NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

Ultrasonic spray pyrolysis assembly of TiO₂-WO₃-Pt multi-heterojunction microspheres photocatalyst by highly crystallized WO₃ nanosheet: less is better

Han Zheng,^{1**} Changhua Wang,^{1,2**} Xintong Zhang,^{1*} Lina Kong,¹ Yingying Li,¹ Yunyu Liu,³ Yichun Liu¹

¹Center for Advanced Optoelectronic Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China

²College of Chemistry and Biology, Beihua University, Jilin 132103, China

³College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China

Abstract: Multi-heterojunction is more promising than single-heterojunction in photocatalysis due to the availability of more interfaces between each component. However, its photocatalytic activity is highly dependent on the contact mode of individual component. In this work, we assemble TiO₂-WO₃-Pt multi-heterojunction microspheres by ultrasonic spray pyrolysis and focus on their contact mode governed photocatalytic activity. The results reveal that highly crystalline WO₃ nanosheets as building blocks could particularly enhance the photocatalytic activity of TiO₂/WO₃ system toward degrading gaseous acetaldehyde and isopropyl alcohol. Furthermore, loading of Pt nanoparticles on WO₃ nanosheets could facilitate to a more prominent enhancement of activity than that of TiO₂/Pt, benefiting from the two-electron reduction of oxygen at the interface of WO₃/Pt. Meanwhile, high crystallinity of WO₃ nanosheets allows a loading amount of Pt as low as 0.04 wt% in TiO₂-WO₃-Pt system, which reduces the catalyst cost in comparison with the conventional amount of 1wt%.

1. Introduction

TiO₂ continues to gain research interest in photocatalysis-related

^{*} Corresponding author. Tel./Fax: +86 431 85099772; E-mail: xtzhang@nenu.edu.cn

^{**} These authors contributed equally to the work.

applications.¹⁻⁴ Recent study reveals that its solar conversion efficiency could be further improved when TiO₂ meets second metal oxide in terms of type II heterojunction.⁵⁻¹⁵ For example, Zhang et al.¹⁴ prepared the WO₃/TiO₂ composites and 5.0% WO₃/TiO₂ composite showed far superior photoactivity as compared to pure TiO₂, P-25 and pure WO₃ in the degradation of methyl orange and 2,4-dichlorophenol in UV and visible light. Liu et al.¹⁵ developed Bi₂MoO₆ nanosheet/TiO₂ nanobelt heterostructure and observed an excellent photodegradation performance under UV and visible light irradiation. Moreover, such a heterostructure possessed high photocatalytic oxygen production with a rate of 0.668 mmol h⁻¹ g⁻¹. However, among part of type II heterojunctions, conduction band of secondary oxide in type II heterojunction is lower than that of TiO_2 and thereby photogenerated electrons on the side of secondary oxide are difficult for onset of single-electron reduction of oxygen. As such, photo-generated electrons flowed from TiO₂ to foreign component across interface of heterojunction usually tend to seriously aggregate on the side of secondary metal oxide and result in unfavorable "back electron transfer" recombination.

To overcome the difficulty in initiation of oxygen reduction by photo-generated electrons, promotion of multi-electron transfer is found to be an alternative mean in order to boost the photocatalytic activity of aforementioned metal oxides.¹⁶⁻¹⁸ For example, the potential of conduction band of Ag_3PO_4 cannot match the redox potentials of single-electron reduction of oxygen. However, the two-electron reduction of oxygen over Ag_3PO_4 can be initiated and result in remarkable photooxidation ability.¹⁹ Similarly, Abe et al. ²⁰ reported that Pt-WO₃ photocatalytically decomposed isopropyl alcohol with ca. 100-fold enhanced CO₂ generation rate, while only 4-fold enhancement was observed for Pt-(N-TiO₂). The reason for high activity of Pt-WO₃ was due to the promotion of multi-electron reduction of O₂ on the Pt cocatalyst rather than single-electron reduction. Hashimoto et al. grafted Cu(II) or Fe(III) species on a series of oxides, such as Ti_{1-3x}W_xGa_{2x}O₂,²¹ (Sr_{1-y}Na_y)(Ti_{1-x}Mo_x)O₃, ²² Ti³⁺ self-doped TiO₂ ²³ and Fe doped TiO₂. ²⁴ The grafted species consistently enhance photocatalytic activity toward degradation of isopropyl

alcohol induced by interfacial charge transfer (IFCT) process and thereafter consumption in multi-electron reduction of O_2 mediated by the surface clusters.

On the basis of above considerations, integration of advantages of type II heterojunction (wide light absorption range and improved charge separation) and cocatalyst (multi-electron induced surface reaction) into multi-heterojunction becomes a very promising way to access to high solar conversion efficiency. With regard to multi-heterojunction, contact mode between individual components is highly critical. For instance, Hoffmann et al. observed high hydrogen production rate about (6-9) $\times 10^{-3}$ mol h⁻¹ g⁻¹ over CdS/(Pt-TiO₂), which is higher by a factor of 3-30 than that of Pt-(CdS/TiO₂).²⁵ Wang et al. showed a synergistic enhancement of H₂ evolution over the $Pt/SnO_x/TiO_2$ heterostructures formed by anchoring Pt NPs at SnO_x sites, whereas the rate of H₂ evolution over Pt/TiO₂/SnO_x counterparts prepared by grafting SnO_x species on Pt/TiO₂ was significantly decreased.²⁶ Pap et al.²⁷ obtained TiO₂/WO₃/noble metal (Au or Pt) composites by means of selective photodeposition of noble metal on desired surface of TiO₂ or WO₃. Major differences were observed in photocatalytic activity toward degradation of oxalic acid and production of hydrogen over catalysts wherein only the position of the noble metal was changed. We have fabricated (WO₃-Pt)/TiO₂ multi-heterojunction photocatalyst based on WO₃ nanorods and Pt and TiO₂ nanoparticles.²⁸ The photocatalytic performance of the multi-heterojunction under visible light was found dependent on the location of the loaded Pt nanoparticles. Pt surface loading on WO_3 , as opposed to loading on the TiO_2 surface, was more beneficial in maximizing the photocatalytic activity. Therefore, contact mode of chosen building blocks should not be overlooked and multiheterojunction should be smartly designed for photocatalysis.

Inspired by these reports, in this work, we continue to focus on multi-heterojunction assembled from TiO₂, WO₃ and Pt as well as their contact mode dependent photocatalytic activities. Furthermore, ultrasonic spray pyrolysis technique is employed to assemble multi-heterojunction due to fact that production of porous microspheres where light trapping via multiple scattering at air-solid interface is favored. Highly crystallized WO₃ nanosheets are chosen as building blocks for the

sake of not only good contact with TiO_2 and Pt nanoparticles but also minimization of defects at the interface. Structural features and photocatalytic activities of as-assembled multi-heterojunction will be systematically discussed.

2. Experimental Section

2.1 Materials and Characterization

2.1.1 Materials

TiO₂ powders (Degussa P25) were obtained from Nihon Aerisol Co. H₂PtCl₆ • 6H₂O was purchased from Aladdin in analytical grade purity. Acetaldehyde (2 vol% in N₂) and CO₂ (2 vol% in N₂) were obtained from Beijing Chemical Co. Bi₂O₃, WO₃ powders were purchased in analytical purity from Chinese National Medicine Group Chemical Reagent Co. All chemical reagents were used as received, without further purification.

2.1.2 Preparation of WO₃ nanosheets

WO₃ nanosheets were synthesized by stoichiometric amounts of Bi_2O_3 and WO_3 to 800 °C for 16 h. The obtained powders were ground and then treated with 6M HCl solution for 3 days at room temperature to promote the proton exchange. The obtained light yellow suspension was centrifuged, washed thoroughly with deionized water to remove the residual acid, and finally dried at 80 °C in air overnight. The obtained powders(0.4 g) was immersed into 100 ml tetramethylammonium hydroxide aqueous solution (0.0028 M) for 8 days with continues stirring. As a result, a colloidal suspension with a light green appearance was obtained successfully, as references ²⁹. After centrifugation and drying at 80 °C, the obtained products were WO₃ nanosheets.

2.1.3 Preparation of WO₃/Pt hybrids

The WO₃ nanosheet sample (100 mg) was added into 10 ml water and ultrasonically dispersed for 10 min, and then, aqueous H₂PtCl₆ solution (256 μ l, 0.1 M) and 1.1 mL methanol was added. The solution was stirred continuously under UV light (340-420 nm) irradiation for 2 h. ³⁰ The as-obtained Pt-loaded WO₃ nanosheets were centrifuged and dried at 343 K at ambient condition. The stoichiometric ratio of Pt on WO₃ is 1 wt%.

2.1.4 Preparation of TiO₂-WO₃-Pt multi-heterojunction

TiO₂-WO₃-Pt microspheres were prepared by the ultrasonic spray pyrolysis method. Typically, P25 TiO₂ powders (3 g) and pre-synthesized WO₃-Pt composite (0.12 g) were dispersed into 1000 ml of water to form a mixture suspension. Subsequently, the suspension was atomized by an ultrasonic nebulizer, and the formed mist was passed through a quartz tube heated at 1073 K. Then, powders were collected at an electrostatic collecting device connected to the end of the quartz tube. Finally, the as-obtained powders were annealed at 773 K for 30 min under ambient conditions.

2.1.5 Characterization

X-ray diffraction (XRD) characterization was carried out on a Rigaku D/max-2500 X-ray diffractometer. Photoluminescence (PL) spectra were recorded on a Jobin-Yvon HR800 instrument with an Ar⁺ laser source of 325 nm wavelength in a macroscopic configuration. Morphology and composition analyses were carried out on a FEI quanta 250 field emission scanning electron microscopy (FESEM) and a high resolution electronic micrographs were acquired using a JEOL JEM-2100 transmission electron microscope (TEM) operated at an acceleration voltage of 200 kV. UV-Vis diffusion reflectance (DR) spectra were recorded on a Lambda 900 UV– vis–NIR spectrophotometer, using BaSO₄ as reference.

2.1.6 Photocatalytic Test

Photocatalytic properties of samples were investigated by measuring the photodegradation of gaseous acetaldehyde and isopropanol under solar light irradiation. 0.05 g microsphere powders were uniformly spread in a sample holder with a geometric area of 0.25 cm⁻², which was placed on the bottom of a 500 mL cylinder-type Pyrex glass vessel. The glass vessel was flushed with O₂ (20%)/N₂ gas to remove carbon dioxide from the system, and the relative humidity of atmosphere inside the vessel was controlled to 45% by passing the O₂/N₂ gas through chilled water. 5 mL acetaldehyde was introduced into the reaction vessel using a

New Journal of Chemistry Accepted Manuscript

Pressure-Lock syringe to reach a concentration of 200 ppmv. After keeping dark for 30 min, the glass vessel was irradiated from top by a 150 W xenon lamp (Hayashi UV410) which emit light of wavelength range of 350-700 nm. The light intensity irradiated on the samples was determined to be 1 mW/cm² at 365 nm by light intensity meter from Beijing Normal University. The degradation of acetaldehyde and the generation of carbon dioxide were monitored using a gas chromatograph (SP-2100A, BFRL Co.), equipped with a 2 m Porapak-Q column and a flame ionization detector. Isopropanol and acetone were monitored on gas chromatograph (GC2014C, SHIMADZU Co.), equipped with a WonderCap Wax column and a flame ionization detector.

3. Results and Discussion

In our work, firstly, we synthesize highly crystalline WO_3 nanosheet, employ photochemical method to load platinum (Pt) on the WO_3 nanosheet to form a noble metal-semiconductor heterostructure. The reason to choose highly crystalline WO₃ nanosheets instead of traditional WO₃ nanopaticles is that highly crystalline WO₃ nanosheet has few defects and inhibits recombination of electrons and holes. In addition, lamellar material has more reaction sites which are helpful for forming a good contact between Pt nanoparticles and WO_3 nanosheets. Subsequently, we combine pure TiO_2 (P25) with Pt loaded WO₃ nanosheets to form multi-heterojunction microspheres with ordered contact by a ultrasonic spray pyrolysis method. The multi-heterojunction microspheres microspheres have follow advantages: (1) porous microspheres are facile for adsorption of organic compounds and improve the photocatalytic activity due to their large surface areas. (2) The multiple heterogeneous structure photocatalyst with ordering contact mode can migrate the photogenerated electron and holes and suppress recombination more effectively than pure TiO_2 and TiO_2 -WO₃ binary-heterogeneous structure. (3) Only rarely little platinum nanoparticles (0.04%, relative to the amount of TiO₂) are loaded in the multiple heterostructure photocatalyst, which not only results in activity enhancement but also save cost in comparison with traditional value of 1%.

XRD and HRTEM analysis are performed to characterize pre-synthesized WO₃ nanosheets. As shown in Fig.1a, all diffraction patterns can be well indexed to orthorhombic phase (JCPDS No.20-1324). TEM image in Fig. 1b shows that the products are nanosheets with side length of ca. 400 nm. In HRTEM image (Fig. 1c) of a WO₃ crystallite, interplanar distances corresponding to d(020) (0.384 nm measured; 0.3783 nm theoretical) and d(002) (0.392 nm measured, 0.3894 nm theoretical) are separated by a $89.6^{\circ} \pm 0.5^{\circ}$ measured angle (90° theoretical). Corresponding selected area diffraction pattern shows a typical orthorhombic symmetry consisting of clear spots with strong diffraction, indicating the high crystallinity of WO₃ nanosheet. The clear spots can be labeled with planes of (002), (200) and (220) of orthorhombic WO₃, respectively.

SEM images of different samples synthesized by ultrasonic spray pyrolysis are shown in Fig. 2. As can be seen in Fig. 2a, pristine TiO₂ samples display the morphology of polydispersed microspheres with diameters from 0.5 to 2 μ m. The surface of the spheres is not smooth, suggesting that the resulting microspheres are formed by the aggregation of nanoparticles driven by the drying of mist droplets. Similar phenomenon has been observed in ultrasonic spray pyrolysis prepared microspheres such as TiO₂, ³¹ Fe₂O₃, ³² ZnS ³³ and SiO₂. ³⁴ On the contrary, pure WO₃ samples in Fig. 2d show broken and hollow spheres with smooth surface, probably resulting from the difficult agglomeration of the primary large-sized nanosheets. After incorporating WO₃ nanosheets or WO₃/Pt hybrids with TiO₂ nanoparticles, porous microspheres can be well maintained as shown in Fig. 2b and c. The edges of WO₃ nanosheets can not be distinguished in the microspheres, mainly due to their tendency of curling or wrapping in TiO₂ nanoparticles.

Fig.2: SEM images of (a) pristine TiO_2 , (b) TiO_2/WO_3 ,

(c) TiO₂-WO₃-Pt and (d) WO₃ samples

Fig.3: (a) XRD patterns of pure TiO₂, typical TiO₂-WO₃ and TiO₂-WO₃-Pt samples;
(b and c) XRD patterns of different TiO₂-WO₃-Pt multi-heterojunctions and enlargement of the region between 20-35 degrees.

Fig. 3 depicts XRD patterns for the samples prepared by ultrasonic spray pyrolysis. For pure TiO₂, diffraction peaks (Fig. 3a) at $2\theta = 25.22^{\circ}$, 37.78° , 47.94° , 54.96° , and 62.69° can be respectively indexed to the (101), (004), (200), (211), and (204) planes of anatase (JCPDS No. 21-1271). In addition, diffraction peaks attributed to rutile are found, as shown by the appearance of its (110) reflection at ~27.4° of 20 (JCPDS No. 21-1276). There is no any other characteristic peak in the XRD patterns, which confirms that other new phases are not formed during the preparation processes. Hence, the crystalline structure of pure TiO₂ is the mixture of anatase and rutile phase. For the WO₃-TiO₂-Pt composites, no diffraction peaks of WO₃ can be found until the content of WO₃ reaches 20 wt% (Fig.3b and c), resulting from either the low amount or high dispersity of WO₃ component on TiO₂. In curve Fig.3b and c, as-detected diffraction peaks located at 23.70° and 28.77° can be attributed to orthorhombic phase of WO₃ (JCPDS No. 20-1324). No diffraction peaks of noble metal Pt are detected in all TiO₂-WO₃-Pt samples, which is mainly due to the ultra-small size of Pt nanoparticles and their quite low amount.

The structure of the as-prepared heterojunctions was further studied by TEM and HRTEM. Fig.4a shows the HRTEM for platinum loaded WO₃ nanosheet samples. It is shown that Pt nanoparticles have a close contact to WO₃ nanosheet and WO₃/Pt heterostructure is well formed. In typical TEM image of WO₃-TiO₂-Pt microspheres shown in Fig. 4b, uniform distribution of pores in microspheres is once again observed, confirming above observation in SEM images. HRTEM image (Fig. 4c) clearly shows an interface between WO₃ and TiO₂. The fringe spacing of 3.545 Å and 2.63 Å can be indexed to (101) plane of anatase TiO₂, and (220) plane of orthorhombic WO₃, respectively.

Fig. 4: (a) HRTEM image of WO₃-Pt heterojunction, (b,c) TEM and HRTEM images of TiO₂-WO₃-Pt multi-heterojunction microspheres.

New Journal of Chemistry Accepted Manuscript

3.2 Optical properties

Fig. 5 depicts the typical diffuse reflectance spectra of pure-TiO₂, TiO₂-WO₃ and TiO2-WO3-Pt. All spectra are dominated by the edge due to the O2--Ti4+ charge transition in anatase TiO₂ at 300-380 nm, which is comparable to the excitation of electrons from the valence band to the conduction band. UV-vis spectra performed in the diffuse reflectance mode (R) are transformed to the Kubelka-Munk function F(R)to separate the extent of light absorption from scattering. The value of band gap is obtained from the plot of the Kubelka–Munk function $(F(R)E)^{1/2}$ versus the energy of the absorbed light E. Accordingly, the band gap (Eg) for pure TiO_2 is calculated to be ca. 3.07 eV, which fall within the range of mixed phases of anatase and rutile. Different from previously reported TiO₂-WO₃ composites, no red-shift of the absorption edge of TiO₂-WO₃ and TiO₂-WO₃-Pt in comparison with pristine TiO₂ is observed, mainly resulting from the low content of WO_3 and its high dispersion in the composite. ^{31,35} Hence, it can be deduced that as-incorporated WO₃ components in multi-heterojunction have no influence on the absorption properties of TiO₂. In other words, in spite of narrower band gap of WO₃ than that of TiO₂, the photocatalytic activity of either TiO₂-WO₃ or TiO₂-WO₃-Pt may not be influenced by means of improvement of absorption property.

Fig.5: UV-Vis-DRS spectra of different samples

Photoluminescence (PL) spectroscopy has been useful in the field of photocatalysis.³⁶⁻³⁹ Information such as surface oxygen vacancies and defects, as well

as the efficiency of charge carrier trapping, immigration and transfer can be obtained. For pure TiO₂, as illustrated in Fig. 6, it exhibits a broad emission band in the visible light region. It is believed that the peaks result from the electronic transition mediated by the defect levels such as oxygen vacancies in the band gap.⁴⁰ After incorporating with WO₃ nanosheets, the intensity of TiO₂ is significantly decreased. Considering that the PL emission is the result from the free charge carrier recombination, the lower PL intensity indicate that the TiO2-WO3 photocatalyst has a lower recombination rate of photo-generated electrons and holes,⁴¹ which is due to the fact that the electrons and holes are separated by the charge transfer at the heterojunction interfaces of WO₃ TiO₂ nanosheets and nanoparticles. More importantly, TiO₂-WO₃-Pt multi-heterojunction shows drastic quenching of PL intensity, suggesting a markedly enhanced charge separation co-promoted by WO₃/Pt and WO₃/TiO₂ heterojunction. This result confirms significant participations of WO₃ nanosheets and WO₃/Pt heterojunction in the decrease of recombination of photo-generated electron-hole pairs.

Fig.6: PL spectra of different samples

3.3 Photocatalytic performance

The photocatalytic test was investigated against degradation of acetaldehyde under solar light with intensity of 1 mw/cm⁻² at 365 nm. For comparison, TiO₂-Pt (the same method of photochemical Pt loading, the quantity of Pt is 0.04 wt % relative to the entire photocatalyst microspheres) were also fabricated by ultrasonic spray pyrolysis method. Fig. 7a,b shows typical plots of decrease of acetaldehyde and

New Journal of Chemistry Accepted Manuscrip

increase of CO_2 concentration as a function of irradiation time on different photocatalysts. According to the Langmuir-Hinshelwood kinetics model, the apparent rate for acetaldehyde degradation can be expressed as:

Fig.7: (a) Degradation curves of acetaldehyde over different samples, (b) CO₂ evolution curves over different samples, (c) reaction kinetic curves over different samples.

 $\ln(C_0/C) = kt$, where C is the concentration of acetaldehyde during photocatalytic reaction, t is the reaction time, and C_0 is the initial concentration of acetaldehyde. The apparent first order rate constant, k, are given by the slope of $\ln(C_0/C)$ versus t, and the results are 0.01422, 0.01325, 0.02491 and 0.0379 min⁻¹ for TiO₂, TiO₂-Pt, TiO₂-WO₃ and TiO₂-WO₃-Pt microspheres, respectively (Fig.7c). For TiO₂-WO₃ photocatalyst, it is more efficient in degradation of acetaldehyde than that of pure TiO₂, which agrees well with previous TiO₂-WO₃ system. Notably, loading of Pt nanoparticles on the surface of P25 hardly exhibits improvement of activity in terms of either decrease rate of acetaldehyde or evolution rate of CO₂. Different from most study of TiO₂/Pt photocatalyst, our results suggest a poor improvement of the photocatalytic activity of TiO₂ after Pt loading, which is mainly due to the very few amount of Pt loading as low as 0.04%. Interestingly, when the same amount of Pt is loaded on WO₃, as-obtained TiO₂-WO₃-Pt multi-heterojunction displays a dramatic decrease of acetaldehyde and increase of CO₂ concentration at initial 60 min. About 90% of acetaldehyde was oxidized into CO₂ after 60 min, showing the most excellent photocatalytic activity of TiO2-WO3-Pt multi-heterojunction. Herein, it should be noted that Pt loading percentage in previous Pt/metal oxide composite photocatalyst is

usually 1% in most reported results. In our case, the significant enhancement of activity induced by incorporation of less amount of Pt of 0.04% in multi-heterojunction can be explained as following: Pt nanoparticles are in-situ photodeposited on the surface of WO₃ nanosheets. As demonstrated in aforementioned XRD and HRTEM results, WO₃ nanosheets are highly crystallized. Under UV light irradiation, high crystallization of WO₃ nanosheets can ensure easy immigration of photo-excited electrons from crystal inner to surface, less trapping of electrons by surface defects states and inhibition of recombination of electrons and holes. As such, H₂PtCl₆ is effectively photoreduced by electrons on the surface of WO₃ nanosheets and hence Pt nanoparticles are uniformly deposited on WO₃ surface without aggregation. Therefore, WO₃/Pt interface with high amount and good quality are produced, even if the Pt loading amount is lower than conventional value of 1%. Benefiting from the electrons flowing from WO₃ to Pt and onset of multi-electron reduced of oxygen, the photocatalytic performance of multi-heterojunction is obviously boosted.

Fig. 8: (a) Degradation curves of isopropanol over different samples, (b) reaction kinetic curves over different samples, (c) CO₂ evolution curves over different samples,

(d) concentration curves of acetone intermediate over different samples.

Meanwhile, isopropanol was also employed as substance to further verify above photocatalytic results.^{42,43} It is well known that the photocatalytic decomposition of isopropanol proceeds via formation of acetone as an intermediate followed by further decomposition of acetone to the final products CO₂ and H₂O. Fig.8 shows time courses of the concentration of products generated from 2-propanol over TiO₂, TiO₂-WO₃ and TiO₂-WO₃-Pt under solar light irradiation. For bare TiO₂, either generation rate of acetone intermediate or evolution rate of CO₂ is slower than that of TiO₂-WO₃ and TiO₂-WO₃-Pt samples, suggesting the less efficiency of TiO₂ in degradation of isopropanol (Fig. 8a-d). For TiO₂-WO₃ and TiO₂, the higher amount of acetone intermediate and lower evolution rate of CO₂ at the late stage indicate their insufficient oxidation ability. For TiO₂-WO₃-Pt multi-heterojunction, it shows a comparable generation rate of acetone to that of TiO₂-WO₃ at the initial 40 mins, and whereas a slower rate to that of TiO_2 -WO₃ at the last 40 mins (Fig. 8d). Importantly, TiO₂-WO₃-Pt multi-heterojunction displays higher evolution rate of CO₂ than that of TiO₂ and TiO₂-WO₃ during the whole photocatalytic reaction (Fig. 8c). In this regard, it can be deduced that TiO₂-WO₃-Pt multi-heterojunction is highly active for both oxidation of isopropanol to acetone and further mineralization of acetone to CO_2 . Therefore, in combination with the photocatalytic results of degradation of acetaldehyde and isopropanol, it is safe to conclude that TiO₂-WO₃-Pt multi-heterojunction sample displays superior photocatalytic activity to that of pure TiO₂ and TiO₂-WO₃.

Mechanism for the enhancement of photocatalytic activity of the TiO₂-WO₃-Pt can be explained by Scheme 1. Since the conduction band edge of WO₃ is lower than that of TiO₂, photo-generated electrons can be transferred to and accumulated in the conduction band of WO₃. Furthermore, owing to the high-crystallinity of WO₃ nanosheet, high quality of WO₃-TiO₂ and WO₃-Pt interface is obtained and recombination of photo-generated electrons and holes induced by defects can be avoided.⁴⁴ Accumulated electrons then quickly transfer to the surface of platinum nanoparticles and hence separation of electrons and holes can be promoted. Besides that, photo-generated electrons injected into Pt nanoparticles act as electron pools to

initiate multi-electron reductions of the oxygen molecules, which further strengthen the photooxidation ability of organic substances.

Scheme 1: Mechanism for the enhancement of photocatalytic activity of the TiO₂-WO₃-Pt multi-heterojunction.

4. Conclusions

TiO₂-WO₃-Pt multiple heterostructure porous microspheres was successfully prepared via a facile ultrasonic spray pyrolysis method. Multi-heterojunction assembled via preloading Pt nanoparticles on highly crystallized WO₃ nanosheets is found more active than that via nonselective deposition of Pt nanoparticles. The photocatalyst activity of TiO₂-WO₃-Pt multi-heterojunction (0.04 wt% of Pt) is 2.86 times higher than TiO₂-Pt heterostructure composite with the same loading amount of Pt. Furthermore, the improvement of photocatalytic performance can be confirmed by 2.66 times and 1.52 times higher in acetaldehyde degradation, and also 1.8 times and 1.03 times higher in isopropanol degradation, than that of TiO₂-WO₃-Pt microspheres multi-heterojunction photocatalyst has a good application prospect on gas-phase photocatalytic degradation system. The method of selection of highly crystallized WO₃ nanosheets providing brilliant availability to noble metal nanoparticles for separation of photoexcited electron-hole is a good inspiration for synthesis of other multiple heterostructure photocatalyst.

New Journal of Chemistry Accepted Manuscrip

Acknowledgement:

This work was supported by the Natural Science Foundation of China (Grant Nos. 51072032, 91233204, 51372036, and 51102001), the Key Project of Chinese Ministry of Education (No 113020A), the National Basic Research Program (2012CB933703), the 111 project (No. B13013), and the International Science & Technology Cooperation Program of China (2013DFG50150), China Postdoctoral Science Foundation (2014M551156), Open Project of Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education

(130026505).

Notes and references:

- 1 A. Fujishima, X. Zhang, D. A. Tryk, Surf. Sci. Rep., 2008, 63, 515.
- 2 X. Chen, L. Liu, P.Y. Yu, S. S. Mao, Science, 2011, 331, 746.
- 3 H. Chen, C. E. Nanayakkara, V. H. Grassian, Chem. Rev., 2012, 112, 5919.
- 4 R. Chong, J. Li, X. Zhou, Y. Ma, J. Yang, L. Huang, H. Han, F. Zhang, C. Li, *Chem. Commun.*, 2014, **50**, 165.
- 5 X. Qiu, M. Miyauchi, K. Sunada, M. Minoshima, M. Liu, Y. Lu, D. Li, Y. Shimodaira, Y. Hosogi, Y. Kuroda, K. Hashimoto, *ACS Nano*, 2012, 6, 1609.
- 6 Y. Takahashi, T. Tatsuma, Langmuir, 2005, 21, 12357.
- 7 K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, W. I. Lee, *Chem. Mater.*, 2001, 13, 2349.
- Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, *Appl. Catal. B-Environ.*, 2011, **104**, 30.
- 9 J. Wang, X. Liu, A. Yang, G. Zheng, S. Yang, H. Wei, Q. Zhu, Z. Wang, *Appl. Phys. A*, 2011, 103, 1099.
- 10 M. Niu, D. Cheng , D. Cao , Sci. Rep., 2014, 4, 4810.
- 11 Y. Chen, G. Xiao, T. Wang, F. Zhang, Y. Ma, P, Gao, C. Zhu, E. Zhang, Z. Xu, Q. Li, *Sensors Actuat. B-Chem.*, 2011, **155**, 270.
- 12 A.K.L.Sajjad, S.Shamaila, J.Zhang, J. Hazard. Mater., 2012, 235-236, 307
- 13 S. Shamaila, A.K.L. Sajjad, F. Chen, J. Zhang, J. Colloid Interface Sci., 2011, 356, 465.
- 14 S.A.K. Leghari, S, Sajjad, F. Chen, J. Zhang, Chem. Eng. J., 2011, 166, 906.
- 15 J. Tian, P. Hao, N. Wei, H. Cui, H. Liu, ACS Catal., 2015, 5, 4530.
- 16 R. Abe, B. Ohtani, Photocatalysis, 2007, 24, 16.
- 17 V. Subramanian, E. Wolf, P.V. Kamat, J. Phys. Chem. B, 2001, 105, 11439.
- 18 M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, *Appl. Catal. B-Environ.*, 2006, 63, 305.
- 19 H. Katsumata, M. Taniguchi, S. Kaneco, T. Suzuki, Catal. Commun., 2013, 34, 30.
- 20 R. Abe, H. Takami, N. Murakami, and B. Ohtani, J. Am. Chem. Soc., 2008, 130, 7780.

- 21 L. Ni, T. Kitta, N. Kumagal, B. Ohtani, K. Hashimoto, H. Irie, J. Ceram. Soc. JPN., 2013, 121, 563.
- 22.X. Qiu, M. Miyauchi, H. Yu, H. Irie, K. Hashimoto, J. Am. Chem. Soc., 2010, 132, 15259.
- 23 M. Liu, X. Qiu, M. Miyauchi, K. Hashimoto, Chem. Mater., 2011, 23, 5282.
- 24 H. Yu, H. Irie, Y. Shimodaira, Y. Hosogi, Y. Kuroda, M. Miyauchi, K. Hashimoto, J. Phys. Chem. C, 2010, 114, 16481.
- 25 H. Park, W. Choi and M. R. Hoffmann, J. Mater. Chem., 2008, 18, 2379.
- 26 Q. Gu, J. Long, H. Zhuang, C. Zhang, Y. Zhou and X. Wang, *Phys. Chem. Chem. Phys.*, 2014, 16, 12521.
- 27 É. Karácsonyi, L. Baia, A. Dombi, V. Danciu, K. Mogyorósi, L.C. Pop, G. Kovács, V. Coşoveanu, A. Vulpoi, S. Simon, Zs. Pap, *Catal. Today*, 2013, **208**, 19.
- 28 C.H. Wang, X.T. Zhang, B. Yuan, Y.X. Wang, P.P. Sun, D. Wang, Y.A. Wei, Y.C. Liu, Chem. Eng. J., 2014, 237, 29.
- 29 R. E. Schaak, T. E. Mallouk, Chem. Commun. , 2002, 706.
- 30 M. Sadakane, K. Sasaki, H. Kunioku, B. Obtani, R. Abe, W. Ueda, J. Mater. Chem., 2010, 20, 1811.
- 31 J. Yang, X. Zhang, H. Liu, C. Wang, S. Liu, P. Sun, L. Wang, Y. Liu, *Catal. Today*, 2013, 201, 195.
- 32 J. Zhang, Y. Sun, Y. Yao, T. Huang, A. Yu, J. Power Sources, 2013, 222, 59.
- 33 J. H. Bang, R. J. Helmich, K. S. Suslick, Adv. Mater., 2008, 20, 2599.
- 34 F. Iskandar, A. Mikrajuddin, K. Okuyama, Nano Lett., 2001, 1, 231.
- 35 J. H. Pan, W. I. Lee, Chem. Mater., 2006, 18, 847.
- 36 J. Yu, H. Yu, B. Cheng, X. Zhao, J. C. Yu, W. Ho, J. Phys. Chem. B, 2003, 107, 13871.
- 37 C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, *Appl. Catal. B-Environ.*, 2015, 164. 1.
- 38 H. Kaga, K. Saito, A. Kudo, Chem. Commun., 2010, 46, 3779.
- 39 H. Zhou, W. Hsu, H. Duan, B. Bob, W. Yang, T. Song, C. Hsu, Y. Yang, *Energy Environ. Sci.*, 2013, 6, 2822
- 40 J. C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Chem. Mater., 2002, 14, 3808.
- 41 J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang, L. Guo, *Appl. Catal. B-Environ.*, 2014, 152,335.
- 42 D. Vildozo, R. Portela, C. Ferronato, J. Chovelon, Appl. Catal. B-Environ., 2011, 107, 347.
- 43 C. Barakat, P. Gravejat, O. Guaitella, F. Thevenet, A. Rousseau, *Appl. Catal. B-Environ.*, 2014, 147, 302
- 44 H. Kato, K. Asakura, A. Kudo, J. Am. Chem.Soc., 2003, 125, 3082.

Graphic Abstract

In spite of the less amount of Pt (0.04 wt%), the activity of TiO₂-WO₃-Pt multi-heterojunction is still 2.66 times and 1.52 times higher in acetaldehyde degradation than that of TiO₂ and TiO₂-WO₃ composite, respectively.