}$ and Tb$^{3+}$ is different, which is in conformity with analysis above.

Characterization of Cd-MOF-2 and Ln$^{3+}$@Cd-MOF-2

Cd-MOF-2 is prepared by the addition of sodium acetate while other synthesis condition remain unchanged. The morphology of Cd-MOF-2 is studied by SEM. As is shown in Fig. 5, we get the rod-like crystals with the size of 0.5 x 0.5 x 2 μm, which is much smaller than previous (0.18 x 0.15 x 0.12 mm3), as it is reported. PXRD patterns of the resulting Cd-MOF-1 is nearly identical with Cd-MOF, indicating the unchanged crystal structure (Fig. S6). The decrease of the particle size may be due to that the introduction of sodium acetate can lead to competition coordination, which can affect the growth of crystal. However, we also get the Ln$^{3+}$@Cd-MOF-2 by immersing 30 mg of Cd-MOF-2 into the DMF solution of Ln(NO$_3$)$_3$·6H$_2$O for 3 days. Therefore, the photoluminescence properties are investigated, as is shown in Fig. S7. ICP-OES analysis indicates that Ln$^{3+}$ cations is introduced into Cd-MOF-2 successfully (Table S1).

![Graph](image)

Figure 5 SEM image of low magnification (A) and high magnification (a) of as-synthesized Cd-MOF-2

Characterization of Ln$^{3+}$@Cd-MOF-2 polymer film

The Ln$^{3+}$@Cd-MOF-2 polymer film was prepared with the assistance of PEMA and BPO. The SEM image of Eu$^{3+}$ fabricated polymer is shown in Fig. 6. The surface of the film is smooth and defect-free over a large area. The emission spectra of the Ln$^{3+}$@Cd-MOF-2 polymer are similar to power Ln$^{3+}$@Cd-MOF-2, as is demonstrated in Fig. S8, all the MOF fabricated polymer films show similar luminescent emission with powder. However, the
luminescence mechanism may not change since PEMA acts as a physical matrix in the form of the film. As we can see, all the Lanthanide ions encapsulated films can exhibit their characteristic emission bands when excited at 293 nm. Especially for Tb$^{3+}$@Cd-MOF-2, Eu$^{3+}$@Cd-MOF-2. The Lanthanide fabricated polymer films are transparent under sunlight, while showing red, green, blue and white when excited at 293 nm under Xenon lamp.

Conclusions

A series of Lanthanide ions encapsulated $\{[(Me_2NH_3)_2]_2Cd_4(5-tbip)_42DMF\}n$ are prepared via cation exchange method. All the luminescent compounds as-prepared can emit their characteristic bands under the excitation of 293 nm and Dy$^{3+}$ doped $\{[(Me_2NH_3)_2]_2Cd_4(5-tbip)_42DMF\}n$ can emit white colour. Further, we try to introduce two kinds of lanthanides into the $\{[(Me_2NH_3)_2]_2Cd_4(5-tbip)_42DMF\}n$. When excited at 293 nm, Sm$^{3+}$ and Tb$^{3+}$ co-activated $\{[(Me_2NH_3)_2]_2Cd_4(5-tbip)_42DMF\}n$ can present white emission as the ratio of Sm$^{3+}$ and Tb$^{3+}$ was 98: 2. The emission of a series of Eu$^{3+}$ and Tb$^{3+}$ co-activated $\{[(Me_2NH_3)_2]_2Cd_4(5-tbip)_42DMF\}n$ at the ratio of 1:9, 2:8, 3:7, 4:5, 5:5 (Eu : Tb) are studied. The emission color transits from green to yellow gradually with the increase of the ratio of Eu$^{3+}$. Meanwhile, we also explore the influence of temperature to the Eu$^{3+}$ and Tb$^{3+}$ co-activated luminescent MOF in the range of 300 to 375 K. With the raise of temperature, the emission intensity of Tb$^{3+}$ at 545 nm decreases while the intensity of Eu$^{3+}$ at 614 nm increases. Moreover, polymer films are prepared by embedding lanthanide ions fabricated $\{[(Me_2NH_3)_2]_2Cd_4(5-tbip)_42DMF\}n$ of reduced volume into polyethyl methacrylate. The transparent luminescent polymer films can be further used in many fields.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21571142), and the Developing Science Fund of Tongji University.

References

We obtain size-reduced Cd-MOF with the assistance of sodium acetate, with the use of it, luminescent and transparent polymer films are prepared for further application.