NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

Journal Name

COMMUNICATION

Highly Diastereoselective Synthesis of Polycyclic Amines *via*-Redox Neutral C-H Functionalization

Chottanahalli. S. Pavan Kumar,^{a#} Kachigere. B. Harsha,^{a#} Nagarakere. C. Sandhya,^a Ajjalli. B. Ramesha,^a Kempegowda Mantelingu,^{a*} and Kanchugarakoppal. S. Rangappa,^{a*}

DOI: 10.1039/x0xx00000x

000Received 00th January

Accepted 00th January

www.rsc.org/

20xx,

20xx

Synthesis of polycyclic amines were achieved by benzoic acid catalysed reaction of 1-aryl THIQs and 1-aryl trypolines with *o*-allyl salicylaldehydes through the *in situ* generated azomethine ylide intermediates that undergo intramolecular [3 + 2]-cycloadditions with four new stereogenic centers in excellent diastereoselectivities under simple and mild conditions.

Introduction

Functionalization of C–H bonds into C–C and/or C–O bonds is an important area of organic synthesis for the construction of biologically active molecules.¹ In this context, selective fuctionalization C–H bonds have been developed during last few years.² C–H fuctionalization via intramolecular [3 + 2]-cycloadditions of azomethine ylides is a powerfull tool to construct polycyclic amines from relatively simple precursors.³⁻⁴ Several methods are available to generate azomethine ylides, in the majority of cases, these dipolar species are prepared via decarboxylative condensation of aldehydes with amino acids such as proline and sarcosine. *o*- Allyloxy or *o*-propargyloxy salicylaldehydes and several other systems have been developed for the synthesis of bicyclic,

Raghunathan et al (ref 6)

Scheme 1. Sequential intramolecualr dipolar cycloaddition and Pictet-Spengler cyclization.

tricyclic and even more complex ring systems.⁵ Recently Raghunath-

This journal is © The Royal Society of Chemistry 20xx

an *et al*⁶ reported the synthesis of polycyclic amines by dipolar cycloaddition and Pictet-Spengler reaction (Scheme 1).

The access of azomethine ylides from a range of simple secondary amines and their application to intramolecular [3 + 2]cycloadditions was reported.⁷ [3 + 2]-Cycloaddition reaction is an attractive strategy to construct multiple C-C or C-hetero bonds. Many works have been reported on the redox-neutral α -C-H functionalization of amines including the α -amination of secondary amines with *o*-amino benzaldehydes and thiosalicylaldehydes.⁸⁻¹⁰ In our previous work, we reported the synthesis of polycyclic amines by in situ generation of azomethine ylides followed by intramolecular [3 + 2]-cycloaddition. The reaction was also been successfully carried out with the substrates like pyrrolidine, piperidine, morpholine and thiomorpholine.¹¹ With an intension of further utility of the underlying methodology to rapidly access new chemical space, this work represents a logical extension of above mentioned work. In continuation of our interest in intramolecular azomethine ylide [3 + 2]-cycloaddition reaction and synthesis novel heterocycles,¹²⁻¹⁵we report herein a method to access azomethine vlides from simple 1-aryl THIQs and 1-aryl trypolines under mild conditions and their intramolecular [3 + 2]- cycloadditions.

Result and discussion

Initially the reaction of *o*-allyl salicylaldehyde **1** with 1-(4bromophenyl)THIQ **2** was chosen as model reaction to optimize the reaction conditions. Remarkably, the reaction of *o*-allyl salicylaldehyde with 1-aryl-THIQ was found to proceed in the absence of any additive at reflux conditions in toluene giving the desired product **3e** in 55% yield (Table 1, entry 1). As it has been shown that benzoic acid facilitates amine C-H functionalization via azomethine ylides, we tested benzoic acid as an additive used at 20 mol%, that led to marked rate acceleration with the reaction being completed after 5 h (Table 1, entry 2). However, no formation of

^{a.} DOS In Chemistry, University Of Mysore, Mysuru, 570006, India.

^{b.}# Authors contributed equally.

^{c.} * Corresponding authors

⁺ Electronic Supplementary Information (ESI) available: [CCDC 3c- 1054103 3p-1401266 4c- 1054104]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Journal Name

Table 1 Evaluation of reaction conditions

Entry ^a	Additives	molecular	т	Time	Yield⁵
	(mol %)	Sieves	[⁰ C]	[h]	(%)
1	-	-	reflux	18	55
2	PhCO₂H (20)	-	reflux	5	63
3	PhCO₂H (20)	-	100	5	65
4	PhCO ₂ H (20)	-	80	7	67
5	PhCO₂H (20)	-	60	24	70
6	PhCO₂H (20)	-	50	24	50
7	-	3 Å	reflux	15	61
8	-	3 Å	80	24	60
9	-	3 Å	50	24	NR
10	PhCO₂H (20)	3 Å	RT	24	50
11	PhCO₂H (20)	3 Å	40	18	67
12	PhCO₂H (20)	3 Å	50	14	90
13	PhCO₂H (20)	3 Å	60	14	88
14	PhCO₂H (10)	3 Å	50	24	57
15	PhCO₂H (50)	3 Å	50	12	88
16	$CH_3CO_2H(20)$	3 Å	50	24	76
17	Ethylhexnoic	3 Å	50	24	71
	acid (20)				
18	$CF_3CO_2H(20)$	3 Å	50	24	NR
19	PTSA(20)	3 Å	50	24	NR
20	p-toluic acid(20)	3 Å	50	24	70

 $^{^{}a}$ reactions were performed with 1 mmol of 1 and 1.2 mmol of 1-aryl THIQ (2). $^{b}\!Yields$ are isolated of chromatographically purified compounds.

product was observed even after 24 hours when the reaction was conducted at 50 °C in the absence of benzoic acid. (Table 1, entry 9) Addition of 3 Å molecular sieves resulted in marked reduction of the reaction time and slight increase in yield (Table 1, entries 11-13). A good effect was observed when the title reaction was conducted at 50 °C in the presence of molecular sieves and benzoic acid, leading to the isolation of 3e in 90% yield after 24 h. A reduction in the loading of benzoic acid to 10 mol% had a negative effect on the yield of **3e** (Table 1, entry 14), where as increasing it to 50 mol%did not offer any significant advantages over the 20 mol% catalyst (Table 1, entry 15). Next when we studied the effects of various acids, it was clear that mild acids like acetic acid and 2-ethyl hexanoic acid were guite less effective (Table 1, entries 16-17) and strong acids such as CF₃COOH, p-toluene sulfonoic acid (Table 1, entries 18-19) were ineffective. Finally substituted benzoic acid like *p*-toluic acid was tried that led to the negative effect on yield of **3e**

(Table 1, entry 20). Later we screened a number of solvents viz., THF, EtOAc, Xylene, toluene, DMF, CH_3CN and found that toluene was the preferred solvent. We also screened other molecular sieves like 4 Å and 5Å but no significant difference was observed.

Fig 1. The single crystal XRD structure of compounds 3c and 4c

Scheme 3 Substrate scope for the [3 + 2]-cycloaddition with 1-aryl Trypolines.

The generality was established by carrying out the reactions on various substituted 1-aryl THIQs with a range of salicylaldehydes (scheme 2). In all cases, products were obtained in good to excellent yields at 50 °C. Importantly, the scope of the [3 + 2]-cycloaddition could be readily expanded to various 1-aryl THIQ derivatives (scheme 2).

We expanded the scope of this cycloaddition reaction to 1-aryltrypolines and generated an array of polycyclic amines (scheme 3). Importantly, in all the cases, the cycloaddition was found to be highly diastereoselective and furnished only a single diastereomer. Heteroaryl species, such as a 2-thiophene carboxyaldehyde also underwent the reaction to give the desired product in good yields without polymerization (**3***j*, **3***l* and **3***p*).

Remarkable tolerance toward electronic demands of substituent's in the salicylaldehyde moiety on the [3 + 2]-cycloaddition reaction was shown. To gain further insight into this intramolecular [3 + 2]-cycloaddition, analogous of 2-aminobenzaldehydes was successfully carried out with an excellent yield (**3o**, **3p** and **4I**) and affording a single diastereomer in all the cases studied. The stereochemistry of

the products was unambiguously determined by single X-ray crystal studies for the compounds **3c**, **3p** and **4c**.

Conclusion

In summary, the key step is a highly diastereoselective intra molecular [3 + 2] cycloaddition of *in situ* generated azomethine ylides. The overall process is facilitated by the combined action of benzoic acid and molecular sieves. This method provides a convenient access to poly functional *N*-heterocycles with four stereo centres in one step process. Diversified polycyclic amines provided a valuable alternative to the widely used decarboxylative versions of these transformations.

Experimental

Materials and instruments

Purification of reaction products was carried out by flash column chromatography using Sorbent Technologies Standard Grade silica gel (60 Å, 230–400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60 F254 plates. Visualization was accomplished with UV light, potassium permanganate and DragendorffMunier stains followed by heating. Melting points were recorded on a Thomas Hoover capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on an ATI Mattson Genesis Series FT-Infrared spectrophotometer. Proton nuclear magnetic resonance spectra (¹HNMR) were recorded on Agilent-400 MHz, Brucker-400/500 MHz and are reported in ppm using $CDCl_3/DMSO-d_6$ as the internal standard (7.24/2.50 ppm). Proton-decoupled carbon nuclear magnetic resonance spectra (¹³C-NMR) were recorded on a Agilent-400 MHz, Brucker-400/500 MHz and are reported in ppm using CDCl₃/DMSO-d₆ as the internal standard (77.0/29.8 ppm). Mass spectra were recorded on Agilent mass spectrum.

General procedure for the diastereoseletive intramolecular [3 + 2]cycloaddition of benzylic amines (scheme 2 and 3)

To a solution of aldehyde (1 mmol, 1 equiv) in toluene (10 mL) was added 3 Å molecular sieves (200 mg), amine (1.2 mmol, 1.2 equiv) and benzoic acid (0.2 mmol, 0.2 equiv). The mixture was stirred at 50 °C and progress was monitored by TLC. When the aldehyde could no longer be detected, the reaction mixture was filtered through a plug of celite and rinsed with EtOAc (20 mL). The filtrate was washed with saturated aqueous NaHCO₃ (3 x 15 mL) and the combined aqueous layers were extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure and the was residue purified by silica gel chromatography.

Ethyl 9,10-dimethoxy-7a-(*p*-tolyl)-6a,7,7a,12,13,14a-hexahydro-6*H*-chromeno[3',4':4,5]pyrrolo[2,1-*a*]isoquinoline-7-carboxylate

(3a): White solid; Yield: (67%); MP.160–162 $^{\circ}$ C; $R_{f} = 0.31$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_Z, CDCl₃): $\delta = 7.77$ (d, J = 7.6 Hz, 2H), 7.33 (d, J = 7.6 Hz, 1H), 7.12 (s, 1H), 7.09 (d, J = 8.2 Hz, 2H), 6.89 (t, J = 7.2 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 6.59 (s, 1H), 6.50

COMMUNICATION

Journal Name

(s, 1H), 4.58 (dd, J = 13.6, 6.4 Hz 1H), 4.04 (t, J = 10.8 Hz, 1H), 3.88– 3.81 (m, 2H), 3.77 (s, 1H), 3.5–3.70 (m, 2H), 3.67 (s, 3H), 3.35 (d, J = 9.6 Hz, 2H), 3.13 (t, J = 4.0 Hz, 1H), 2.96 (t, J = 11.2 Hz, 1H), 2.67 (d, J = 15.2 Hz, 1H), 2.27 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MH_z, CDCl₃): $\delta = 173.3$, 154.4, 147.1, 146.5, 136.3, 129.9, 129.0, 128.0, 127.4, 126.9, 126.8, 122.1, 119.9, 116.5, 111.9, 110.5, 78.6, 69.9, 62.3, 60.8, 58.1, 55.7, 55.6, 42.3, 40.0, 29.5, 20.8, 13.7; IR (neat): v = 2962, 1729 1609, 1577, 1485, 1349, 1225, 1178, 1095, 902, 815, 773, 651 cm⁻¹; HRMS (ESI-TOF): m/z.calcd. for C₃₁H₃₃NO₅ [M + H]⁺ 500.2359; found 500.2348.

Ethyl 9,10-dimethoxy-7a-(*p*-bromo)-6a,7,7a,12,13,14a-hexahydro-6*H*-chromeno[3',4':4,5]pyrrolo[2,1-*a*]isoquinoline-7-carboxylate

(3b): White solid; Yield (76%); MP 166–168 °C; $R_f = 0.31$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_Z, CDCI₃): $\delta = 7.77$ (br s, 2H), 7.42–7.40 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 8 Hz, 1H), 6.52 (app s, 2H), 4.58 (dd, J = 14.2, 6.0 Hz, 1H), 4.03 (app d, J = 4.4 Hz, 1H), 3.90–3.825 (m, 1H), 3.78 (s, 3H), 3.75–3.69 (m, 2H), 3.67 (s, 3H), 3.35 (br s, 2H), 3.13 (br s, 1H), 2.95 (br s, 1H), 2.65 (d, J = 14.4 Hz, 1H), 0.99 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MH_Z, CDCI₃): $\delta = 172.5$, 148.9, 148.6, 147.5, 146.5, 146.7, 131.5, 128.7, 128.5, 127.2, 126.1, 124.8, 124.4, 112.29, 112.2, 112.0, 111.4, 110.5, 110.53, 78.4, 69.8, 62.2, 61.1, 57.9, 55.8, 55.6, 41.9, 40.0, 29.4, 13.7; IR (neat): v 2981, 1709 1610, 1578, 1485, 1349, 1225, 1178, 1095, 910, 815, 793, 621 cm⁻¹; HRMS (ESI-TOF): m/z calcd. for C₃₀H₃₀BrNO₅ [M + H]⁺ 564.1307; found 564.1367.

Ethyl 2-bromo-7a-(p-bromophenyl)-9,10-dimethoxy-6a,7,7a,12,13,

14a-hexahydro-6H,chromeno[3',4'5]pyrrolo[2,1-*a***]isoquinoline-7carboxylate (3c):** White solid; Yield (75%); MP 172–174 °C; $R_f = 0.35$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_Z CDCl₃): $\delta = 7.75$ (d, J = 6.8 Hz, 2H), 7.42 (d, J = 8 Hz, 3H), 7.20 (d, J = 7.6 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H), 6.53 (s, 1H), 6.50 (s, 1H), 4.59–4.56 (m, 1H), 4.02 (t, J = 10.4 Hz, 1H), 3.90–3.84 (m, 1H), 3.39 (s, 1H), 3.76–3.71 (m, 2H), 3.68 (s, 3H), 3.63 (br s, 1H), 3.32 (br s, 1H), 3.17 (br s, 1H), 2.97 (s, 1H), 2.70 (d, J = 15.2 Hz, 1H), 1.00 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 172.7$, 153.5, 148.8, 147.4, 146.7, 131.5, 131.1, 129.4, 128.8, 127.3, 123.7, 120.9, 118.5, 112.3, 111.8, 111.7, 110.7, 78.5, 69.7, 62.1, 61.2, 57.9, 55.9, 55.7, 41.9, 40.0, 29.4, 13.8; IR (neat): v = 2960, 1709, 1654, 1591, 1418, 1328, 1208, 1031, 906, 833, 735, 610 cm⁻¹; HRMS-(ESI-TOF): *m/z*.calcd for C₃₀H₂₉Br₂NO₅ [M + H]⁺ 644.0392; found 644.0337.

Ethyl 2-bromo-7a-(*p*-bromophenyl)-9-methoxy-6a,7,7a,12,13,14ahexahydro-6H,chromeno[3',4'5]pyrrolo[2,1-*a*]isoquinoline-7-

carboxylate (3d): White solid; Yield: (95%); MP 180–182 $^{\circ}$ C; $R_{\rm f}$ = 0.24 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_Z, CDCl₃): δ = 7.71 (s, 2H), 7.42 (d, *J* = 8.4 Hz, 3H), 7.22 (d, *J* = 9.2 Hz, 1H) 6.87 (br s, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.58 (s, 1H), 6.54 (d, *J* = 8.4 Hz, 1H), 4.58 (dd, *J* = 14.0, 6.4 Hz, 1H), 4.04 (br s, 1H), 3.86–3.81 (m, 1H), 3.79–3.66 (comp, 6H), 3.33 (d, *J* = 9.6 Hz, 3H), 2.77 (d, *J* = 16.0 Hz, 1H), 1.05 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MH_Z, CDCl₃): δ = 172.6, 157.6, 153.6, 148.9, 136.2, 131.5, 131.4, 131.1, 129.7, 129.4, 128.9, 123.8, 120.8, 118.6, 118.5, 112.4, 112.3, 112.2, 76.7, 69.8, 62.1, 61.1, 57.8, 41.8, 39.8, 30.1, 13.8; IR (neat): v = 2925, 2857, 2254, 1725, 1652,

1610, 1512, 1478, 1379, 990, 856, 790, 609 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₂₉H₂₇Br₂NO₄ [M + H]⁺ 614.0286; found.614.0250.

Ethyl 2-chloro-9,10-dimethoxy-7a-(p-Br-bromophenyl)-9,10-

dimethoxy-6a,7,7a,12,13,14a-hexahydro 6H, chromeno [3',4'5] pyrrolo [2,1-*a*]isoquinoline-7-carboxylate (3e): White solid; Yield: (90%); MP 158–160 °C; $R_f = 0.32$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, CDCl₃): $\delta = 7.70$ (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.8 Hz, 2H), 7.22 (br s, 1H), 7.00 (dd, J = 10.8, 6.8 Hz, 1H), 6.67 (d, J = 8.8 Hz, 1H), 6.45 (d, J = 6.0 Hz, 2H), 4.5 (dd, J = 13.6, 6.0 Hz, 1H), 3.95 (t, J =10.8 Hz, 1H), 3.85–3.77 (m, 1H), 3.72 (s, 3H), 3.70–3.65 (m, 2H), 3.63–3.56 (m, 4H), 3.29–3.19 (br m, 2H), 3.09 (t, J = 12 Hz, 1H), 2.89 (t, J = 10.8 Hz, 1H), 2.63 (d, J = 15.2 Hz, 1H), 0.93 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MH_z, CDCl₃): $\delta = 172.7$, 153.0, 147.4, 146.7, 131.4, 128.8, 128.2, 127.4, 126.5, 125.0, 123.2, 120.9, 118.1, 111.9, 111.8, 110.8, 110.7, 78.4, 69.8, 62.2, 61.1 57.9, 55.8, 55.6, 41.9, 40.0, 29.4, 13.7; IR (neat): v = 2961, 1709, 1652, 1596, 1418, 1328, 1206, 1030, 906, 833, 730, 610 cm⁻¹; HRMS-(ESI-TOF): *m*/z.calcd for C₃₀H₂₉BrCINO₅ [M + H]⁺ 598.0917; found 598.0911

Ethyl 2,4-dibromo-7a-phenyl-6a,7,7a,12,13,14a-hexahydro-6Hchromeno[3',4':4,5]pyrrolo[2,1-*a*]isoquinoline-7-carboxylate (3f): White solid; Yield: (85%); MP 152–154 °C; $R_f = 0.17$ (hexanes/EtOAc 90:10); ¹H NMR (400 MH_Z, CDCl₃): $\delta = 7.8$ (d, J = 5.6 Hz, 2H), 7.52 (s, 1H), 7.43 (s, 1H), 7.31 (br s, 2H), 7.19 (br s, 1H), 7.05–6.96 (m, 4H), 4.7 (d, J = 10.8 Hz, 1H), 4.13 (t, J = 10.8 Hz, 1H), 3.84–3.71 (m, 4H), 3.32 (t, J = 12.4 Hz, 3H), 3.0 (br s, 1H), 2.81 (d, J = 14.8 Hz, 1H), 1.0 (s, 1H); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 172.5$, 155.4, 150.4, 137.2, 134.5, 134.2, 134.0, 128.7, 128.6, 128.4, 127.9, 127.2, 126.3, 125.5, 124.8, 112.2, 111.5, 79.2, 70.6, 62.0, 61.3, 57.4, 41.5, 39.9, 29.7, 13.7; IR (neat): v = 2960, 1709, 1654, 1591, 1418, 1328, 1208, 1031, 833, 735, 610 cm⁻¹; HRMS-(ESI-TOF): *m*/z.calcd for C₂₉H₂₇Br₂NO₃ [M + H]⁺ 584.0180; found 584.0113

Ethyl 2,4-dibromo-7a-(3-bromo-5-flurophenyl)-9,10-dimethoxy-6a, 7,7a,12,13,14,-hexahydro-6H-chromeno[3',4':4,5]pyrrolo[2,1-a]iso -quinoline-7-carboxylate (3g): White solid; Yield: (84%); MP 186-188 °C; $R_{\rm f} = 0.22$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH₂ CDCl₃): δ = 7.20 (s, 1H), 7.16 (d, J = 8.8 Hz, 1H), 7.02 (s, 1H), 6.85 (s, 1H), 6.53 (d, J = 8.4 Hz, 1H), 6.58 (s, 1H), 6.48 (s, 1H), 4.17 (m, 1H), 4.04 (t, J = 10.4 Hz, 1H), 3.84 - 3.78 (m, 1H), 3.79 (s, 3H), 3.70-3.66 (m, 1H), 3.65 (s, 3H), 3.62-3.56 (m, 1H), 3.2-3.19 (m, 2H), 3.09 (t, J = 8.8 Hz, 1H), 2.88 (br s, 1H), 2.63 (d, J = 15.6 Hz, 1H), 0.94 (t, J = 7.2, 3H); ¹³C NMR (100 MH₇ CDCl₃): $\delta = 172.5, 148.9, 148.66, 147.5,$ 146.7, 131.5, 128.7, 128.5, 127.2, 125.1, 124.8, 124.43, 122.4, 121.0, 111.89, 111.84, 110.77, 110.72, 78.5 70.5, 62.1, 61.2, 57.7, 55.8, 55.6, 41.7, 40.0, 29.4, 13.7; IR (neat): v = 2925, 2853, 2254, 1725, 1652, 1610, 1514, 1478, 1373, 993, 856, 790, 609 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for $C_{30}H_{27}Br_3FNO_5$ [M + H]⁺ 739.9402; found 739.9487.

Ethyl2,4-dibromo-7a-(4-(tert-butyl)phenyl)-9,10-dimethoxy-6a,7, 7a,12,13,14,-hexahydro-6*H*-chromeno[3',4':4,5]pyrrolo[2,1-*a*]isoq -uinoline-7-carboxylate (3h): White solid; Yield: (82%); MP 196–

Journal Name

198 °C; $R_{\rm f}$ = 0.24 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, CDCl₃): δ = 7.76 (d, *J* = 8.8 Hz, 2H), 7.49 (s, 1H), 7.41 (s, 1H), 7.30 (d, *J* = 8.8 Hz, 2H), 6.59 (s, 1H), 6.52 (s, 1H), 4.59 (dd, *J* = 14.0, 6.4 Hz 1H), 4.13 (t, *J* = 10.4 Hz, 1H), 3.90–3.3.8 (m, 2H), 3.78 (s, 3H), 3.75–3.71 (m, 3H), 3.68 (s, 3H), 3.34–3.14 (m, 3H), 2.99 (t, *J* = 9.6 Hz, 1H), 2.70 (d, *J* = 15.2 Hz, 1H), 1.27 (s, 9H), 1.01 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MH_z, CDCl₃): δ = 172.9, 150.4, 149.7, 147.2, 146.5, 146.2, 133.8, 129.5, 128.7, 127.2, 126.5, 125.8, 125.3, 112.2, 112.2, 112.0, 111.4, 110.5, 78.7, 70.7, 62.0, 61.0, 57.6, 55.8, 55.5, 41.5, 39.9, 34.2, 31.2, 29.5, 13.8; IR (neat): v = 2945, 2844, 2240, 1739, 1630, 1603, 1532, 1479, 1395, 910, 856, 797, 621 cm⁻¹; HRMS-(ESI-TOF): *m/z*.calcd for C₃₄H₃₇Br₂NO₅ [M + H]⁺ 700.1018; found 700.1067.

Ethyl 2,3-dibromo-7a-(*p*-bromopheny;)-9,10-dimethoxy-6a,7,7a,12 13,14a-chloro-hexahydro-6*H*-chromeno[3',4':4,5]pyrrolo[2,1-*a*]iso -quinoline-7-carboxylate (3i): White solid; Yield: (80%); MP 197– 199 °C; $R_f = 0.20$ (hexanes/EtOAc 90:10); ¹H NMR (400 MH_Z, CDCl₃): $\delta = 7.76$ (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 7.22 (s, 1H), 6.52 (d, J = 8.7 Hz, 2H), 4.74 (dd, J = 14.4 z, 6.4 Hz, 1H), 4.11 (t, J = 10.4 Hz, 1H), 3.90–3.84 (m, 1H), 3.79 (s, 3H), 3.77–3.71 (m, 2H), 3.69 (s, 3H), 3.36–3.26 (m, 3H), 3.15 (t, J = 11.6 Hz, 1H), 2.97 (d, J = 10.8 Hz, 1H), 2.71 (d, J = 15.2 Hz, 1H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MH_Z, CDCl₃) $\delta = 172.3$, 150.5, 147.7, 146.7, 131.2, 130.1, 129.5, 128.4, 126.8, 126.4, 125.4, 119.3, 118.5, 112.4, 111.6, 111.5, 110.5, 110.4, 76.4, 69.6, 62.6, 61.2, 59.2, 55.8, 55.7, 41.9, 40.3, 29.6,13.7; IR (neat): v = 2925, 2853, 2254, 1725, 1652, 1610, 1514,1478, 1373, 993, 856, 790, 609 cm⁻¹; HRMS-(ESI-TOF): *m*/z.calcd for C₃₀H₂₈Br₃NO₅ [M + H]⁺ 721.9497; found 721.9456.

Ethyl 2,3-dibromo-910-dimethoxy-7a-(thiophenyl-2-yl)-6a,7,7a,12, 13,14a-hexahydro-6H-chromeno[3'4':4,5]pyrrolo[2,1-a]isoquinoli**ne (3j):** White solid; Yield: (86%); MP 150–152 $^{\circ}$ C; $R_{f} = 0.37$ (hexanes/EtOAc 85:15); ¹H NMR (400 MH_z CDCl₃): δ = 7.50 (s, 1H), 7.41 (s, 1H), 7.25 (d, J = 3.6 Hz, 1H), 7.07 (d, J = 5.2 H_z, 1H), 6.90 (t, J = 5.2 H_z, 1H), 6.64 (s, 1H), 6.52 (s, 1H), 4.72 (dd, J = 14.8, 6.0 Hz, 1H), 4.23-4.14 (m, 2H), 3.87-3.83 (m, 1H), 3.79 (s, 3H), 3.71 (s, 3H) 3.70-3.68 (m, 1H), 3.65 (d, J = 9.6 Hz, 1H), 3.31-3.28 (m, 1H), 3.21 (d, J = 10.8 Hz, 2H), 2.97–2.82 (m, 1H), 2.68 (d, J = 14.8 Hz, 1H), 0.99 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MH_z, CDCl₃): $\delta = 172.2$, 150.3, 147.6, 146.7, 134.1, 134.1, 134.0, 128.6, 128.3, 126.7, 125.3, 124.8, 124.1, 112.2, 111.5, 110.5, 110.4, 76.4, 70.5, 62.7, 61.2, 59.1, 55.7, 55.5, 41.8, 40.2, 29.0, 13.7; IR (neat): v = 2980, 2257, 1736, 1614, 1515, 1473, 1337, 1313, 1259, 1108, 943, 792, 641 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₂₈H₂₇Br₂NO₅S [M + H]⁺ 649.9956; found 649.9915.

Ethyl 2, 9,10-trimethoxy-7a-(*p*-mthoxyphenyl)-6a,7,7a,12,13,14hexahydro-6*H*- chromeno[3',4':4,5]pyrrolo[2,1-*a*]isoquinoline-7carboxylate (3k): White solid; Yield: (71%); MP 150–152 °C; $R_f =$ 0.27 (hexanes/EtOAc 75:25); ¹H NMR (400 MH_Z, CDCl₃): $\delta =$ 7.72 (s, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.78–6.67 (m, 5H), 6.50 (s, 1H), 4.47 (d, *J* = 8.0 Hz, 1H), 4.04–3.92 (m, 4H), 3.89 (s, 3H), 3.81 (s, 3H), 3.74 (s, 6H), 3.68 (d, *J* = 8.8 Hz, 1H), 3.497 (d, *J* = 4.8 Hz, 1H), 3.22 (d, *J* = 9.6 Hz, 1H), 2.99 (d, *J* = 11.2 Hz, 1H), 2.66 (t, *J* = 6.8 Hz, 1H), 1.07 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MH_Z, CDCl₃): $\delta =$ 171.8, 158.2, 153.3, 149.9, 147.2, 146.4, 136.3, 135.0, 129.3, 127.8, 124.4, 118., 115.8, COMMUNICATION

113.7, 112.7, 111.1, 111.0, 110.4, 70.4, 68.2, 60.9, 57.3, 55.9, 55.79, 55.73, 55.1, 40.8, 40.4, 27.9, 13.9; IR (neat): v = 2979, 2266, 1758, 1625, 1507, 1467, 1342, 1326, 1265, 1108, 949, 783, 649 cm⁻¹; HRMS-(ESI-TOF): *m/z*.calcd for $C_{32}H_{35}NO_7$ [M + H]⁺ 546.2414; found 546.2463

Ethyl2,9,10-trimethoxy-7a-(thiophen-2-yl)-6a,7,7a,12,13,14a-hexahydro-6*H*-chromeno[3',4':4,5]pyrrolo[2,1-*a*]isoquinoline-7

carboxylate (3I): White solid; Yield: (89%); MP 144–146 °C; $R_{\rm f}$ = 0.29 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z CDCl₃): δ = 7.26 (s, 1H) 7.06 (d, *J* = 5.2 Hz, 1H), 6.90 (d, *J* = 5.2 Hz, 2H), 6.76 (d, *J* = 9.2 Hz, 1H), 6.72 (d, *J* = 2.8 Hz, 1H), 6.69 (s, 1H), 6.53 (s, 1H), 4.55(dd, *J* = 13.6, 5.6 Hz, 1H), 4.22 (d, *J* = 12.4 Hz, 1H), 4.07 (t, *J* = 9.6 Hz, 1H), 3.88–3.83 (m, 1H), 3.80 (s, 6H), 3.78–3.75 (m, 1H), 3.73 (s, 3H), 3.64 (d, *J* = 9.6 Hz, 1H), 1.00 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MH_z, CDCl₃): δ = 172.7, 158.4, 153.2, 148.3, 147.5, 146.6, 128.9, 127.08, 126.5, 125.0, 123.8, 122.5, 117.1, 113.4, 112.3, 111.5, 110.5, 110.4, 76.6, 69.4, 63.3, 61.03, 59.7, 55.8, 55.61, 55.68, 42.6, 40.2, 29.3, 13.7; IR (neat): v = 2970, 2275, 1755, 1606, 1519, 1469, 1339, 1318, 1261, 1118, 933, 790, 644 cm⁻¹; HRMS-(ESI-TOF): *m*/z.calcd for C₂₉H₃₁NO₆S [M + H]⁺ 523.1872; found 523.1869.

Ethyl 2-fluoro- 9,10-dimethoxy-4-methyl-7a-(p-bromo)-6a,7,7a,12, 13,14a-hexahydro-6H-chromeno[3',4':4,5]pyrrolo[2,1-a]isoquinoline-7-carboxylate (3m): White solid; Yield: (82%); MP 168-170 °C; $R_{\rm f} = 0.54$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z CDCl₃): $\delta =$ 7.77 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.90 (dd, J = 11.2, 5.6 Hz, 1H), 6.75 (dd, J = 12.0, 5.6 Hz, 1H), 6.59 (s, 1H), 6.51 (s, 1H), 4.62 (dd, J = 13.6, 6 Hz, 1H), 4.02 (t, J = 10.0 Hz, 1H), 3.91-3.79 (m, 2H), 3.78 (s, 3H), 3.76-3.70 (m, 2H), 3.68 (s, 3H), 3.34-3.29 (m, 2H), 3.16-3.13 (m, 1H), 2.97 (t, J = 10.0 Hz, 1H), 2.68 (d, J = 15.6 Hz, 1H), 2.28 (s, 3H), 2.12 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MH_z) $CDCl_3$: $\delta = 173.3, 157.2, 154.8, 148.4, 148.4, 147.1, 146.9, 146.5, 146.5, 148.4, 147.1, 146.9, 146.5, 148.4, 147.1, 146.9, 146.5, 148.4,$ 136.3, 129.8, 129.0, 127.6, 127.5, 127.4, 126.8, 126.8, 122.3, 122.2, 115.9, 115.6, 112.0, 111.9, 110.6, 110.5, 110.4 110.2, 78.6, 69.7, 62.5, 60.9, 58.1, 55.8, 55.6, 42.1, 40.0, 29.5, 20.79, 20.75, 13.8; IR (neat): v = 2953, 2842, 2251, 1749, 1648, 1619, 1523, 1466, 1402, 992, 871, 798, 630 cm⁻¹; HRMS-(ESI-TOF): *m*/z.calcd for C₃₂H₃₄FNO₅ [M + H]⁺ 532.6145; found 532.6185.

Ethyl 2-fluoro-9,10-dimethoxy-4-methyl-7a-(*p*-chloro)-6a,7,7a,12, 13,14a-hexahydro-6*H*-chromeno[3',4':4,5]pyrrolo[2,1-*a*]isoquinoline-7-carboxylate (3n): White solid; Yield: (95%); MP 87–89 °C; R_f = 0.28 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, CDCl₃): δ = 7.82 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 4.8 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 8 Hz, 1H), 6.71 (dd, *J* = 4.2 Hz, 1H), 6.56–6.52 (m, 2H) 4.61 (dd, *J* = 4.8 Hz, 1H), 6.70 (dt, *J* = 10.8 Hz, 1H), 3.87–3.81 (m, 1H), 3.79–3.68 (m, 6H), 3.32 (d, *J* = 9.6 Hz, 2H), 3.16 (d, *J* = 6.72 Hz, 1H), 2.98 (d, *J* = 10.4 Hz, 1H), 2.74 (d, *J* = 15.6 Hz, 1H), 2.12 (s, 3H), 1.05 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MH_z, CDCl₃): δ = 172.8, 157.5, 157.2, 154.8, 148.6, 148.4, 136.4, 132.5, 129.7, 129.4, 128.4, 127.7, 121.8, 116.0, 115.8, 112.4, 112.2, 110.4, 110.0, 78.3, 69.6, 62.7, 61.0, 58.1, 55.0, 42.0, 39.8, 30.2, 29.6, 13.8; IR (neat): v= 2950, 1691, 1639, 1580, 1410, 1242, 1077, 1045, 901, 831, 754, 615 cm⁻¹;

COMMUNICATION

HRMS-(ESI-TOF): m/z.calcd for $C_{30}H_{29}CIFNO_4 [M + H]^+$ 552.1874; found 552.1815

Ethyl 7a-(p-bromophenyl)-9,10-dimethoxy-5-tosyl-5,6,6a,7,7a,12, 13,14a-ocatahydrobezenzo[7,8]indolizino[2,3-c]quinoline-7-carboxylate (3o): White solid; Yield: (80%); MP 177–179 °C; R_f = 0.24 (hexanes/EtOAc 75:25); ¹H NMR (400 MH_z, CDCl₃): δ = 7.86 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.8 Hz. 2H), 7.28 (br d, J = 4.8 Hz, 1H), 7.23 (d, J = 7.2 Hz, 2H), 7.20 (s, 1H), 7.13 (t, J = 6.8 Hz), 6.99 (d, J = 8 Hz, 2H), 6.46 (s, 1H), 6.40 (s, 1H) 4.55 (dd, J = 16.8, 7.6 Hz, 1H), 3.16-3.89 (m, 1H), 3.75 (s, 3H), 3.72-3.66 (m, 1H), 3.63 (s, 3H), 3.59 (d, J = 6.0 Hz), 3.39 (t, J = 12.0 Hz, 1H), 3.10-2.87 (m, 4H), 2.57–2.51 (m, 2H), 2.27 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR $(100 \text{ MH}_{Z} \text{ CDCl}_{3})$: δ = 172.6, 147.4, 146.6, 143.7, 136.2, 135.0, 131.3, 129.3, 128.7, 127.2, 126.8, 126.5, 124.8, 124.6, 112.0, 111.9, 110.6, 110.6, 78.0, 63.6, 61.0, 59.3, 55.7, 55.5, 50.6, 41.8, 39.4, 29.3, 21.4, 13.8; IR (neat): v = 2960, 1709, 1654, 1590, 1417, 1256, 1097, 1031, 905, 83, 735, 610 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₇H₃₇BrN₂O₆S [M + H]⁺ 717.1556; found 717.1560.

Ethyl 2,9,10-dimethoxy-7a-(thiophen-2-yl)-5-tosyl-5,6,6a,7,7a,,12, 13,14a-octaxahydrobenzo[7,8]indolizino [2,3-c]quinoline-7-carbox -ylate (3p): White solid; Yield: (73%); MP 167–169 °C; R_f = 0.28 (hexanes/EtOAc 75:25); ¹H NMR (400 MH_z, CDCl₃): δ = 7.87 (d, J = 8.4 Hz, 1H), 7.21 (d, J = 8.0 Hz, 3H), 7.24-7.19 (m, 1H), 7.24-7.19 (m, 2H) 7.13 (t, J = 7.2 Hz, 1H), 7.04 (d, J = 8 Hz, 2H), 7.01 (d, J = 4.0 Hz, 1H), 6.87 (t, J = 4.4 Hz, 1H), 6.59 (s, 1H), 6.46 (s, 1H), 4.61 (dd, J = 16.4, 8.4 Hz, 1H), 3.95-3.91 (m, 1H), 3.76 (s, 3H), 3.73-3.70 (m, 1H), 3.68 (s, 3H), 3.65 (d, J = 6.8 Hz, 1H), 3.55 (d, J = 8.8 Hz, 1H), 3.44 (t, J = 12.0 Hz, 1H), 2.99–2.88 (m, 2H), 2.84 (d, J = 12.4 Hz, 1H), 2.51 (d, J = 13.6 Hz, 2H), 2.27 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MH_{Z} CDCl₃): δ = 172.4, 147.5, 146.6, 143.6, 136.3, 135.2, 129.4, 128.5, 127.2, 126.9, 126.7, 126.5, 125.1, 124.7, 124.4, 123.9, 111.57, 111.53, 110.4, 110.3, 75.8, 64.4, 61.0, 55.82, 55.8, 55.7, 50.6, 41.5, 39.6, 29.1, 21.5, 13.8; IR (neat): v = 2960, 1701, 1654, 1591, 1417, 1256, 1097, 1031, 905, 839, 735, 610 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for $C_{35}H_{36}N_2O_6S_2$ [M + H]⁺ 645.2015; found 645.2087.

(6bR,14bR,15R,15aR)-ethyl 5-bromo-14b-phenyl-1,6b,8,9,14,14b, 15,15a-octahydrochromeno[3',4':2,3]indolizino[8,7-b]indole-15-

carboxylate (4a). White solid; Yield: (86%); MP 169–171 °C; $R_{\rm f}$ = 0.31 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, DMSO-d₆): δ = 9.96 (s, 1H), 7.96 (d, *J* = 7.6 Hz, 2H), 7.48 (s, 1H), 7.28–7.37 (m, 5H), 7.23 (t, *J* = 7.6 Hz, 2H), 6.94 (t, *J* = 7 Hz, 1H), 6.87 (t, *J* = 7.4 Hz, 1H), 6.77 (d, *J* = 8.8 Hz, 1H), 4.50 (dd, *J* = 3.4 Hz, 1H), 4.09 (t, *J* = 10.8 Hz, 1H), 3.75–3.91 (m, 3H), 3.65 (d, *J* = 9.6 Hz, 1H), 3.31 (d, *J* = 9.2 Hz, 1H), 3.19 (d, *J* = 8.0 Hz, 1H), 2.74–2.84 (m, 3H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MH_z, DMSO-d₆): δ = 171.9, 153.6, 151.6, 134.6, 134.1, 133.3, 131.0, 129.0, 127.2, 127.1, 125.2, 124.6, 123.3, 123.0, 118.6, 118.4, 117.6, 114.0, 110.1, 68.25, 56.38, 55.92, 50.36, 41.40, 35.27, 33.10, 29.0, 24.7, 23.0, 15.0; IR (neat): v = 3335, 2933, 1705, 1424, 1410, 1324, 1314, 1221, 1216, 1221, 1219, 1164, 1134, 1089, 1028, 895, 636 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₀H₂₇BrN₂O₃ [M + H]⁺ 543.1205; found 543.1214.

Journal Name

(6bR,14bR,15R,15aR)-ethyl 5-bromo-14b-(4-bromophenyl)-1,6b,8 9,14,14b,15,15a-octahydrochromeno[3',4':2,3]indolizino[8,7-b] indole-15-carboxylate (4b). White solid; Yield: (89%); MP 172-174 ^oC; $R_{\rm f} = 0.34$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z DMSOd₆): δ = 10.05 (s, 1H), 7.52 (d, J = 8.4 Hz, 1H,), 7.47 (s, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.27 (dd, J = 5.2 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.88 (t, J = 7.2 Hz, 1H), 6.77 (d, J = 8.8 Hz, 1H), 4.50 (dd, J = 3.8 Hz, 1H), 3.74-3.90 (comp, 3H), 3.64 (d, J = 9.6 Hz, 1H), 3.20–3.31 (m, 2H), 2.74–2.86 (m, 3H), 0.94 (t, 3H, J = 7.2 Hz); ¹³C NMR (100 MH_Z DMSO-d₆): δ = 170.2, 150.1, 148.5, 137.7, 133.8, 130.2, 129.8, 128.6, 127.3, 127.2, 126.4, 126.1, 125.1, 123.7, 121.2, 120.5, 119.7, 111.9, 111.7, 74.4, 70.8, 65.0, 62.1, 58.1, 41.3, 39.1, 22.3, 14.2; IR (neat): v = 3366, 2957, 2924, 1706, 1481, 1461, 1416, 1390, 1370, 1298, 1261, 1248, 1232, 1164, 1097, 996, 953, 898, 872, 842, 814, 785, 677, 663 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for $C_{30}H_{26}Br_2N_3O_3$ [M + H]⁺ 623.089; found 623.0831.

(6bR,14bR,15R,15aR)-ethyl 5-bromo-14b-(4-chlorophenyl)-1,6b,8, 9,14,14b,15,15a-octahydrochromeno[3',4':2,3]indolizino[8,7-b]

indole-15-carboxylate (4c). White solid; Yield: (89%); MP 155–157 [°]C; $R_f = 0.32$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, DMSO-d₆): $\delta = 10.10$ (s, 1H), 7.98 (d, J = 8.4 Hz, 2H), 7.50 (s, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 11.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.91 (t, J = 7.0 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 4.53 (d, J = 9.6 Hz, 1H), 4.16 (t, J = 10.2 Hz, 1H), 3.93–3.79 (comp, 3H), 3.64 (d, J = 9.6 Hz, 1H), 3.22–3.19 (m, 2H), 2.85–2.80 (comp, 3H), 0.98 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MH_z, DMSO-d₆) $\delta = 171.1$, 151.2, 146.8, 137.1, 133.8, 133.2, 131.7, 129.5, 128.9, 125.8, 125.4, 121.6, 120.6, 118.8, 118.3, 112.8, 111.7, 111.6, 108.9, 73.4, 69.4, 60.3, 60.2, 55.8, 43.8, 41.9, 21.0, 14.1; IR (neat): v = 3320, 2947, 2915, 1710, 1431, 1416, 1380, 1360, 1298, 1261, 1238, 1220, 1164, 1097, 986, 913, 898, 852, 833, 812, 685, 580 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₀H₂₆BrClN₃O₃ [M + H]⁺ 577.0815; found 577.0859.

(6bR,14bR,15R,15aR)-ethyl 3,5-dibromo-14b-phenyl-1,6b,8,9,14, 14b,15,15a-octahydrochromeno[3',4':2,3]indolizino[8,7-b]indole-**15-carboxylate (4d).** White solid; Yield: (91%); MP 161–163 $^{\circ}$ C; R_{f} = 0.32 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z DMSO-d₆): δ = 10.05 (s, 1H), 7.99 (d, J = 7.2 Hz, 2H), 7.70 (s, 1H), 7.55 (s, 1H), 7.40-7.35 (m, 3H), 7.26 (d, J = 7.2 Hz, 2H), 6.97 (t, J = 6.6 Hz, 1H), 6.90 (t, J = 6.4 Hz, 1H), 4.67 (d, J = 10.0 Hz, 1H), 4.25 (t, J = 10.4 Hz, 1H), 3.92 (app. t, J = 11.0 Hz, 2H), 3.81–3.77 (m, 1H), 3.69 (d, J = 9.2 Hz, 1H), 3.39-3.20 (m, 2H), 2.89-2.76 (comp, 3H), 0,99 (t, J = 5.8 Hz, 3H); 13 C NMR (100 MH₇ DMSO-d₆) δ = 172.1, 150.7, 146.2, 136.8, 134.5, 133.5, 132.3, 129.4, 129.0, 127.9, 126.0, 124.9, 122.6, 119.8, 118.9, 112.6, 112.0, 111.2, 110.9, 75.6, 70.8, 62.1, 61.9, 58.2, 41.8, 40.3, 21.3, 14.0; IR (neat): v = 3424, 2918, 2850, 1717, 1557, 1486, 1442, 1368, 1339, 1270, 1232, 1207, 1163, 1088, 1012, 986, 892, 862, 832, 761, 742, 727, 713, 670, 638 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for $C_{30}H_{26}Br_2N_2O_3[M + H]^+$ 623.0290; found 623.0240.

(6bR,14bR,15R,15aR)-ethyl 3,5-dibromo-14b-(4-chlorophenyl)-1,6b 8,9,14,14b,15,15a-octahydrochromeno [3',4':2,3]indolizino

Journal Name

8,7-b]indole-15-carboxylate (4e). White solid; Yield: (90%); MP 149–151 °C; $R_f = 0.35$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, DMSO-d₆): $\delta = 10.06$ (s, IH), 7.95 (d, J = 8.8 Hz, 2H), 7.95 (d, J = 8.8 Hz, 2H), 7.67 (s, 1H), 7.51 (s, 1H), 7.39 (d, J = 8.8Hz, 2H), 7.34 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 6.96 (t, J = 7.0 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 4.64 (dd, J = 4.0 Hz, 1H), 4.24 (t, J = 11.0 Hz, 1H), 3.89 (q, J = 4.8 Hz, 2H), 3.74–3.78 (m, 1H), 3.63 (d, J = 10 Hz, 1H), 2.25–3.20 (m, 2H), 2.73–2.86 (m, 3H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MH_z, DMSO-d₆) $\delta = 172.2$, 150.8, 147.5,137.1, 133.8, 129.0,127.4, 127.1, 126.0, 125.61, 121.5, 118.8, 118.3, 111.9, 111.8, 111.7, 108.8, 75.8, 70.4, 61.4, 65.7, 61.3, 41.6, 40.3, 21.8, 14.0; IR (neat): v = 3420, 2924, 1718, 1442, 1369, 1339, 1310, 1298, 1270, 1232, 1207, 1164, 1087, 1030, 987, 861, 801, 780, 764, 740, 727, 705, 637 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₀H₂₅Br₂ClN₂O₃ [M + H]⁺ 657.9900; found 657.0887.

(6bR,14bR,15R,15aR)-ethyl 3,5-dibromo-14b-(4-bromophenyl)-1,6b,8,9,14,14b,15,15a-octahydrochromeno [3',4':2,3]indolizino [8,7-b]indole-15-carboxylate (4f). White solid; Yield: (89%); MP 150–152 °C; $R_f = 0.32$ (hexanes/EtOAc 80:20); ¹H NMR (400 MH₇ DMSO-d₆): δ = 10.05 (s, 1H), 7.31 (s, 1H), 7.29 (s, 1H), 7.07 (d, J = 2.8 Hz, 1H), 6.94–6.91 (m, 3H), 6.67 (d, J = 7.6 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.96 (t, J = 7.0 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 4.64 (dd, J = 3.8 Hz, 1H), 4.2 (t, J = 10.8 Hz, 1H), 3.85–3.91 (m, 2H), 3.74–3.78 (m, 3H), 0.93 (t, J = 6.0 Hz, 3H); ¹³C NMR (100 MH_z DMSO-d₆) $\delta =$ 170.9, 149.7, 145.8, 136.1, 132.8, 132.2, 130.7, 128.5, 127.9, 124.8, 124.4, 120.6, 119.6, 117.8, 110.8, 110.7, 110.6, 107.9, 74.4, 69.4, 60.3, 60.2, 55.8, 41.1, 40.6, 20.0, 12.9; IR (neat): v = 3469, 2924, 1717, 1442, 1369, 1232, 1207, 1163, 1008, 892, 829, 742, 639, 545, 519 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for $C_{30}H_{25}Br_3N_2O_3$ [M + H]⁺ 700.9394; found 700.9368.

(6bR,14bR,15R,15aR)-ethyl 3,5-dibromo-14b-(p-tolyl)-1,6b,8,9,14, 14b,15,15a-octahydrochromeno [3',4':2,3]indolizino[8,7-b]indole-**15-carboxylate (4g).** White solid; Yield: (80%); MP 170–172 °C; R_f = 0.34 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z DMSO-d₆): δ = 11.39 (s, 1H), 8.40 (d, J = 5.2 Hz, 1H), 8.05 (d, J = 5.2 Hz, 1H), 7.91 (d, J = 1.6 Hz, 1H), 7.90 (d, J = 1.6 Hz, 1H), 7.39 (d, J = 7.6 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.22 (t, J = 7.8 Hz, 1H), 7.02 (t, J = 7.0 Hz, 1H), 4.20 (d, J = 9.2 Hz, 1H), 3.97–4.02 (m, 4H), 3.69 (d, J = 8.0 Hz, 1H), 2.85–2.90 (m, 2H), 2.51 (t, J = 5.0 Hz, 2H), 2.40 (s, 3H), 1.14 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MH_z DMSO-d₆) δ 171.1, 151.8, 144.4, 138.1, 137.0, 135.5, 135.3, 131.5, 129.1, 129.0, 128.0, 127.2, 121.4, 120.8, 120.4, 115.6, 115.5, 114.7, 113.5, 112.3, 72.4, 71.3, 65.6, 59.8, 59.4, 42.9, 41.8, 32.3, 28.9, 23.7, 20.8, 14.0;. IR (neat): v = 3423, 1710, 1425, 1330, 1252, 1161, 1037, 811, 687, 674 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for $C_{31}H_{28}Br_2N_2O_3$ [M + H]⁺ 637.0446; found 637.0414.

(6b,14b,15,15a)-ethyl 3,5 dichloro-14b-phenyl-1,6b,8,9,14,14b,15, 15a-octahydrochromeno[3',4':2,3] Indolizino[8,7-*b*]Indole -15-carb -oxylate (4h). White solid; Yield: (90%); MP 150–152 °C; $R_{\rm f}$ = 0.35 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, DMSO-d₆): δ = 10.68 (s, 1H), 7.65 (app.d, *J* = 2.0 Hz, 1H), 7.43–7.53 (m, 6H), 7.38–7.41

COMMUNICATION

(dd, J = 2.4 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.06–7.10 (m, 1H), 7.0 (t, J = 7.0 Hz, 1H), 6.00 (app.q, J = 5.0 Hz, 1H), 5.28 (d, J = 6.8 Hz, 1H), 4.63 (q, J = 6.2 Hz, 2H), 4.39 (d, J = 9.6 Hz, 1H), 3.86–3.78 (m, 1H), 3.74–3.66 (m, 2H), 3.13 (t, J = 7.2 Hz, 2H), 3.65–3.40 (m, 2H), 0.90 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MH_z DMSO-d₆) $\delta = 172.2$, 149.2, 147.5, 136.7, 132.8, 129.2, 128.8, 127.6, 126.3, 126.1, 125.4, 125.1, 124.7, 122.7, 122.2, 119.57, 118.7, 110.8, 110.7, 75.9, 70.8, 62.0, 61.6, 58.1, 41.7, 40.3, 21.3, 13.9; IR (neat): v = 3435, 2910, 1690, 1420, 1380, 1370, 1309, 1309, 1309, 1242, 1209,1164, 1132, 1120, 1030, 948, 858, 818, 610, 560 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₀H₂₆Cl₂N₂O₃ [M + H]⁺ 533.1320; found 533.1376.

8.(6bR,14bR,15R,15aR)-ethyl 14b-(4-(tert-butyl)phenyl)-3,5-dichloro-1,6b,8,9,14,14b,15,15a-octahydrochromeno[3',4':2,3] indolizino [8,7-b]indole-15-carboxylate (4i): White solid; Yield: (86%); MP 148–150 °C; $R_{\rm f}$ = 0.32 (hexanes/EtOAc 80:20); ¹H NMR (400 MH₇ DMSO-d₆): δ = 11.39 (s, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 3H), 7.39 (d, J = 2.4 Hz, 1H), 7.38 (s, 1H), 7.23 (t, J = 3.2 Hz, 1H), 7.20 (s, 1H), 7.01 (t, J = 7.4 Hz, 1H), 4.23 (d, J = 15.6 Hz), 3.9-4.04 (m, 4H), 2.85–3.05 (m, 2H), 3.68 (d, J = 16.0 Hz, 1H), 2.51 (t, J = 6.6 Hz, 3H), 1.31 (s, 9H), 2.51 (t, J = 7.0 Hz, 3H), 1.31 (s, 9H), 1.15 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MH_z DMSO-d₆) δ 188.0, 170.9, 155.2, 153.4, 136.6, 136.2, 134.3, 131.4, 129.1, 128.9, 127.7, 127.2, 126.6, 125.3, 125.0, 120.6, 119.6, 112.7, 71.5, 59.9, 59.3, 52.3, 50.4, 35.2, 34.8, 30.8, 29.0, 23.7, 22.0, 14.0; IR (neat): v = 3425, 2963, 1737, 1474, 1440, 1370, 1309, 1231, 1209, 1309, 1309, 1231, 1209, 1164, 1144, 1089, 1028, 978, 878, 709, 661, 636 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for $C_{34}H_{34}Cl_2N_2O_3$ [M + H]⁺ 589.1946; found 589.1922.

10.(6bR,14bR,15R,15aR)-ethyl3-methyl-14b-phenyl-1,6b,8,9,14, 14b,15,15a-octahydrochromeno[3',4':2,3]indolizino[8,7-*b*]indole-

15-carboxylate (4j). White solid; Yield: (88%); MP 149–151 °C; *R*_f = 0.34 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, DMSO-d₆): δ = 9.94 (s, 1H), 7.9 (d, *J* = 7.2 Hz, 2H), 7.35 (q, *J* = 6.9 Hz, 3H), 7.19–7.26 (m, 3H), 6.95 (t, *J* = 6.8 Hz H), 6.86 (m, *J* = 7.5 Hz, 2H), 4.55 (dd, *J* = 4.0 Hz, 1H), 4.06 (t, *J* = 10.8 Hz, 1H), 3.77–3.91 (m, 3H), 3.65 (d, *J* = 9.6 Hz, 1H), 3.38 (t, *J* = 4.6 Hz, 1H), 3.27 (app. d, *J* = 7.2 Hz, 1H), 2.73–2.85 (m, 3H), 2.08 (s, 3H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MH_z, DMSO-d₆) δ = 172.8, 152.7, 148.2, 136.6, 133.3, 129.6, 129.1, 127.3, 126.3, 126.2, 126.1, 124.8, 122.0, 121.4, 119.7, 119.4, 118.7, 111.0, 110.7, 75.9, 69.9, 62.6, 61.4, 58.7, 41.7, 40.9, 21.3, 16.5, 13.9; IR (neat): v = 3410, 2973, 1716, 1459, 1445, 1374, 1340, 1317, 1299, 1273, 1239, 1203,1176, 1159, 1078, 918, 883, 790, 691, 671 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₁H₃₀N₂O₃ [M + H]⁺ 479.2256; found 479.2223.

11.(6bR,14bR,15R,15aR)-ethyl 5-methoxy-14b-phenyl-1,6b,8,9,14, 14b15,15a-octahydrochromeno[3',4':2,3]indolizino[8,7-b]indole-15-carboxylate (4k). White solid; Yield: (76%); MP 160–162 $^{\circ}$ C; $R_{f} =$ 0.35 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, DMSO-d₆): $\delta =$ 10.0 (s, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.28– 7.40 (m, 5H), 6.73 (s, 2H), 4.42 (dd, J = 3.2 Hz, 1H), 3.99 (q, J = 10.8Hz, 2H), 3.75–3.91 (comp, 2H), 3.73 (s, 3H), 3.39 (App d, J = 9.6 Hz, 2H), 3.18 (d, J = 11.2 Hz, 2H), 2.73–2.85 (m, 3H), 0.96 (t, J = 7 Hz,

COMMUNICATION

3H); 13 C NMR (100 MH_Z, DMSO-d₆) δ = 172.7, 153.5, 148.6, 148.0, 5. 146.7, 136.6, 133.2, 129.1, 127.4, 126.3, 126.2, 122.7, 122.0, 119.4, 118.7, 117.4, 113.8, 112.6, 110.9, 110.7, 75.8, 69.7, 62.6, 61.4, 58.5, 56.0, 41.8, 41.0, 21.3, 13.9; IR (neat): v = 3429, 2962, 1709, 1630, 1492, 1439, 1375, 1271, 1249, 1203, 1165, 1094, 1036, 999, 871, 747, 704 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₁H₃₀N₂O₄ [M + H]⁺ 495.2206; found 495.2208.

(6bR,14bR,15R,15aS)-ethyl 14b-phenyl-2-tosyl-2,6b,8,9,14,14b,15, 15a-octahydro-1H-indolo[3',2':7,8]indolizino[2,3-c]quinoline-15-

carboxylate (4l). White solid; Yield: (92%); MP 156–158 °C; $R_{\rm f}$ = 0.34 (hexanes/EtOAc 80:20); ¹H NMR (400 MH_z, DMSO-d₆): δ = 9.94 (s, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 6.8 Hz, 1H), 7.3–7.17 (comp, 10H), 7.13 (d, *J* = 8.4 Hz, 2H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.86 (t, *J* = 7.4 Hz, 1H), 4.9 (dd, *J* = 4.0 Hz, 1H), 3.93 (q, *J* = 3.6 Hz, 1H), 3.74–3.77 (m, 1H), 3.61 (d, *J* = 9.2 Hz, 1H), 3.54 (d, *J* = 12.4 Hz, 1H), 3.38 (d, *J* = 12.4 Hz, 1H), 2.37 (app d, *J* = 11.2 Hz, 1H), 2.22 (s, 3H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MH_z, DMSO-d₆): δ = 172.2, 147.8, 143.7, 136.7, 136.6, 135.7, 133.1, 129.5, 129.0, 128.5, 127.4, 127.3, 127.2, 126.2, 126.1, 125.1, 124.9, 122.0, 119.3, 118.6, 110.7, 75.0, 64.1, 61.3, 59.4, 50.8, 41.2, 39.0, 21.5, 21.6, 14.0; IR (neat): v = 3410, 2940, 1716, 1594, 1483, 1448, 1352, 1266, 1163, 1090, 1074, 1046, 1026, 1010, 954, 888 cm⁻¹; HRMS-(ESI-TOF): m/z.calcd for C₃₇H₃₅N₃O₄S [M + H]⁺ 618.2348; found 618.2327.

Acknowledgements

KSR thanks DST, Indo-Korea (grant No. INT/Korea/dated 13.09.2011) and DST-Fastrack, New Delhi (grant No. SERB/F/5061/2013-14 dated 31-10-2013)for financial support is gratefully acknowledged. We also thank NMR Facility, Institute of Excellence (IOE), University of Mysore, Manasagangotri, Mysuru-570006, India for spectral data.

References

- (a) H. M. L. Davies, Angew. Chem., Int. Ed., 2006, 45, 6422; (b)
 K. Godula and D. Sames, Science., 2006, 312, 67; (c) D.
 Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007, 107, 174; (d) H. M. L. Davies and J. R.Manning, Nature., 2008, 451, 417; (e) X. Chen, K. M. Engle, D. H.Wang and J. Q. Yu, Angew.
 Chem. Int. Ed., 2009, 48, 5094; (f) X. H. Cai, and B. Xie, Synthesis., 2015, 47(6), 737.
- G. Rouquet and N. Chatani, Angew. Chem., Int. Ed., 2013, 52, 11726.
- General reviews on 1,3-dipolar cycloadditions of azomethine ylides: (a) Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; A. Padwa and W. H. Pearson, Eds.; Wiley: Hoboken, NJ, 2003; (b) K. V. Gothelf and K. A. Jorgensen, Chem. Rev., 1998, 98, 863.
- (a) P. Wade, B. M. Trost, I. Flemming, *Comprehensive Organic Synthesis*, Eds. Pergamon Press: Oxford., 1991, 4, 1111.

- (a) A. Padwa, *1,3-Dipolar Cycloaddition Chemistry*, Wiley, New York, N. Y., 1984, **1**; (b) I. Coldham and R. Hufton, *Chem. Rev.*, 2005, **105**, 2765; (c) G. Pandey, P. Banerjee and S. R. Gadre, *Chem. Rev.*, 2006, **106**, 4484; (d) T. M. V. D. Pinho Melo, *Eur. J. Org. Chem.*, 2006, 2873. (e) M. Bonin, A. Chauveau and L. Micouin, *Synlett.*, 2006, 2349; (f) L. M. Stanley and M. P. Sibi, *Chem. Rev.*, 2008, **108**, 2887; (g) M. Nyerges, J. Toth and P. W. Groundwater, *Synlett.*, 2008, 1269; (h) M. Pineiro and T. M. V. D. Pinho e Melo, *Eur. J. Org. Chem.*, 2009, 5287; (i) O. Anac and F. S. Gungor, *Tetrahedron.*, 2010, **66**, 5931; (j) J. Adrio and J. C. Carretero, *Chem. Commun.*, 2011, **47**, 6784.
- Subramaniyan, G. Jayashankaran, J. Durga, R. Manian and R. S. Raghunathan, *Synlett.*, 2005, 1167.
- (a) P. N. Confalone and E. M. Huie, J. Am. Chem. Soc., 1984, 7. 106, 7175; (b) C. Zhang, S. Murarka and D. Seidel, J. Org. Chem., 2009, 74, 419; (c) S. Murarka, C. Zhang, M. D. Konieczynska and D. Seidel, Org. Lett., 2009, 11, 129; (d) S. Murarka, I. Deb, C. Zhang and D. Seidel, J. Am. Chem. Soc., 2009, 131, 13226; (e) M. C. Haibach, I. Deb, C. K. De and D. Seidel, J. Am. Chem. Soc., 2011, 133, 2100; (f) K. Mori, K. Ehara, K. Kurihara and T. Akiyama, J. Am. Chem. Soc., 2011, 133, 6166; (g) J. Barluenga, M. Fananas-Mastral, A. Fernandez and F. Aznar, Eur. J. Org. Chem., 2011, 1961; (h) G. H. Zhou, F. Liu and J. L. Zhang, Chem. - Eur. J., 2011, 17, 3101; (i) C. L. Jarvis, M. T. Richers, M. Breugst, K. N. Houk and D. Seidel. Org. Lett., 2014, 16, 3556; (j) M. Richers, T. Martin, Breugst, B. A. Yu. Platonova, Ullrich, A. Dieckmann, K. N. Houk and D. Seidel, J. Am. Chem. Soc., 2014, 136(16), 6123.
- (a) S. I. Murahashi, Angew. Chem., Int. Ed. Engl., 1995, 34, 2443; (b) K. R. Campos, Chem. Soc. Rev., 2007, 36, 1069; (c) C. J. Li, Acc. Chem. Res., 2009, 42, 335; (d) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer and O. Baudoin, Chem. Eur. J., 2010, 16, 2654; (e) K. M. Jones and M. Klussmann, Synlett., 2012, 23, 159; (f) S. C. Pan, Beilstein, J. Org. Chem., 2012, 8, 1374; (g) E. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel and B. U. W. Maes, Chem. Eur. J., 2012, 18, 10092; (h) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (i) B. Peng and N. Maulide, Chem. Eur. J., 2013, 19, 1327; (j) Y. Qin, J. Lv and S. Luo, Tetrahedron Lett., 2014, 55, 551; (k) S. A. Girard, T. Knauber and C. J. Li, Angew. Chem. Int. Ed., 2014, 53, 74; (l) C. V. T. Vo and J. W. Bode, J. Org. Chem., 2014, 79, 2809; (m) M. C. Haibach and D. Seidel, Angew. Chem. Int. Ed., 2014, 53, 5010.
- (a) M. Oda, Y. Fukuchi, S. Ito, N. C. Thanh and S. Kuroda, *Tetrahedron Lett.*, 2007, **48**, 9159; (b) L. Zheng, F. Yang, Q. Dang and X. Bai, *Org. Lett.*, 2008, **10**, 889; (c) N. K. Pahadi, M. Paley, R. Jana, S. R. Waetzig and J. A. Tunge, *J. Am. Chem. Soc.*, 2009, **131**, 16626.
- (a) H. Mao, R. Xu, J. Wan, Z. Jiang, C. Sun and Y. Pan, *Chem. Eur. J.*, 2010, **16**, 13352; (b) X. S. Xue, A. Yu, Y. Cai and J. P. Cheng, *Org. Lett.*, 2011, **13**, 6054; (c) Q.-H. Zheng, W. Meng, G.-J. Jiang and Z. X. Yu, *Org. Lett.*, 2013, **15**, 5928; (d) W. Lin, T. Cao, W. Fan, Y. Han, J. Kuang, H. Luo, B. Miao, X. Tang, Q. Yu, W. Yuan, J. Zhang, C. Zhu and S. Ma, *Angew. Chem. Int. Ed.*,

Journal Name

Journal Name

2014, **53**, 277; (e) S. Haldar, S. Mahato and C. K. Jana, *Asian J. Org. Chem.*, 2014, **3**, 44.

- 11. K. Mantelingu, Y. Lin, and D. Seidel, *Org. Lett.*, 2014, **16**, 5910.
- (a) K. Mantelingu, B. A. Reddy, V. Swaminathan, A. H. Kishore, N. B. Siddappa, G. V. Kumar, G. N. Nagashankar, S. Roy, P. P Sadhale, U. Ranga and T. K. Kundu, *Chem. Biol.*, 2007, **14**, 645; (b) G. S. Lingaraju, T. R. Swaroop, A. C. Vinayaka, K. S. Sharath Kumar, M. P. Sadashiva and K. S. Rangappa, *Synthesis.*, 2012, **44**, 1373.
- (a) G. M. Raghavendra, A. B. Ramesha, C. N. Revanna, K. N Nandeesh, K Mantelingu and K. S. Rangappa, *Tetrahedron Lett.*, 2011, **52**, 5571; (b) A. B. Ramesha, G. M. Raghavendra, K. N. Nandeesh, K. S. Rangappa and K. Mantelingu, *Tetrahedron Lett.*, 2013, **54**, 95; (c) S. V. Kumar, S. K. Yadav, B. Raghava, B. Saraiah, H. Ila, K. S. Rangappa and A. Hazra, *J. Org. Chem.*, 2013, **78**, 4960; (d) B. Raghava, G. Parameshwarappa, A. Acharya, T. R. Swaroop, K. S. Rangappa and H. Ila, *E. J. Org. Chem.*, 2014, **(9)**, 1882.
- (a) A. C. Vinayaka, M. P. Sadashiva, X. Wu, S. S. Biryukov, J. A. Stoute, K. S. Rangappa and D. Channe Gowda, *Org. Biomol. Chem.*, 2014, **12**, 8555; (b) R. Girish, K. S. Sharath Kumar, M. Umashankar, N. K. Lokanath, K. S. Rangappa and S. Shashikanth, *RSC Adv.*, 2014, **4**, 55800.
- N. C. Sandhya, K. N. Nandeesh, K. S. Rangappa and S. Ananda, *RSC Adv.*, 2015, 5, 29939.

Graphical abstract

Highly Diastereoselective Synthesis of Polycyclic Amines via-Redox Neutral C-H Functionalization

Chottanahalli. S. Pavan Kumar,^{1#} Kachigere. B. Harsha,^{1#} Nagarakere C. Sandhaya.#[†] Ajjalli. B. Ramesha,[#] Kempegowda Mantelingu,[#]* Kanchugarakopal. S. Rangappa[#]*

Abstarct

Construction of polycyclic amines via C-H functionalization and 3+2 cycloaddition with high diastereoselectivities was achieved under mild conditions.

Supplementary material

Highly Diastereoselective Synthesis of Polycyclic Amines via-Redox Neutral C-H Functionalization

New Journal of Chemistry

Chottanahalli. S. Pavan Kumar,^{a#} Kachigere. B. Harsha,^{a#} Nagarakere. C. Sandhaya,^a Ajjalli. B. Ramesha,^a Kempegowda Mantelingu,^{a*} and Kanchugarakoppal. S. Rangappa,^{a*}

[#]DOS in Chemistry, University of Mysore, Manasagangotri, Mysuru-06, India

Contents.

1.	X-ray crystallographic data (experimental and tables)	1-11
2.	The ¹ H and ¹³ C NMR Spectra of 3 (a-p) and ORTEP of 3c and 3p	12-46
3.	The ¹ H and ¹³ C NMR Spectra of 4 (a-l) and ORTEP of 4 c	47-70

Date: 01-07-2015

Crystallographic Data Experimental

Single crystals of suitable dimensions were chosen carefully for X-ray diffraction studies. The X-intensity data were collected at a temperature of 293(2) K on a Bruker Proteum2 CCD diffractometer equipped with an X-ray generator operating at 45 kV and 10 mA, using CuK_a radiation of wavelength 1.54178 Å. Data were collected for 24 frames per set with different settings of φ (0° and 90°), keeping the scan width of 0.5°, exposure time of 2 s, the sample to detector distance of 45.10 mm and 20 value at 46.6°. The complete data sets were processed using *SAINT PLUS*.¹ The structures were solved by direct methods and refined by full-matrix least squares method on F^2 using *SHELXS* and *SHELXL* programs². The geometrical calculations were carried out using the program *PLATON*.³ The molecular and packing diagrams were generated using the software *MERCURY*.⁴ The details of the crystal structure and data refinement are given in Table 1. The list of bond lengths and bond angles of the non-hydrogen atoms are given in Table 4 and Table 5 respectively. Figures **3c**, **3p and 4c** represent the ORTEP of the molecule with thermal ellipsoids drawn at 50% probability.

References

- (1). Bruker, (2012). SAINT PLUS, Bruker AXS Inc., Madison, Wisconsin, USA.
- (2). G. M. Sheldrick, Acta. Cryst., 2008, A64, 112.
- (3). A. L. Spek, Acta. Cryst., A46, 1990, C34.

(4). C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock,
L. Rodriguez-Monge, R. Taylor, J. van de Streek, and P.A.Wood, *J. Appl. Cryst.*, 2008,
41, 466.

Empirical formula	$C_{30} H_{28} Br_2 NO_5$
Formula weight	642.35
Temperature	296(2) K
Wavelength	1.54178 Å
θ range for above	3.50° to 64.52°
Crystal system	Triclinic
Space group	P − 1
Cell dimensions	
a = 9.9779(11) Å	b = 11.5105(12) Å $c = 13.4027(14) Å$
$\alpha = 91.472(6)^{\circ}$	$\beta = 107.929(6)^{\circ}$ $\gamma = 109.296(6)^{\circ}$
Volume	1368.3(3) Å ³
Z	2
Density(calculated)	$1.559 \mathrm{Mg}\mathrm{m}^{-3}$
Absorption coefficient	$4.094 \mathrm{mm}^{-1}$
F ₀₀₀	650
Crystal size	$0.25 \times 0.25 \times 0.25$ mm
θ range for data collection	3.50° to 64.52°
Index ranges	$-11 \le h \le 11$
	$-13 \le k \le 13$
	$-15 \le l \le 14$
Reflections collected	13269
Independent reflections	4454 [$R_{int} = 0.0522$]
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameter	rs 4454 / 0 / 346
Goodness-of-fit on F ²	1.041
Final $[I > 2\sigma(I)]$	R1 = 0.0609, wR2 = 0.1680
R indices (all data)	R1 = 0.0758, wR2 = 0.1850
Largest diff. peak and hole	0.591 and $-0.556 \text{ e} \text{\AA}^{-3}$

Table1:Crystal data and structure refinement details 3c

Atom	n X	У	Z	U_{eq}
Br1	0.81469(9)	0.24281(7)	0.25466(4)	0.0768(3)
C2	0.9232(6)	0.2883(5)	0.4022(4)	0.0523(12)
C3	1.0708(7)	0.2946(5)	0.4393(4)	0.0634(14)
C4	1.1500(6)	0.3276(6)	0.5467(4)	0.0648(15)
C5	1.0816(6)	0.3531(5)	0.6163(4)	0.0530(12)
O6	1.1715(4)	0.3848(4)	0.7209(3)	0.0685(11)
C7	1.1134(5)	0.4155(5)	0.7999(4)	0.0550(12)
C8	0.9463(5)	0.3471(4)	0.7668(3)	0.0411(10)
C9	0.8620(5)	0.3793(4)	0.8337(3)	0.0395(9)
C10	0.7043(5)	0.3737(4)	0.7478(3)	0.0363(9)
C11	0.5649(5)	0.2959(4)	0.7720(3)	0.0384(9)
C12	0.5438(5)	0.3310(4)	0.8646(3)	0.0436(10)
C13	0.4155(6)	0.2724(5)	0.8871(4)	0.0493(11)
C14	0.2980(6)	0.1749(5)	0.8144(4)	0.0523(12)
C15	0.3190(6)	0.1352(5)	0.7238(4)	0.0528(12)
C16	0.4533(5)	0.1946(4)	0.7024(3)	0.0432(10)
C17	0.4746(5)	0.1495(4)	0.6037(4)	0.0485(11)
C18	0.6410(5)	0.1900(4)	0.6187(3)	0.0415(10)
N19	0.7070(4)	0.3276(3)	0.6431(2)	0.0347(7)
C20	0.8702(5)	0.3800(4)	0.6594(3)	0.0373(9)
C21	0.9318(5)	0.3465(4)	0.5785(3)	0.0405(10)
C22	0.8540(5)	0.3154(4)	0.4701(3)	0.0454(10)
C23	0.6951(5)	0.5039(4)	0.7387(3)	0.0342(9)
C24	0.7783(5)	0.6081(4)	0.8140(3)	0.0444(10)
C25	0.7552(6)	0.7196(4)	0.8024(4)	0.0519(12)
C26	0.6462(5)	0.7287(4)	0.7135(3)	0.0433(10)
C27	0.5602(6)	0.6269(4)	0.6373(3)	0.0491(11)
C28	0.5855(6)	0.5161(4)	0.6496(3)	0.0455(10)
Br29	0.60863(7)	0.87909(5)	0.69793(4)	0.0650(3)
C30	0.8472(5)	0.3015(4)	0.9213(3)	0.0441(10)
O31	0.8673(4)	0.3421(3)	1.0093(2)	0.0598(9)
O32	0.8152(5)	0.1812(3)	0.8903(3)	0.0694(11)
C33	0.8062(10)	0.0976(7)	0.9713(5)	0.090(2)
C34	0.6577(12)	0.0543(8)	0.9739(6)	0.112(3)
O35	0.1704(4)	0.1259(4)	0.8383(3)	0.0742(12)
C36	0.0430(7)	0.0430(6)	0.7606(6)	0.086(2)
O37	0.3898(4)	0.3019(4)	0.9775(3)	0.0642(10)
C38	0.5202(7)	0.3633(7)	1.0677(4)	0.0798(19)

Table 2: Atomic coordinates and equivalent thermal parameters of the non-hydrogen atoms.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	0.1042(6)	0.0965(5)	0.0485(4)	0.0537(4)	0.0316(4)	0.0129(3)
C2	0.071(4)	0.054(3)	0.052(3)	0.034(3)	0.035(3)	0.020(2)
C3	0.075(4)	0.073(3)	0.068(3)	0.038(3)	0.045(3)	0.022(3)
C4	0.045(3)	0.093(4)	0.074(3)	0.037(3)	0.031(3)	0.022(3)
C5	0.047(3)	0.061(3)	0.059(3)	0.024(2)	0.021(2)	0.020(2)
O6	0.039(2)	0.111(3)	0.060(2)	0.034(2)	0.0135(17)	0.014(2)
C7	0.035(3)	0.072(3)	0.051(3)	0.018(2)	0.008(2)	0.002(2)
C8	0.042(3)	0.041(2)	0.041(2)	0.0184(19)	0.011(2)	0.0079(17)
C9	0.039(2)	0.037(2)	0.039(2)	0.0138(18)	0.0100(19)	0.0051(17)
C10	0.038(2)	0.038(2)	0.0328(19)	0.0143(18)	0.0104(18)	0.0040(16)
C11	0.038(2)	0.033(2)	0.044(2)	0.0133(18)	0.0138(19)	0.0105(17)
C12	0.043(3)	0.043(2)	0.048(2)	0.016(2)	0.017(2)	0.0091(18)
C13	0.049(3)	0.058(3)	0.052(3)	0.023(2)	0.025(2)	0.017(2)
C14	0.045(3)	0.048(3)	0.071(3)	0.013(2)	0.031(3)	0.016(2)
C15	0.038(3)	0.045(2)	0.066(3)	0.004(2)	0.017(2)	0.004(2)
C16	0.040(3)	0.038(2)	0.053(2)	0.0134(19)	0.018(2)	0.0077(18)
C17	0.047(3)	0.041(2)	0.050(2)	0.008(2)	0.015(2)	-0.0030(19)
C18	0.043(3)	0.035(2)	0.046(2)	0.0115(18)	0.016(2)	-0.0005(17)
N19	0.0347(19)	0.0312(16)	0.0377(17)	0.0108(14)	0.0124(15)	0.0030(13)
C20	0.032(2)	0.038(2)	0.042(2)	0.0120(17)	0.0118(19)	0.0073(16)
C21	0.036(2)	0.043(2)	0.049(2)	0.0183(19)	0.018(2)	0.0132(18)
C22	0.046(3)	0.051(2)	0.047(2)	0.024(2)	0.019(2)	0.0135(19)
C23	0.035(2)	0.034(2)	0.0357(19)	0.0113(17)	0.0150(18)	0.0051(15)
C24	0.043(3)	0.040(2)	0.043(2)	0.0184(19)	0.001(2)	0.0016(18)
C25	0.048(3)	0.038(2)	0.056(3)	0.010(2)	0.005(2)	-0.0086(19)
C26	0.046(3)	0.040(2)	0.050(2)	0.019(2)	0.020(2)	0.0073(18)
C27	0.051(3)	0.049(3)	0.044(2)	0.024(2)	0.005(2)	0.0047(19)
C28	0.047(3)	0.044(2)	0.042(2)	0.019(2)	0.007(2)	-0.0032(18)
Br29	0.0777(5)	0.0432(3)	0.0732(4)	0.0313(3)	0.0134(3)	0.0066(2)
C30	0.048(3)	0.049(2)	0.037(2)	0.020(2)	0.013(2)	0.0077(18)
O31	0.071(2)	0.064(2)	0.0369(17)	0.0229(19)	0.0096(16)	0.0032(15)
O32	0.121(3)	0.0490(19)	0.0499(18)	0.035(2)	0.039(2)	0.0185(15)
C33	0.138(7)	0.071(4)	0.075(4)	0.034(4)	0.056(4)	0.030(3)
C34	0.142(8)	0.100(6)	0.092(5)	0.034(5)	0.043(5)	0.039(5)
O35	0.050(2)	0.077(3)	0.094(3)	0.006(2)	0.041(2)	0.012(2)
C36	0.058(4)	0.062(4)	0.142(6)	0.009(3)	0.051(4)	0.006(4)
O37	0.054(2)	0.089(3)	0.058(2)	0.0251(19)	0.0317(18)	0.0117(18)
C38	0.077(4)	0.120(6)	0.052(3)	0.038(4)	0.031(3)	0.012(3)

Table 3: Anisotropic thermal parameters of the non-hydrogen atoms.

Atoms	Length	Atoms	Length
Br1-C2	1.900(5)	C14-C15	1.385(7)
C2-C3	1.377(8)	C15-C16	1.409(7)
C2-C22	1.384(6)	C16-C17	1.508(6)
C3-C4	1.384(8)	C17-C18	1.514(6)
C4-C5	1.389(7)	C18-N19	1.483(5)
C5-O6	1.373(6)	N19-C20	1.480(5)
C5-C21	1.398(7)	C20-C21	1.498(6)
O6-C7	1.441(6)	C21-C22	1.392(6)
C7-C8	1.502(7)	C23-C24	1.382(6)
C8-C9	1.517(6)	C23-C28	1.396(6)
C8-C20	1.530(6)	C24-C25	1.381(7)
C9-C30	1.510(6)	C25-C26	1.377(7)
C9-C10	1.618(6)	C26-C27	1.374(6)
C10-N19	1.499(5)	C26-Br29	1.892(4)
C10-C11	1.520(6)	C27-C28	1.384(7)
C10-C23	1.538(6)	C30-O31	1.189(5)
C11-C16	1.385(6)	C30-O32	1.338(6)
C11-C12	1.393(6)	O32-C33	1.473(6)
C12-C13	1.365(6)	C33-C34	1.411(13)
C13-O37	1.369(6)	O35-C36	1.395(7)
C13-C14	1.398(7)	O37-C38	1.426(7)
C14-O35	1.352(6)		

Table 4: Bond lengths (Å).

Atoms	Angle	Atoms	Angle
C3-C2-C22	121.2(5)	C11-C16-C15	119.5(4)
C3-C2-Br1	118.9(4)	C11-C16-C17	120.1(4)
C22-C2-Br1	119.9(4)	C15-C16-C17	120.4(4)
C2-C3-C4	119.0(5)	C16-C17-C18	109.9(4)
C3-C4-C5	120.7(5)	N19-C18-C17	108.4(4)
O6-C5-C4	115.3(5)	C20-N19-C18	114.0(3)
O6-C5-C21	124.3(4)	C20-N19-C10	101.0(3)
C4-C5-C21	120.3(5)	C18-N19-C10	112.1(3)
C5-O6-C7	120.2(4)	N19-C20-C21	120.9(4)
O6-C7-C8	110.3(4)	N19-C20-C8	104.9(3)
C7-C8-C9	117.9(4)	C21-C20-C8	110.1(4)
C7-C8-C20	109.0(4)	C22-C21-C5	118.6(4)
C9-C8-C20	101.7(3)	C22-C21-C20	125.2(4)
C30-C9-C8	115.0(4)	C5-C21-C20	116.2(4)
C30-C9-C10	115.1(3)	C2-C22-C21	120.3(5)
C8-C9-C10	104.0(3)	C24-C23-C28	116.9(4)
N19-C10-C11	112.8(3)	C24-C23-C10	126.0(4)
N19-C10-C23	106.2(3)	C28-C23-C10	117.0(4)
C11-C10-C23	106.2(3)	C25-C24-C23	122.1(4)
N19-C10-C9	105.4(3)	C26-C25-C24	119.7(4)
C11-C10-C9	114.4(3)	C27-C26-C25	120.0(4)
C23-C10-C9	111.6(3)	C27-C26-Br29	119.5(4)
C16-C11-C12	118.3(4)	C25-C26-Br29	120.4(3)
C16-C11-C10	122.4(4)	C26-C27-C28	119.6(4)
C12-C11-C10	119.2(4)	C27-C28-C23	121.7(4)
C13-C12-C11	122.6(4)	O31-C30-O32	123.3(4)
C12-C13-O37	125.0(5)	O31-C30-C9	124.4(4)
C12-C13-C14	119.6(4)	O32-C30-C9	112.3(3)
O37-C13-C14	115.4(4)	C30-O32-C33	116.8(4)
O35-C14-C15	124.6(5)	C34-C33-O32	109.0(7)
O35-C14-C13	116.7(4)	C14-O35-C36	118.3(5)
C15-C14-C13	118.7(4)	C13-O37-C38	116.2(4)
C14-C15-C16	121.1(5)		

Table 5: Bond angles (°).

Table 1: Crystal data and structure refinement details **3P**.

Empirical formula		$C_{35}H_{36}N_2O_6S$	2
Formula weight		644.78	
Temperature		296((2) K
Wavelength		1.54178 K eflns	s. for
cell determination 4	4501		
θ range for above		2.62° to 64.92	° Crystal
system	Monocl	inic Space grou	р
P 21/c			
Cell dimensions			
a = 17.5740(17) Å	b = 8.9	640(9) Å	c = 20.843(2) Å
$\alpha = 90.00^{\circ}$	$\beta = 106$	5.682(4)°	$\gamma = 90.00^{\circ}$
Volume		3145.3(5) Å ³	
Z		4	
Density(calculated)		$1.362 {\rm Mg} {\rm m}^{-3}$	
Absorption coefficient		$1.943{\rm mm^{-1}}$	
F ₀₀₀		1360	
Crystal size		0.27 imes 0.27 imes	0.27 mm
θ range for data collection		2.62° to 64.92	0
Index ranges		$-20 \le h \le 20$	
		$-10 \leq k$	≤ 10
		$-24 \le 1 \le$	≤ 20
Reflections collected		14873	
Independent reflections		5126 $[R_{int} = 0]$	0.0399]
Absorption correction		multi-scan	
Refinement method		Full matrix le	ast-squares on F ²
Data / restraints / parameter	rs	5126 / 0 / 410)
Goodness-of-fit on F ²		1.078	
Final $[I > 2\sigma(I)]$		R1 = 0.0545,	wR2 = 0.1671
R indices (all data)		R1 = 0.0596,	wR2 = 0.1727
Largest diff. peak and hole		0.752 and -0.	630 е Å ⁻³

Atoms	Length	Atoms	Length
S36-O38	1.427(2)	C9-C10	1.532(3)
S36-O37	1.428(3)	C4-C5	1.404(3)
S36-N14	1.670(2)	C4-C3	1.501(3)
S36-C39	1.757(3)	C7-C8	1.378(3)
S26-C25	1.690(3)	C7-C6	1.407(4)
S26-C22	1.704(2)	C21-C20	1.503(3)
O33-C31	1.337(3)	C21-C182	1.504(3)
O33-C34	1.453(3)	C20-C19	1.388(4)
O27-C7	1.374(3)	C20-C15	1.406(4)
O27-C28	1.413(4)	C15-C16	1.404(4)
O29-C6	1.374(3)	C12-C13	1.516(3)
O29-C30	1.421(4)	C3-C2	1.513(3)
O32-C31	1.199(3)	C5-C6	1.373(4)
N1-C2	1.470(3)	C19-C18	1.384(4)
N1-C21	1.481(3)	C16-C17	1.375(5)
N1-C10	1.495(3)	C39-C44	1.389(5)
N14-C15	1.441(4)	C39-C40	1.391(4)
N14-C13	1.488(3)	C18-C17	1.372(5)
C23-C24	1.468(4)	C24-C25	1.343(5)
C23-C22	1.489(4)	C40-C41	1.373(4)
C22-C10	1.520(3)	C41-C42	1.383(5)
C11-C31	1.516(3)	C42-C43	1.390(4)
C11-C12	1.525(3)	C42-C45	1.504(5)
C11-C10	1.631(3)	C44-C43	1.364(5)
C9-C4	1.378(4)	C34-C35	1.476(5)
C9-C8	1.405(3)		

Table 2: Bond lengths (Å).

Empirical formula	$C_{30} H_{26} BrClN_2 O_3$
Formula weight	577.89
Temperature	296(2) K
Wavelength	1.54178 Å
Reflns. for cell determination	n 4104
θ range for above	6.72° to 64.51°
Crystal system	Triclinic
Space group	P − 1
Cell dimensions	
a = 9.5848(7) Å	b = 11.0031(8) Å $c = 14.0353(11) Å$
$\alpha = 87.764(2)^{\circ}$	$\beta = 70.878(2)^{\circ}$ $\gamma = 65.624(2)^{\circ}$
Volume	1265.88(16) Å ³
Z	2
Density(calculated)	$1.516 \mathrm{Mg}\mathrm{m}^{-3}$
Absorption coefficient	$3.478{ m mm^{-1}}$
F ₀₀₀	592
Crystal size	$0.25 \times 0.25 \times 0.25$ mm
θ range for data collection	6.72° to 64.51°
Index ranges	$-11 \le h \le 11$
	$-12 \le k \le 12$
	$-16 \le l \le 16$
Reflections collected	14548
Independent reflections	4174 [$\mathbf{R}_{int} = 0.0313$]
Absorption correction	multi-scan
Refinement method	Full matrix least-squares on F ²
Data / restraints / paramete	ors 4174 / 0 / 335
Goodness-of-fit on F ²	1.103
Final $[I > 2\sigma(I)]$	R1 = 0.0331, wR2 = 0.0959
R indices (all data)	R1 = 0.0335, wR2 = 0.0965
Largest diff. peak and hole	0.376 and $-0.584 \text{ e} \text{\AA}^{-3}$

Table 1: Crystal data and structure refinement details 4C.

Atoms	Length	Atoms	Length
Br1-C2	1.904(2)	C15-C16	1.406(3)
C2-C25	1.381(3)	C16-C17	1.384(3)
C2-C3	1.387(3)	C17-C18	1.402(3)
C3-C4	1.376(3)	C18-C19	1.435(3)
C4-C5	1.390(3)	C19-C20	1.495(3)
C5-O6	1.369(3)	C20-C21	1.532(3)
C5-C24	1.403(3)	C21-N22	1.484(2)
O6-C7	1.443(3)	N22-C23	1.478(3)
C7-C8	1.516(3)	C23-C24	1.499(3)
C8-C23	1.523(3)	C24-C25	1.395(3)
C8-C9	1.532(3)	C26-C31	1.387(3)
C9-C33	1.514(3)	C26-C27	1.397(3)
C9-C10	1.614(3)	C27-C28	1.386(3)
C10-N22	1.493(3)	C28-C29	1.387(3)
C10-C11	1.504(3)	C29-C30	1.381(3)
C10-C26	1.546(3)	C29-Cl32	1.741(2)
C11-C19	1.360(3)	C30-C31	1.395(3)
C11-N12	1.378(3)	C33-O34	1.209(3)
N12-C13	1.378(3)	C33-O35	1.334(2)
C13-C14	1.392(3)	O35-C36	1.456(2)
C13-C18	1.420(3)	C36-C37	1.506(3)
C14-C15	1.385(3)		

Table 2: Bond lengths (Å).

Atoms	Angle	Atoms	Angle
C25-C2-C3	121.0(2)	C17-C18-C13	118.72(19)
C25-C2-Br1	120.01(17)	C17-C18-C19	134.58(19)
C3-C2-Br1	118.95(17)	C13-C18-C19	106.68(17)
C4-C3-C2	119.3(2)	C11-C19-C18	106.57(18)
C3-C4-C5	120.7(2)	C11-C19-C20	121.23(18)
O6-C5-C4	115.67(19)	C18-C19-C20	132.19(18)
O6-C5-C24	124.4(2)	C19-C20-C21	108.48(16)
C4-C5-C24	119.9(2)	N22-C21-C20	109.64(16)
C5-O6-C7	118.03(16)	C23-N22-C21	115.14(15)
O6-C7-C8	108.07(17)	C23-N22-C10	100.67(14)
C7-C8-C23	109.03(16)	C21-N22-C10	114.62(15)
C7-C8-C9	120.24(17)	N22-C23-C24	120.64(17)
C23-C8-C9	101.80(16)	N22-C23-C8	104.31(15)
C33-C9-C8	111.98(16)	C24-C23-C8	110.13(16)
C33-C9-C10	114.35(15)	C25-C24-C5	118.84(19)
C8-C9-C10	102.51(15)	C25-C24-C23	123.36(19)
N22-C10-C11	109.88(16)	C5-C24-C23	117.67(18)
N22-C10-C26	107.57(15)	C2-C25-C24	120.1(2)
C11-C10-C26	105.35(15)	C31-C26-C27	118.56(18)
N22-C10-C9	106.39(15)	C31-C26-C10	123.30(17)
C11-C10-C9	115.43(15)	C27-C26-C10	117.75(17)
C26-C10-C9	112.01(15)	C28-C27-C26	121.25(19)
C19-C11-N12	110.83(17)	C27-C28-C29	119.01(19)
C19-C11-C10	125.37(18)	C30-C29-C28	120.90(18)
N12-C11-C10	123.40(17)	C30-C29-Cl32	120.10(16)
C11-N12-C13	108.13(16)	C28-C29-Cl32	118.99(16)
N12-C13-C14	129.87(19)	C29-C30-C31	119.46(19)
N12-C13-C18	107.78(17)	C26-C31-C30	120.78(19)
C14-C13-C18	122.35(19)	O34-C33-O35	123.99(18)
C15-C14-C13	117.6(2)	O34-C33-C9	124.55(18)
C14-C15-C16	121.1(2)	O35-C33-C9	111.45(16)
C17-C16-C15	121.2(2)	C33-O35-C36	118.01(15)
C16-C17-C18	119.00(19)	O35-C36-C37	110.88(16)

Table 3: Bond angles (°).

Ν н

New Journal of Chemistry

Br

New Journal of Chemistry

Page 29 of 82

¹³C NMR of **3c** in CDCI₃

New Journal of Chemistry

ORTEP diagram of **3c**

Br√

¹H NMR of **3d** in CDCl₃

OMe

-p-Br-Ph Ν H, ′′′′′CO₂Et 3d 7.410 7.249 7.234 3.815 3.739 3.029 6.879 6.709 6.688 6.556 6.534 4.598 4.589 .573 4.563 4.048 3.877 3.868 3.859 3.850 3.841 3.832 3.797 3.783 3.757 3.729 3.710 3.660 3.343 3.319 2.797 1.076 1.058 1.041 7.711 7.431 7.211 6.581 2.757 7 ↓↓↓↓↓ 0.01 0 3.18 **1** 10 9 8 6 5 2 0 ppm3 4 1.11 $1.01 \pm$ 1.02 1.03 1.10 6.17 0.83 2.02 2.99 2.94

¹³C NMR of **3d** in CDCl₃

20

CI

 ^1H NMR of 3e in CDCl_3

OMe

Page 35 of 82

¹H NMR of **3f** in CDCl₃

13 C NMR of **3f** in CDCI₃

24

¹³C NMR of **3g in** CDCl₃

Br

¹³C NMR of **3hin** CDCl₃

Br⊳

Br∖

¹H NMR of **3i** in CDCl₃

New Journal of Chemistry Accepted Manuscript

¹³C NMR of **3i** in CDCl₃

¹H NMR of **3j** in CDCl₃

New Journal of Chemistry

¹H NMR of **3k** in CDCl₃

New Journal of Chemistry Accepted Manuscript

36

38

New Journal of Chemistry Accepted Manuscript

F

¹H NMR of 3p in CDCl₃

OMe

OMe

ORTEP Diagram Of 3p

Br√

ORTEP diagram of **4**c

$^{\rm 13}{\rm C}$ NMR of ${\rm 4d}$ in DMSO-d_6

New Journal of Chemistry Accepted Manuscript

Br√

Br₊

Br

Br

Page 73 of 82

CI

ĆI

Н

ĊI

Ô

Ή

C

64

Н

ċι

CL

Н

New Journal of Chemistry

New Journal of Chemistry Accepted Manuscript

New Journal of Chemistry

¹³C NMR of **4I** in CDCl₃

н

Τ́s

NH -Ph

Ή