NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

Cite th is:DO I:10.1039/c0xx00000x

www.rscorg/xxxxx

ARTICLE TYPE

Reddish-orange-emitting and paramagnetic properties of GdVO₄: Sm³⁺/Eu³⁺ multifunctional nanomaterials

Yanxia Liu, Guixia Liu*, Jinxian Wang, Xiangting Dong and Wensheng Yu

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A series of GdVO₄: Sm³⁺, Eu³⁺ reddish-orange-emitting nanophosphors were successfully prepared by a simple one-step hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectrometer (EDS), transmission electron microscope (TEM), photoluminescence (PL) spectra, fluorescence lifetime, PL quantum-efficiency (QE) and

- 10 vibrating sample magnetometer (VSM) were utilized to characterize the as-prepared samples. The results show that the individual Sm³⁺ or Eu³⁺ ions activated GdVO₄ phosphors exhibit excellent emission properties in their respective regions and the bright blue light from VO₄³⁻ group can be observed under the excitation of ultraviolet (313 nm). The emission intensity of Sm³⁺ singly activated GdVO₄ phosphors reaches the maximum when the content of Sm³⁺ is 0.025, of which the critical distance (R_{Sm-Sm}) is
- 15 calculated to be 18.42 Å. Strong reddish-orange emissions can be seen in Sm³⁺ and Eu³⁺ ions co-doped GdVO₄ phosphors under ultraviolet light irradiation. In addition, the energy transfer phenomenon from Sm³⁺ to Eu³⁺ ions is clearly observed in GdVO₄: Sm³⁺, Eu³⁺, which is confirmed to be an electric quadrupole-quadrupole interaction and the energy transfer efficiency can reach a maximum at 92.5%. More significantly, the color becomes more saturated with the increasing of Eu³⁺ or Sm³⁺ ions content.
- 20 Moreover, the as-prepared samples exhibit paramagnetic properties at room temperature. This type of multifunctional reddish-orange-emitting nanophosphor has promising applications in the fields of UV/n-UV WLEDs and biomedical science.

1 Introduction

- In recent years, white light-emitting diodes (WLEDs) have 25 been extensively investigated for their wide applications in various fields such as solid-state lighting, florescent sensors, back lights, multicolor three-dimensional display¹⁻² due to their excellent high efficiency, great reliability, power saving, longer lifetime and environmentally friendly advantages³⁻⁵. Currently,
- 30 the most commercially dominated method to obtain WLED products is to mix yellow luminescence from Y₃Al₅O₁₂: Ce³⁺ (YAG: Ce) phosphors with blue luminescence from LED chips⁶, which offers a poor color rendering index (CRI) of 71.6 and a high correlated color temperature (CCT) of 7756 K ascribed to
- 35 the deficiency of the red light, resulting that the corresponding light generated by this way is relatively cool white light, and this product is not suitable for room lighting⁷⁻⁹. So it is of great importance to develop a novel kind of reddish-orange-emitting phosphors for UV/n-UV WLEDs. Much attention has been paid
- 40 to design this kind of phosphors in recent years, such as $Ba_3Lu(Gd)(PO_4)_3$: Eu^{2+} , Mn^{2+} orange-yellow-emitting phosphors¹⁰⁻¹¹, Ce^{3+} , Mn^{2+} and Eu^{2+} , Mn^{2+} doped La_{9.33}(SiO₄)₆O₂ orange-emitting phosphors¹² and Li- α -sialon: Eu^{3+} oxynitride phosphors¹³ were investigated to be used for warm WLEDs.
- 45 The different Gd-based inorganic compounds (GdPO₄ 14 ,

 $GdF_{3^{15}}$, NaGdF₄¹⁶, $Gd_2O_{3^{17}}$, GdVO₄¹⁸, etc.) have attracted great research attention because of their unique spectral properties including narrow emission bandwidths, large Stokes shifts, high luminescence efficiency, long lifetime and strong paramagnetic 50 properties. Among all kinds of Gd-based inorganic compounds, it is accepted that tetragonal zircon type structure of GdVO4 (space group I41/amd) has been demonstrated to be excellent host lattice photoluminescence applications $\frac{19-20}{2}$. for So far, most investigations have been focused on the luminescent properties of 55 Ln^{3+} ions individually activated GdVO₄²¹⁻²³. It is well known that the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J/2}$ (J= 5, 7, 9) characteristic emissions of Sm³⁺ ions are mainly in the orange region while Eu³⁺ ions are usually employed as activators in red-emitting phosphors due to its strong red emission and high color purity. Besides, energy transfer 50 between activators plays an important role in realizing colortunable emission in a single-phase host²⁴⁻²⁵. In addition, series of hosts such as oxynitride and nitride have been explored for obtaining red-orange-emitting phosphors other than GdVO426-27. So it is highly desirable to gain reddish-orange-emitting by co-55 incorporating Sm³⁺ and Eu³⁺ ions into GdVO₄ host via the energy transfer from Sm³⁺ ions to Eu³⁺ ions. Moreover, Ln³⁺ ions doped GdVO₄ nanocrystals can function as multifunctional materials for

GdVO₄ nanocrystals can function as multifunctional materials for their promising applications in biomedical field ascribed to the high magnetic moment and isotropic electronic ground state ⁸S_{7/2} 70 of Gd³⁺ ions. So it is highly valuable to prepare GdVO₄: Sm³⁺, Eu³⁺ nanocrystals and study their properties.

In view of the above situations, we choose GdVO₄ as host while Sm³⁺ and Eu³⁺ ions as activators to synthesize a series of GdVO₄: Sm³⁺, Eu³⁺ nanophosphors through a simple 5 hydrothermal method. Furthermore, we report on the structure,

morphology, photoluminescence properties and the magnetic 50 3 Results and discussion properties of the obtained phosphors. The energy transfer from host to Sm³⁺/Eu³⁺ ions and Sm³⁺ to Eu³⁺ is also discussed in detail.

2 Experimental

10 2.1 Materials

All chemicals were of analytical grade and utilized as purchased without any further purification. Sodium orthovanadate dodecahydrate (Na₃VO₄12H₂O), gadolinium oxide (Gd₂O₃), europium oxide (Eu₂O₃), samarium oxide (Sm₂O₃) were

15 purchased from Sinopharm Chemical Reagent Co., Ltd. Sodium dodecyl sulfate (C12H25SO4Na), nitric acid (HNO3) were purchased from Xilong Chemical Co., Ltd.

2.2 Preparation

The Gd(NO₃)₃, Sm(NO₃)₃, Eu(NO₃)₃ stock solutions were 20 prepared by dissolving corresponding appropriate amounts of Gd₂O₃, Sm₂O₃, Eu₂O₃ in dilute HNO₃ (15 mol/L) under heating with agitation followed by evaporating the excess solvent. A series of rare earth ions doped GdVO₄ nanocrystals were synthesized by a simple hydrothermal method. A typical

- 25 synthesis procedure of GdVO₄: 0.01 Sm³⁺, 0.01 Eu³⁺ nanocrystals was as follows: 1mmol RE(NO₃)₃ [including 0.98 mmol Gd(NO₃)₃, 0.01mmol Sm(NO₃)₃ and 0.01mmol Eu(NO₃)₃] solutions were added into 100 mL flask containing 30 mL deionized water and 2 mmol C₁₂H₂₅SO₄Na under vigorous stirring
- 30 to form a homogeneous solution. After stirring for 1 h at room temperature, 1 mmol Na₃VO₄·12H₂O was introduced into the mixture. After additional agitation for 1 h, the homogeneous solution was transferred into a Teflon-lined stainless steel autoclave and treated for 24 h at 180 °C. When the autoclaves
- 35 reached to room temperature naturally, the as-synthesized products were collected by centrifugation and washed with deionized water and anhydrate ethanol for several times, and dried at 80 °C for 12 h. The other samples were obtained via a similar way except for using the corresponding proper amount Ln^{3+} ions.

40 2.3 Characterization

XRD was examined on a Rigaku D/max-RA X-ray diffractometer with Cu K α radiation (λ =0.15406 nm) and Ni filter, operating at 30 mA, 40 kV. Scanning speed, step length and diffraction range were 10° min⁻¹, 0.1° and 10°-90° respectively. The morphology

- 45 and composition of the as-prepared samples were detected by A FEI-30 FESEM equipped with an EDS. The TEM micrographs were obtained using a JEOL JEM-2010 transmission electron microscope with a field emission gun operating at 200 kV. The excitation and emission spectra and the luminescence decay
- 50 curves were obtained on a HITACHI F-7000 Fluorescence Spectrophotometer equipped with a 150 W xenon lamp as the excitation source, scanning at 1200nm/min. The quantum efficiency was obtained by a PL quantum-efficiency measurement system (C9920-02, Hamamatsu Photonics, 55 Shizuoka) equipped with a 150 W xenon lamp. A VSM was

employed to measure the magnetization of the as-obtained samples with the applied magnetic field ranging from -20 to 20 kOe. All of the measurements were carried out at room temperature.

3.1 Phase, structure and morphology

Fig. 1 XRD patterns of (a) GdVO₄, (b) GdVO₄: Sm³⁺, (c) GdVO₄: Eu³⁺ and (d) GdVO4: Sm3+, Eu3+ nanocrystals. The JCPDS card 72-0277 of GdVO4 is presented for comparison. The insets are schematic illustrations of tetragonal phase GdVO₄ structure.

The XRD patterns of the pure and Ln³⁺ ions doped GdVO₄ nanocrystals prepared by a facile hydrothermal method at 180 °C for 24 h were studied firstly. It can be seen that all of the 70 diffraction peaks of pure and Ln³⁺ ions doped GdVO₄ can be exactly indexed into the tetragonal zircon type structure of GdVO₄ (JCPDS No.72-0277) with space group I41/amd, which has the cell parameters of a=b=7.19 Å, c=6.33 and Z=4. While the main peaks of Ln³⁺ ions doped GdVO₄ shift slightly to the 75 lower degree compared with the corresponding standard card, this is because the ionic radius of the Sm³⁺ ions (0.964 Å) and Eu³⁺ ions (0.947 Å) are larger than that of Gd^{3+} ions (0.938 Å)²⁸, indicating that Sm³⁺ and Eu³⁺ ions have been successfully incorporated into GdVO₄ host lattice by substituting Gd³⁺ without 30 changing the tetragonal zircon type structure of GdVO₄. The inset in Fig. 1 gives schematic presentation of GdVO₄ tetragonal structure. It can be seen that the GdVO₄ crystal is formed by GdO₈ polyhedron and VO₄ tetrahedron. The Gd³⁺ ions located in dodecahedral coordination are linked with eight neighboring O2-

Fig. 2 (a) FE-SEM image and (b) EDS spectrum of GdVO4: 0.02Sm³⁺ nanocrystals.

Fig. 2 displays the FE-SEM image and EDS spectrum of the samples obtained via a simple hydrothermal method at 180 °C for 24 h. From Fig. 2 (a), it can be discovered that the products are composed of a large number of nanoparticles and the 5 nanoparticles are uniform in size with an average diameter of about 20-30 nm. From the EDS analysis spectrum of GdVO₄: 0.01Sm³⁺, as given in Fig. 2 (b), there are no elements can be detected other than Gd, V, O, Sm, Au (gold signals stem from spraying gold procedure), which is in good consistent with the 10 results of the XRD.

Fig. 3 (a, b) TEM images for GdVO₄: 0.04Sm³⁺ phosphors.

In order to observe clearly the morphology and size of the as-prepared samples, TEM measurement was done. Fig. 3 shows

15 the corresponding TEM images for the as-prepared GdVO₄: 0.04Sm³⁺ phosphors. It is obvious that these particles are in short rod-like shape with the diameter of about 10 nm and length of about 20-30 nm, and the grain size was in good accordance with the results of FE-SEM.

20 3.2 Photoluminescence properties

Fig. 4 Excitation and emission spectra of $GdVO_4$: $0.01Sm^{3+}$ nanocrystals. The inset is the corresponding luminescence photograph of the sample upon excitation at 313 nm.

- 25 In order to study the characteristic luminescent properties of Sm^{3+} ions in GdVO₄ host, Fig. 4 reveals the excitation and emission spectra of GdVO₄: 0.01Sm³⁺ nanocrystals. From the excitation spectrum monitored by the orange emission of Sm³⁺ (603 nm, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$), it can be observed there is a strong and
- 30 broad absorption band from 200 to 350 nm which can be divided into two peaks by using Gaussian fitting. It is believed that the

peaks located at approximately 280 and 313 nm are derived from O²-Sm³⁺ charge transfer (CT)³² from oxygen 2p excited state to Sm³⁺ 4f state and O²-V⁵⁺ CT from oxygen 2p states to the empty 35 d states of central vanadium in the VO₄³⁻ group, indicating that there is a strong energy migration from host to activators in tetragonal GdVO₄. There are some weak excitation lines in the

longer wavelength region of 350-500 nm, which are originated from the intra-configurationally f-f transitions of Sm³⁺ ions from 10 the ${}^{6}H_{5/2}$ ground state to the ${}^{4}D_{5/2}$ (363 nm), ${}^{6}P_{7/2}$ (380 nm), ${}^{4}G_{11/2}$ (394 nm), ${}^{4}F_{7/2}$ (408 nm), ${}^{6}P_{5/2} + {}^{4}P_{5/2}$ (422 nm), ${}^{4}G_{9/2}$ (442 nm), ${}^{4}I_{13/2}$ (468 nm), ${}^{4}I_{9/2}$ (480 nm), ${}^{4}I_{11/2}$ (494 nm) excited states,

respectively. Among them, the strongest absorption is ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2}$

- (408 nm), which overlaps well with the typical emission 15 wavelength of InGaN-based chips $(360-470 \text{ nm})^{33}$, implying this kind of orange-emitting phosphors can be used in n-UV WLEDs. From the emission spectrum, one can see there is a weak broad emission band centered at 470 nm (blue) ascribed to VO₄³⁻ group emission, suggesting that VO₄³⁻ group do not transfer all of the
- 50 absorbed energy to Sm³⁺ ions. In addition, the f-f transitions of Sm³⁺ ions at 565, 603, 645 and 654 nm corresponding to the characteristic emissions ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ and ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ can be discovered³⁴. The photograph shows the orange emission for GdVO₄: Sm³⁺ phosphors upon 313 nm irradiation.

Fig. 5 Excitation and emission spectra of GdVO₄: 0.01Eu³⁺ nanocrystals. The inset is the corresponding luminescence photograph of the sample upon excitation at 313 nm.

The photoluminescence properties of Eu³⁺ ions singly 50 activated GdVO₄ nanocrystals were investigated by the excitation and emission spectra of GdVO₄: 0.01Eu³⁺, which have been presented in Fig. 5. The excitation spectrum for GdVO₄: 0.01Eu³⁺ is very similar to GdVO₄: Sm³⁺. Gaussian fitting confirms the strong and broad absorption band of 200-350 nm consists of two

55 parts: the former centered at about 278 nm is the O²⁻-Eu³⁺ CT and the latter is O²⁻-V⁵⁺ CT, which corresponds to the transitions from the ¹A₂(¹T₁) ground state and to ¹A₁(¹E) and ¹E(¹T₂) excited state of VO₄³⁻ group in the view of molecular orbital theory³⁵. Furthermore, there are some weak absorption peaks resulting 70 from f f transitions within the 4⁴⁶ and fourthermore.

70 from f-f transitions within the 4f⁶ configuration of the Eu³⁺ ions from the ⁷F₀ ground state to the ⁵D₄ (363 nm), ⁵G₃ (377 nm), ⁵L₇ (384 nm), ⁵L₆ (396 nm), ⁵D₃ (418 nm), ⁵D₂ (467 nm) excited states can be discovered. It can be clearly found that the f-f transitions of Eu³⁺ from 350 nm to 470 nm match well with the nUV LED chips. The above results indicate that GdVO₄: Ln^{3+} ($Ln^{3+} = Sm^{3+}$, Eu^{3+}) phosphors could be efficiently pumped by UV/n-UV light. Upon excitation at 313 nm, the emission spectrum exhibits a weak broad emission band and several groups of emission lines at about 527, 550, 505, (16, (20, (51, cm)))

- 5 of emission lines at about 537, 559, 595, 616, 620, 651 and 699 nm, which are ascribed to the ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$, ${}^{5}D_{1} \rightarrow {}^{7}F_{0}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transitions for Eu³⁺ ions, respectively. The emission spectrum is dominated by the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (616 and 620 nm) electric-dipole allowed transition of Eu³⁺. This
- 10 can be explained as in the crystalline GdVO₄, Gd³⁺ ions are eightfold coordinated by O²⁻, forming dodecahedral cages without inversion symmetry, as described in the inset of Fig. 1. When Eu³⁺ ions substitute Gd³⁺ lattice sites, non-inversion center leads to the hypersensitive electric-dipole transition of ⁵D₀→⁷F₂ at 616
- 15 and 620 nm emission peaks, which is dominant in the spectrum. The photograph exhibits the reddish emission from GdVO₄: Eu³⁺ phosphors under the 313 nm irradiation.

Fig. 6 PL spectra for V-O emission of GdVO4: xSm³⁺ (a); decays curves of V-O emission in GdVO4: xSm³⁺ nanocrystals displayed on a logarithmic intensity (excited by 313 nm and monitored by 470 nm) (b). The inset of (a) is the corresponding luminescence photograph of the sample upon excitation at 313 nm.

- According to the above discussions, VO_4^{3-} group do not 25 transfer all of the absorbed energy to Ln^{3+} ions so that the emission of V-O can be observed. In order to understand the features of V-O emission, Fig. 6 (a) exhibits the emission spectrum and the corresponding luminescent photograph of V-O emission upon 313 nm excitation. As discussed in Fig. 4 and Fig.
- 30 5, it is because the VO₄³⁻ group does not transfer the whole absorbed energy to Ln³⁺ ions in tetragonal GdVO₄ that in consequence a broad blue emission band originated from VO₄³⁻ group can be observed, as shown in the inset of Fig. 6 (a). The inset in Fig. 6 (a) shows the bright blue light for the V-O emission
- 35 in GdVO₄: Sm³⁺ phosphors upon 313 nm excitation. It is worth noting that the emission intensity monotonically decreases gradually with increasing the content of Sm³⁺ due to the increasing of activators leads to VO₄³⁻ group transfer more energy to Sm³⁺ ions. The fluorescent decay curves of the VO₄³⁻ group in
- 40 the GdVO₄: xSm^{3+} (x=0.05-0.030) samples were measured by monitoring the emission of VO₄³⁻ group at 470 nm and are exhibited in Fig. 6 (b). One can see that the decay curves can be fitted well with a single exponential function of I=I₀+Aexp(-x/ τ)³⁶ (1). The lifetimes for VO₄³⁻ group can be calculated through the
- 45 above equation and discovered to decrease with the increasing of Sm³⁺ concentration, which is in accordance with the rule of the intensity.

In order to further investigate the impact of dopant 55 concentration on the luminescence characteristics of Sm³⁺ ions, a series of GdVO₄: xSm³⁺ (x=0.005-0.030) nanocrystals are synthesized. Fig. 7 (a) displays the emission spectra of GdVO4: xSm³⁺, one can see that the emission intensity of Sm³⁺ increases due to the increase of luminescence centers until the Sm³⁺ 50 concentration is above 0.025 and then decreases because of concentration quenching effect, which ascribed to the cross relaxation between neighboring Sm³⁺ ions: Sm³⁺ (⁴G_{5/2}) + Sm³⁺ $(^{6}H_{5/2}) \rightarrow Sm^{3+} (^{6}H_{9/2}) + Sm^{3+} (^{6}H_{9/2})^{37}$. According to Dexter's energy transfer theory³⁸, concentration quenching effect is mostly 55 caused by the nonradiative energy transfer between Sm³⁺ ions at high concentration. The critical distance R_{Sm-Sm} can be estimated by the following formula³⁹: $R_c = 2 \times [3V/(4\pi x_c Z)]^{1/3}$ (2) where V is the volume of the unit cell, x_c is the concentration of activator ions, Z stands for the number of sites that the activator ions can

- 70 occupy in per unit cell. For Sm³⁺ ions singly activated GdVO₄, x_c is the quenching concentration that can be found to be 0.025 from the inset in Fig. 7 (a), in addition, V is 327.24 Å³ and Z is 4. Therefore, the critical distance (R_{Sm-Sm}) can be calculated to be 18.42 Å, so cross relaxation will take place when the distance
- 75 between Sm³⁺ ions becomes shorter than 18.42 Å. The fluorescent decay curves of the samples were measured by monitoring the strongest emission of Sm³⁺ at 603 nm (orange ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$), as shown in Fig. 7 (b). One can see that the lifetimes for Sm³⁺ ions increase gradually until the content of 30 Sm³⁺ is above 0.025 then decreases, which is contributed to the
- increase of cross relaxation rate when the distance between activators becomes shorter.

In order to study the energy transfer phenomenon between Sm³⁺ and Eu³⁺ ions in GdVO₄ system, Fig. 8 gives the excitation 35 and emission spectra for GdVO₄: Eu³⁺, GdVO₄: Sm³⁺ and GdVO₄: Sm³⁺, Eu³⁺ phosphors. From Fig. 8 (a), one can see that compared with Eu³⁺ ions singly activated samples there is an obvious absorption peak at 408 nm corresponding to the ⁶H_{5/2}→⁴F_{7/2} transition of Sm³⁺ ions in Sm³⁺ and Eu³⁺ ions co-doped GdVO₄ **20** samples monitored by 620 nm, powerfully demonstrating that

Samples monitored by 620 nm, powerfully demonstrating that Sm³⁺ ions make a significant contribution to the emissions of Eu³⁺ ions in GdVO₄: Sm³⁺, Eu³⁺ system. Furthermore, upon excitation at 408 nm, the emission intensity of Sm³⁺ ions in GdVO₄: Sm³⁺ significantly decreases compared to that of in

GdVO₄: Sm³⁺, Eu³⁺ samples, while the emissions of Eu³⁺ at 616, 620 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) can be observed, as given in Fig. 8 (b). All of these phenomena illustrate that Sm³⁺ acted as energy donors in the GdVO₄ host transfer excitation energy to Eu³⁺ ions served as 5 acceptors.

Fig. 8 (a) Excitation spectra of GdVO4: $0.01Eu^{3+}$ and GdVO4: $0.025Sm^{3+}$, $0.01Eu^{3+}$ nanocrystals (λ_{em} = 620 nm); (b) emission spectra of GdVO4: $0.025Sm^{3+}$ and GdVO4: $0.025Sm^{3+}$, $0.01Eu^{3+}$ nanocrystals (λ_{ex} = 408 nm).

- 10 In consideration of the above discussions about the luminescent properties of Sm^{3+} and Eu^{3+} ions individually doped GdVO₄ phosphors and the energy transfer between Sm^{3+} ions and Eu^{3+} ions, a series of Sm^{3+} , Eu^{3+} co-doped GdVO₄ samples fixed the Sm^{3+} content at 0.025 and varied the Eu^{3+} content from 0.00
- 15 to 0.06 have been prepared. Fig. 9 presents the variation of PL spectra and emission intensity of GdVO₄: 0.025 Sm³⁺, xEu³⁺ phosphors with varying Eu³⁺ content. One can see that the intensity of Sm³⁺ ions monotonously decreases with an increase of Eu³⁺ ions doping contents while the intensity of Eu³⁺ increases
- 20 gradually until the Eu³⁺ content is above 0.04 ascribed to concentration quenching: Eu³⁺ (⁵D₁) + Eu³⁺ (⁷F₀) \rightarrow Eu³⁺ (⁵D₀) + Eu³⁺ (⁷F₃)⁴⁰, which occurs between the two neighboring Eu³⁺ ions. This phenomenon further supports the conclusion that Sm³⁺ acted as energy donors transfer excitation energy to Eu³⁺ ions served as 25 acceptors in Fig. 8.
 - To further validate the process of energy migration from Sm^{3+} ions to Eu^{3+} ions in $GdVO_4$ system, a series of Sm^{3+} , Eu^{3+} co-doped $GdVO_4$ samples fixed the Eu^{3+} content at 0.01 and varied the Sm^{3+} content from 0.005 to 0.025 have been
- 30 synthesized, as shown in Fig. 10. One can see that the red emission intensities of Eu³⁺ at 616 and 620 nm increase gradually with increasing Sm³⁺ content although the concentration of Eu³⁺ ions is fixed at 0.01 under 408 nm excitation, strongly demonstrating that there is an energy transfer from Sm³⁺ to Eu³⁺
- 35 ions that leads to the increasing for Eu³⁺ ions emission intensity. It also suggests that the color purity of Eu³⁺ ions emission can be promoted by this way and this style of red-emitting phosphors have promising applications in the fields of UV/n-UV excited WLEDs.
- 40 A decay mechanism for Sm³⁺ can be described as $1/\tau_s = /1/\tau_{so}$ + $P_T + P_{NR}$ (3)⁴¹ where the τ_s and τ_{so} are the lifetimes for sensitizers with and without the activator ions, P_T stands for the possibility of energy transfer from sensitizers to activators and P_{NR} presents the probability of nonradiative transitions. Assuming that all 45 avoited Sm³⁺ ions decay radiatively and substitute τ_s/τ_s with L/t_s

45 excited Sm³⁺ ions decay radiatively and substitute τ_s / τ_{so} with I_s / I_{so} ,

This journal is The Royal Society of Chemistry [year]

the energy transfer efficiency (η_T) from Sm³⁺ ions to Eu³⁺ ions can be calculated according to the data of intensity by the following formula $\eta_T = 1 - I_s / I_{so} (4)^{42}$, where the I_s is the intensity of Sm³⁺ ions in the presence of Eu³⁺ ions and the I_{so} is the intensity of Sm³⁺ in 50 the absence of Eu³⁺ ions. As depicted in Fig. 11 the energy transfer efficiency increases with the increasing of Eu³⁺ contents and reaches a maximum of 92.5% with the Eu³⁺ content at 0.06, implying that the energy migration from Sm³⁺ ions to Eu³⁺ ions is efficient. Moreover, the critical distance (R_{Sm-Eu}) in Sm³⁺ and Eu³⁺

- 55 ions co-activated GdVO₄ also can be estimated through the equation (2) except that the x_c is the sum content of Sm³⁺ and Eu³⁺ ions, at which the luminescence intensity of Sm³⁺ ions is half of that in the absence of Eu³⁺ and found to be 0.015 from the inset in Fig. 9, and the value of R_{Sm-Eu} is calculated to be 21.84 Å.
- 50 According to Dexter's reports³⁸, there are two kinds of energy transfer mechanisms which depend on the critical distance between the donor and the acceptor ions. Exchange interaction will take place when the value of R is less than 0.3-0.4 nm and there is an overlap of the donor and acceptor orbits, otherwise, 55 the multipolar interactions may dominate. Obviously, the energy
- transfer from Sm³⁺ to Eu³⁺ ions in GdVO₄ system belongs to multipolar interactions.

Fig. 9 Emission spectra of GdVO4: 0.025Sm³⁺, xEu³⁺ nanocrystals (Inset is the 70 emission intensity of Sm³⁺ and Eu³⁺ as a function of Eu³⁺ content).

Fig. 10 Emission spectra of GdVO₄: xSm^{3+} , $0.01Eu^{3+}$ nanocrystals under 408 nm excitation. The inset is dependence of the emission intensity at different wavelengths on Sm^{3+} content.

- In order to understand the Sm³⁺-Eu³⁺ energy transfer 5 mechanism, the Dexter's energy transfer formula of multipolar interaction can be given as: $I_{so}/I_s \propto C^{n/3}$ (5)³⁶ where *C* is the total concentration of Sm³⁺ and Eu³⁺, I_{so} and I_s are the corresponding emission intensities of Sm³⁺ ions without and with the presence of Eu³⁺ respectively. The plots of (I_{so}/I_s) versus $C^{n/3}$ with n=6, 8, 10
- 10 stands for dipole-dipole, dipole-quadrupole or quadrupole quadrupole interactions, respectively. Fig. 12 exhibits the relationships between (I_{so}/I_s) and $C^{n/3}$, one can see that a liner relation is observed when n=10. This obviously indicates that the energy transfer mechanism from Sm³⁺ ions to Eu³⁺ ions is an 15 electric quadrupole-quadrupole interaction.

Fig. 12 Dependence of I_{so}/I_s of Sm³⁺ on (a) $C_{Sm+Eu}^{6/3} \times 10^3$, (b) $C_{Sm+Eu}^{8/3} \times 10^4$ and (c) $C_{Sm+Eu}^{10/3} \times 10^5$ in the GdVO₄: Sm³⁺, xEu³⁺ nanocrystals.

- According to the all above luminescence discussions, the 20 transfer of energy in GdVO₄: Sm, Eu system can be depicted schematically as Fig. 13. During the excitation process, the transitions from ${}^{1}A_{2}({}^{1}T_{1})$ ground state of VO₄³⁻ group to ${}^{1}A_{1}({}^{1}E)$ and ${}^{1}E({}^{1}T_{2})$ excited states occur and VO₄³⁻ group transfer energy to Ln³⁺ ions and emit blue light in de-excitation process. Also,
- 25 electronic transitions from the O2p valence to the Sm/Eu (5d6s) conduction band take place under UV irradiation while the electrons get back to the lower energy levels once again through blue emission as well as transfer energy to Sm³⁺ and Eu³⁺ ions, the other energy is released through cross relaxation. Besides, for
- 30 the emission of phonons in the ${}^4G_{5/2}$ energy level of Sm³⁺ ions, part of the energy can transfer to 5D_0 energy level of Eu³⁺ ions by

electric quadrupole-quadrupole interaction and finally transfer to ⁷F_J energy levels through radiative transitions.

35 Fig. 13 The proposed schematic of energetic processes occurring in the GdVO₄: Sm³⁺, Eu³⁺ samples.

The energy transfer between Sm³⁺ and Eu³⁺ ions offers an approach to increase the color purity of Eu³⁺ ions. Therefore, the CIE chromaticity coordinates for the GdVO₄: 0.025Sm³⁺, xEu³⁺ 10 and GdVO₄: 0.01Eu³⁺, xSm³⁺ phosphors were determined based on their corresponding PL spectra. Fig. 14 exhibits the Commission International de L' Eclairage (CIE) chromaticity coordinates and the date for GdVO₄: 0.025Sm³⁺, xEu³⁺ (x=0-0.050) and GdVO₄: 0.01Eu³⁺, xSm³⁺ (x=0-0.020) nanocrystals 15 under 313 nm radiation. It is obviously observed that GdVO₄:

0.025Sm³⁺ exhibits yellowish pink and the color gradually moves towards reddish orange region with the increasing of Eu³⁺ content, which contains more red-emitting component compared with ordinary yellow-emitting phosphors. In addition, one can see that 50 GdVO₄: 0.01Eu³⁺ gives pink light due to the neutralization by the

50 GdVO4: 0.01Eu⁻⁵ gives pink light due to the neutralization by the blue V-O emission. However, with the increasing of Sm³⁺ concentration, the color also gradually moves a redder side from pink light towards to reddish orange light and becomes more saturated. All of these results demonstrate this kind of phosphors 55 can be used for UV/n-UV excited WLEDs. The corresponding CIE chromaticity coordinates were calculated and shown in Fig.

14 (a) and (b), respectively.

Fig. 14 CIE chromaticity diagram of (a) GdVO₄: 0.025Sm³⁺, xEu³⁺ (x= 0, 0.01, 0.02, 0.03, 0.04, 0.05); (b) GdVO₄: 0.01Eu³⁺, xSm³⁺ (x=0, 0.005, 0.01, 0.015, 0.020) under 313 nm excitation.

5 3.3 Quantum yield study

The quantum efficiency is an important parameter for phosphors. The luminescence quantum yields for GdVO₄: xSm³⁺, 0.01Eu³⁺ (x= 0.005-0.025) phosphors are found to be 10.5%, 12.2%, 10.9%, 10.8% and 9.5%, respectively. These results 10 indicate that the as-synthesized phosphors with an appropriate quantum yields and reddish-orange emission could be used for UV/n-UV WLEDs. Furthermore, the quantum efficiency can be improved by optimizing the preparation conditions and the composition of the products.

15 3.4 Magnetic properties

Fig. 15 Magnetization of the GdVO₄, GdVO₄: Sm^{3+} , GdVO₄: Sm^{3+} , Eu³⁺ nanocrystals with the increment of applied field.

In addition to the unique optical properties, the as-obtained 20 nanocrystals exhibit magnetic properties originated from seven unpaired 4f electrons of Gd³⁺ ions. Magnetic properties of the

samples were measured by using a VSM. The plot of magnetization versus applied field at room temperature is presented in Fig. 15. One can see that all of the samples show 25 paramagnetic properties and the magnetization reaches 1.9828.

25 paramagnetic properties and the magnetization reaches 1.982

1.8698 and 1.7708 emu/g at the applied field is 20 kOe for GdVO4, GdVO4:0.01Sm³⁺ and GdVO4:0.01Sm³⁺, 0.01Eu³⁺ nanocrystals, respectively. Compared with GdVO4 nanocrystals, the magnetization of GdVO4: 0.01Sm³⁺ and GdVO4: 0.01Sm³⁺, 30 0.01Eu³⁺ nanocrystals decrease in sequence because Gd³⁺ ions are replaced by Sm³⁺ and Eu³⁺ ions. All of the results indicates that this kind of materials can be used for clinical medicine⁴³.

4 Conclusions

In summary, Sm³⁺, Eu³⁺ co-doped nanophosphors have been 35 prepared by hydrothermal method and the as-synthesized samples are in short rod-like shape with the diameter of about 10 nm and length of about 20-30 nm. The Sm³⁺ or Eu³⁺ ions singly activated GdVO₄ phosphors can efficiently absorb the ultraviolet light and emit the blue light from VO43- group and excellent corresponding 10 emissions originated from the f-f transitions of Sm^{3+} or Eu^{3+} ions. In the Sm³⁺ and Eu³⁺ ions co-doped GdVO₄ red-emitting phosphors, the energy migration from Sm³⁺ to Eu³⁺ has been verified to be an electric quadrupole-quadrupole mechanism, of which the critical distance (R_{Sm-Eu}) is estimated to be 21.84Å. 15 Moreover, with the increasing of Eu³⁺/Sm³⁺concentration, the emission color gradually moves to reddish orange light and becomes more saturated. The as-obtained GdVO₄: Ln^{3+} (Ln^{3+} = Sm³⁺, Eu³⁺) nanocrystals show paramagnetic properties at room temperature. The results indicate that the as-prepared 5() nanophosphors can be applied in the fields of UV/n-UV WLEDs

Acknowledgements

and biomedical science.

This work was financially supported by the National Natural Science Foundation of P.R. China (NSFC) (Grant No. 51072026,

55 50972020) and the Development of science and technology plan projects of Jilin province (Grant No. 20130206002GX).

Notes and references

Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and 50 Technology, Changchun, China. Fax: +86-431-85383815; Tel: +86-431-85582574; E-mail: <u>liuguixia22@163.com</u>

- 55 1. N. Guo, Y. Zheng, Y. Jia, H. Qiao and H. You, *New J. Chem.*, 2012, *36*, 168-172.
 - 2. H. A. Hoppe, Angew. Chem. Int. Ed., 2009, 48, 3572-82.
 - 3. S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 1994, 64, 1687-1689.
- 70 4. Y.-S. Tang, S.-F. Hu, C. C. Lin, N. C. Bagkar and R.-S. Liu, *Appl. Phys. Lett.*, 2007, 90, 151108.
 - 5. E. F. Schubert and J. K. Kim, Science, 2005, 308, 1274-1278.
 - V. Bachmann, C. Ronda and A. Meijerink, *Chem. Mater.*, 2009, 21, 2077-2084.
- 75 7. C. Guo, L. Luan, F. G. Shi and X. Ding, J. Electrochem. Soc., 2009, 156, J125-J128.
 - 8. J. Qiao, J. Zhang, X. Zhang, Z. Hao, Y. Liu and Y. Luo, *Dalton Trans.*, 2014, 43, 4146-4150.
- 9. J. Zhang, Y. He, Z. Qiu, W. Zhang, W. Zhou, L. Yu and S. Lian, 30 Dalton Trans., 2014, 43, 18134-18145.
 - 10. N. Guo, Y. Huang, Y. Jia, W. Lv, Q. Zhao, W. Lu, Z. Xia and H. You, *Dalton Trans.*, 2013, 42, 941-947.
 - 11. N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao and H. You, ChemPhysChem,

2013, 14, 192-197.

- 12. W. Lu, Y. Jia, W. Lv, Q. Zhao and H. You, New J. Chem., 2013, 37, 3701-3705.
- 13. R.-J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma and N. Kimura, *Appl.*5 *Phys. Lett.*, 2006, *89*, 241103.
- 14. Q. Shi, F. You, S. Huang, H. Peng, Y. Huang and Y. Tao, *J. Lumin.*, 2014, *152*, 138-141.
- **15.** L. C. Mimun, G. Ajithkumar, M. Pokhrel, B. G. Yust, Z. G. Elliott, F. Pedraza, A. Dhanale, L. Tang, A.-L. Lin, V. P. Dravid and D. K. Sardar,
- J. Mater. Chem. B, 2013, 1, 5702-5710.
 16. F. He, N. Niu, L. Wang, J. Xu, Y. Wang, G. Yang, S. Gai and P. Yang, Dalton Trans., 2013, 42, 10019-10028.
 - **17.** G. Jia, K. Liu, Y. Zheng, Y. Song, M. Yang and H. You, *J. Phys. Chem. C*, **2009**, *113*, 6050-6055.
- 15 18. L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng and L. Li, *Eur. J. Inorg. Chem.*, 2013, 2013, 5999-6008.
 19. H. Xin, L.-X. Lin, J.-H. Wu and B. Yan, *J. Mater. Sci. Mater.*
 - *Electron*, 1-5.
- 20. N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A.
 20. Vinu and R. K. Vatsa, *Dalton Trans.*, 2012, 41, 4404-4412.
- **21.** X. He, L. Zhang, G. Chen and Y. Hang, *J. Alloys Compd.*, **2009**, *467*, 366-369.
- K. Ning, X. He, L. Zhang, Y. Liu, J. Yin, P. Zhang, G. Chen, X. Wang, Z. Chen, C. Shi, J. Hong and Y. Hang, *Opt. Mater.*, 2014, 37, 25 745-749.
 - **23.** Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding and Y. Sun, *CrystEngComm*, **2012**, *14*, 5530-5538.
 - 24. Y. Jia, W. Lu, N. Guo, W. Lu, Q. Zhao and H. You, *Phys. Chem. Chem. Phys.*, 2013, 15, 6057-6062.
- 30 25. Y. Liu, G. Liu, J. Wang, X. Dong and W. Yu, *Inorg. Chem.*, 2014, 53, 11457-11466.
 - **26.** Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda and M. Mitomo, *Chem. Mater.*, **2008**, *20*, 6704-6714.
- 27. R.-J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater., 2007, 8, 588-600.
- 35 28. S. Tang, M. Huang, J. Wang, F. Yu, G. Shang and J. Wu, J. Alloys Compd., 2012, 513, 474-480.
 - **29.** A. Szczeszak, T. Grzyb, Z. Śniadecki, N. Andrzejewska, S. Lis, M. Matczak, G. Nowaczyk, S. Jurga and B. Idzikowski, *Inorg. Chem.*, **2014**, *53*, 12243-12252.
- 40 30. L. Yang, L. Li, M. Zhao and G. Li, *Phys. Chem. Chem. Phys.*, 2012, 14, 9956-9965.

31. B. Shao, Q. Zhao, N. Guo, Y. Jia, W. Lv, M. Jiao, W. Lu and H. You, *CrystEngComm*, **2014**, *16*, 152-158.

- **32.** Y. Liu, G. Liu, X. Dong, J. Wang and W. Yu, *RSC Adv.*, **2014**, *4*, 45 58708-58716.
- 33. M. Jiao, N. Guo, W. Lu, Y. Jia, W. Lv, Q. Zhao, B. Shao and H. You, *Dalton Trans.*, 2013, 42, 12395-12402.
 24. N. S. Singh, N. K. Sahu, and D. Bahadur, *J. Mateur. Cham. C.* 2014, 2
- **34.** N. S. Singh, N. K. Sahu and D. Bahadur, *J. Mater. Chem. C*, **2014**, *2*, 548-555.
- 50 35. F. He, P. Yang, D. Wang, N. Niu, S. Gai, X. Li and M. Zhang, *Dalton Trans.*, 2011, 40, 11023-11030.

36. L. Wu, Y. Zhang, M. Gui, P. Lu, L. Zhao, S. Tian, Y. Kong and J. Xu, *J. Mater. Chem.*, **2012**, *22*, 6463-6470.

- **37.** M. Shang, D. Geng, X. Kang, D. Yang, Y. Zhang and J. Lin, *Inorg.* 55 *Chem.*, **2012**, *51*, 11106-11116.
- **38.** D. L. Dexter and J. H. Schulman, *J. Chem. Phys.*, **1954**, *22*, 1063-1070.
- **39.** C. Cao, H. K. Yang, J. W. Chung, B. K. Moon, B. C. Choi, J. H. Jeong and K. H. Kim, *J. Mater. Chem.*, **2011**, *21*, 10342-10347.
- 60 40. E. Pavitra, G. S. R. Raju, Y. H. Ko and J. S. Yu, *Phys. Chem. Chem. Phys.*, 2012, *14*, 11296-11307.
 - **41.** F. Zhang, W. Zhang, Z. Zhang, Y. Huang and Y. Tao, *J. Lumin.*, **2014**, *152*, 160-164.
- **42.** L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu and J. H. Jeong, *Dalton Trans.*, **65 2014**, *43*, 5382-5392.
- 43. N. O. Nunez, S. Rivera, D. Alcantara, J. M. de la Fuente, J. Garcia-Sevillano and M. Ocana, *Dalton Trans.*, 2013, 42, 10725-10734.

New Journal of Chemistry

The as-prepared samples are in short rod-like shape with the diameter of about 10 nm and length of about 20-30 nm. The absorption of Sm^{3+} ions can be observed in GdVO₄: Sm^{3+} , Eu³⁺ samples monitored by 620 nm, indicating Sm^{3+} ions transfer energy to Eu³⁺ ions, which increases the color purity of Eu³⁺ ions in GdVO₄ system.