This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Physical Properties Exploration of Highly Oriented V\textsubscript{2}O\textsubscript{5} Thin Films Prepared by Electron Beam Evaporation

Shrividhya Thiagarajana, Mahalingam Thaiyanb and Ravi Ganesan*a

Highly oriented vanadium pentoxide (V\textsubscript{2}O\textsubscript{5}) thin films were grown by electron beam (EB) evaporation on glass substrates at 473 K. V\textsubscript{2}O\textsubscript{5} thin films were coated with various thicknesses (~800-1200 nm) by varying the distance from the source and substrates. Influence of film thickness on its physical properties were deeply studied by various characterization techniques. XRD studies were performed to investigate the structural confirmation and preferential lattice orientation of EB evaporated films. Voigt profile method was used to estimate the microstructural parameters and elaborately discussed its dependency of film thickness. SEM micrographs perceived that the prepared films were nearly homogeneous with densely packed morphology. AFM topographical images depicted that the nanograins on the surface of the films. Raman spectra confirmed the formation of α-V\textsubscript{2}O\textsubscript{5} polymorph without secondary phase formation. From the optical absorption data, the indirect optical band gap E_g was found to be 2.36 eV for higher thickness V\textsubscript{2}O\textsubscript{5} thin film. Optical constants such as refractive index (n), extinction coefficient (k), optical conductivity (σ) and dielectric constants (ε) were evaluated using an approximation protocol developed from well recognized procedures using the data obtained from UV-Vis spectroscopic technique. The luminescence properties variations was observed by photoluminescence (PL) spectroscopy and it has elucidated that the film thickness role on the EB evaporated V\textsubscript{2}O\textsubscript{5} films. The Hall mobility and carrier density were found to increase with film thickness.

Introduction

Transition metal oxides are of great interest because of their wide range of peculiar optical 1, transport 2 and magnetic properties 3 which remain incompletely understood. Strongly correlated transitional metal oxide system exhibiting metal to insulator transition (MIT) is explored in recent past as a fundamental functional materials 4. Among them MIT and Mott-Hubbard behavior of vanadium oxide system which occurs above room temperature (340 K) has attracted many researchers and is investigated in recent past 5. V\textsubscript{2}O\textsubscript{5} has many unusual properties owing to its rich oxidation states (V2+ to V5+) and its coordination geometries yielding remarkable structural arrangements 6. It finds wide range of applications in thermochromic devices like thermal regulators, IR detectors, tagging and labeling due to its negative wide range of applications in thermochromic devices like thermal regulators, IR detectors, tagging and labeling due to its negative differential thermal emittance and hence it is demonstrated as naturally disordered meta material by Mikhail et al 7. The existence of V\textsubscript{2}O\textsubscript{5} octahedral coordination geometry makes it a suitable intercalation/deintercalation host for lighter elements. This gives them reversible and persistent optical, electronic and structural properties that can be employed in electrochromic devices and Li/Na based energy storage devices 8-13. Dietze et al have illustrated the feasibility of using VO\textsubscript{2} as potential candidate for photoconductive devices 14. Apart from these, V\textsubscript{2}O\textsubscript{5} finds applications in sensors 15, actuator16, magnetic applications 17 and fiber optic devices 18. Furthermore, tuning of thickness, morphology and particle size has pronounced effect in altering properties of any material due to enhanced surface to volume ratio and dimension 19. 2D confinement of materials, only not yields good property but also gives possibility for miniaturization of devices 20. Several methods were used for the preparation of V\textsubscript{2}O\textsubscript{5} thin films such as spray pyrolysis 21, RF sputtering 22, electrodeposition 23, pulsed laser deposition 24, chemical methods 25, thermal evaporation 26 etc. Among them, electron beam – physical vapor deposition (EB-PVD) yields high quality, uniform and large scale deposition suitable for constructing device prototypes for various applications in research and industries.

In the present work, V\textsubscript{2}O\textsubscript{5} thin films were deposited by electron beam physical vapor evaporation method at various thicknesses from ≈800 to ≈1200 nm. Various probing tools like Raman spectroscopy, X-ray diffractometer, scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, photoluminescence spectroscopy, UV-Vis spectroscopy and Hall measurements were used to analyze and understand the influence of thickness on the structural, optical, morphological, compositional, luminescence and transport properties of V\textsubscript{2}O\textsubscript{5} thin films at room temperature.

Experimental

The vanadium pentoxide (V\textsubscript{2}O\textsubscript{5}) thin films were deposited by electron beam evaporation technique. Well etched glass substrates were ultrasonically cleaned using isopropyl alcohol for 30 minutes.
The pelletized V$_2$O$_5$ (purity > 99.99%) were taken in graphite crucibles, kept on water-cooled copper hearth of the electron gun, inside the vacuum chamber. The chamber was evacuated to a high vacuum of the order of 10$^{-5}$ mbar using rotary and diffusion pumps. In the electron gun, the electrons were extracted from a dc heated cathode of tungsten filament, by the application of electric field which pass through an anode and deflected through an angle of about 180° by the magnetic field and reach the target material. The surface of V$_2$O$_5$ pellet was scanned by the resultant and deflected electron beam with an accelerating voltage of 5 kV. The vapor phase of the evaporated material were condensed and deposited as thin film layer on the surface of the substrates. The vertical distance was fixed as 12 cm from the source, while the substrates were placed at different horizontal distances from the source to vary the thickness of the films. The detailed substrate position variations are provided in the schematic diagram of fig.1(a). Substrate temperature (T_s) was maintained at 473 K throughout all depositions.

Results and discussion

(a) Structural studies

V$_2$O$_5$ thin films were deposited onto glass substrates with various thicknesses by placing the substrate at different distances from the target using electron beam-physical vapor deposition method. The horizontal distance from the center of the source to the substrate position was varied in both directions and named position as P$_{0_h}$ (center), P$_{0_l}$ (4 cm to right side), P$_{0_r}$ (8 cm to right side), P$_{1_l}$ (4 cm to left side) and P$_{1_r}$ (8 cm to left side). The detailed schematic diagram is presented in fig. 1(a) to reveal the substrate positions in the experiment. In fig. 1(b), the crystal structure is depicted by the geometrical diagram with its characteristics interatomic distance. V$_2$O$_5$ belongs to the orthorhombic structure with Pmmn space group symmetry and D$_{2h}$ point group with the lattice constants a = 11.51 Å, b = 3.56 Å and c = 4.37 Å [JCPDS Card No # 41-1426]. The vanadium atom and the three inequivalent oxygen positions O$_1$ (bridge), O$_2$ (vanadyl) and O$_3$ (chain) are shown together with the bonds between the vanadium and the nearest neighboring oxygen atoms. The linear chain oxygen atoms are linked together with vanadium atoms in the y direction. In the x direction, the vanadium atoms are connected by the bridge oxygen atoms. The bond length of vanadium and oxygen atoms is 1.779 Å (V-O$_1$), 1.878 Å (V-O$_2$(2)) and 2.021 Å (V-O$_3$(1)). The vanadyl oxygens are positioned above and below the vanadium atoms creating the shortest (1.585 Å) and longest (2.785 Å) vanadium-oxygen distances in this structure along the z direction. This structure can be defined as a ladder structure with the legs running along y and the rungs along x described by Atzkern et al. Each vanadium atom and its five nearest neighbours create VO$_x$ pyramids which share their corners within the ladder and their edges between neighbouring ladders. The resulting layers are stacked along the c direction. We would like to remark that actually the vanadium is shifted out of the base plane of the pyramid toward the vanadyl oxygen 27. The film thickness analysis is performed by a stylus profilometer. The measured thickness are ≈840, ≈910, ≈998, ≈1100 and ≈1200 nm for the relative substrate positions of P$_{0_l}$, P$_{1_l}$, P$_{0_r}$, P$_{1_r}$ and P$_{0_h}$, respectively. Ad-atoms nearer to the electron gun source are expected to gain more kinetic energy than that is farther. The surface diffusion of these ad-atoms with the momentum transfer sets off nucleation and growth of V$_2$O$_5$ thin films onto the substrate surface. This growth kinetics results in reduced thickness while moving away from the source 38. The film thickness plays a prominent role in the microstructural and electrical properties of V$_2$O$_5$ matrix.

Raman spectroscopy is known to be a very useful tool for monitoring the structural order-disorder degree at short range and crystallinity of oxide materials. There are 14 atoms per unit cell and hence 42 degrees of freedom corresponding to zone-center modes 31. Baddour et al., demonstrated 3 translational (zero frequencies) and 39 vibrational (optical) irreducible representations using group symmetry analysis. Among them 15 belongs to IR active phonon modes and remaining 21 corresponds to Raman active phonon modes 32. Fig. 2 depicts the micro-Raman spectra of V$_2$O$_5$ thin films with various thicknesses deposited at substrate temperature 473 K (T_s). From the Raman spectra, the prepared film can be assigned to the specific signature of α-V$_2$O$_5$ polymorph 33. The peaks are at lower frequency range of 500-100 cm$^{-1}$ which is hard to predict due to the coupling effect. However, all the frequencies are attributed to the corresponding modes of vibrations as a supporting information in the table S1, which are in good agreement with the earlier reports12,23,34,35. No other peaks representing secondary phases of vanadium and oxygen were observed that ascertainment single phase formation. Also, the absence of peak at 850 cm$^{-1}$ indicated that the films are not hydrated (V$_2$O$_5$.H$_2$O) normally observed in V$_2$O$_5$ 36. The enhanced peak intensity and broadening with increase of film...
thickness manifests the decrease of crystallite size which may be due to lattice-phonon confinement effect 35.

$$D = \frac{0.9 \lambda}{\beta \cos \theta}$$ \hspace{1cm} (1)

where D is crystallite size and β is FWHM. The crystallite size can be precisely altered by varying the substrate position on the substrate holder as given in schematic diagram. The microstrain ‘ϵ’ is evaluated from the equation (2) 39

$$\frac{\beta \cos \theta}{\lambda} = \frac{1}{D} + \frac{2 \sin \theta}{\lambda}$$ \hspace{1cm} (2)

where ‘λ’ is the wavelength of X-ray, ‘D’ is the crystallite size, ‘β’ the FWHM of the predominant orientation and ‘θ’ is Bragg’s angle respectively. The dislocation density ‘δ’ 39 can be defined as the length of dislocation lines per unit volume of the crystal and to be determined from the crystallite size ‘D’ by the relation:

$$\delta = \frac{n}{D^2}$$ \hspace{1cm} (3)

where ‘n’ is a factor, when equal to unity gives minimum dislocation density. The number of crystallites/unit area 39 is calculated using the formula

$$N = \frac{I}{D^3}$$ \hspace{1cm} (4)

where ‘I’ is a thickness of the film. The texture coefficient 39 is calculated from the formula,

$$T_{\alpha}(hk\ell) = \frac{I(hk\ell)}{I_{\alpha}(hk\ell)}$$ \hspace{1cm} (5)

where $I(hk\ell)$ is the measured relative intensity of a plane (hk\ell), $I_{\alpha}(hk\ell)$ is the standard relative intensity of the plane (hk\ell) taken from the JCPDS card, N is the number of reflections.

Stacking fault probability was calculated from the formula,

$$\alpha = \frac{2I^2}{4\sqrt{3}} \left(\frac{\Delta(2\theta)}{\tan \theta} \right)$$ \hspace{1cm} (6)

Table 1 shows the variation of microstructural parameters such as crystallite size, microstrain, dislocation density and number of crystallites for V$_2$O$_5$ thin films. The crystallite sizes of V$_2$O$_5$ thin films are linearly decreased with increase of film thickness. The crystallite size values are found to be 35, 40 and 45 nm for 800 nm thickness V$_2$O$_5$ thin films, respectively. The crystallite size decreases with increase of film thickness due to the quantum confinement effect. The lattice imperfection nature could be decreased due to the crystallite size decrement 40. The evaluated microstrain values are inversely proportional to the crystallite size of the films. This may due to an enhancement of internal microstrain with decrease in crystallite size of the films. The maximum value of microstrain is obtained at 0.025 lines/?m2 for V$_2$O$_5$ thin film deposited at P$_0$ position. An aggregate of distorted crystallites as a measure of the crystallite size and strain could affect the variance of the X-ray diffraction line profiles. It is evident from table 1, the dislocation density values are increased with increase of film thickness. This behavior might be due to increase of microstrain with film thickness enhancement. The maximum value of dislocation density is estimated as 1.01 x 1013 lines/?m2 for V$_2$O$_5$ thin film deposited at P$_0$ position. The decrease of crystallite size is attributed to the increase of the grain boundaries and the amount of defects in the crystallite structure. The increase of dislocation density (\delta) values indicated that the enrichment of dislocation defect in the structure. The number of crystallites value is increased with the increase of thickness due to the detachment of crystallite size as given in the table 1. The substrate...
position highly dominates the deposition rate by the absorption of vaporized particles from the source. The change in stacking fault probability is plotted as a function of thickness in Fig. S1. It may be noted that the stacking fault probability reduces with decrease of crystallite size. This manifests reduced defects at higher thickness. crystallite orientation. The texture coefficient along (001) and (002) planes were calculated and plotted in Fig. 3(c) for V_2O_5 thin films. A sample with randomly oriented crystallite presents T_c (hkl) ≤ 1, while the high value is an indicator of the larger abundance of crystallites oriented at the particular (hkl) plane. The texture coefficient value of predominant peak (001) is found to be 1.72 for higher film thickness. The increase of thickness might have induced the regular arrangement of atoms in the highly textured V_2O_5 film.

(b) Surface properties

Scanning electron microscopy (SEM) is demonstrated to be a unique and versatile method to analyze morphological properties of V_2O_5 films and also to determine the grain size. Fig. S2 (a-e) shows typical SEM micrographs of V_2O_5 thin films deposited at different substrate positions such as P_0, P_1, P_2, P_3, P_4 as indicated in schematic diagram. Fig. S2 shows the smooth surface morphology with the nano-sized grains covered the entire surface of the films. However, films prepared at various substrate positions exhibit strong adherence to the substrates. Also, these films are compact and dense. It is observed that the surface is highly homogenous and is free from pin holes, cracks or voids. No agglomerations are observed on the surface. Such morphology indicates that the films possess good microstructure. The particles are very densely packed and could not be measured from the SEM images. These surface properties have strong effect on the optical properties such as transmittance, absorbance and reflection. There is no other significant variation observed in the SEM micrographs of various thickness prepared V_2O_5 thin films.

Furthermore, the surface topology of V_2O_5 thin films was examined using atomic force microscopy (AFM). Fig. 4 shows the two-dimensional (2D) and three-dimensional (3D) topographical images of V_2O_5 thin films deposited at various film thicknesses. The amorphous nature topology of the surface is exhibited by lower thickness V_2O_5 thin film deposited at P_{12} position. Also, at some places presence of patchy type of grains demonstrated the agglomeration process. The displayed AFM images are an obvious evidence to understand surface properties of V_2O_5 films prepared at various thicknesses. The needle shaped crystalline topology of the film is enlightened by 2D and 3D AFM image of V_2O_5 thin film deposited at higher thicknesses by keeping the substrates at P_{12} position. 3D images confirmed the grain growth with uniform heights and are highly oriented in particular direction, which is consistent with the XRD and Raman results. The mixture of needle shaped grains with slight amorphous signature is observed in topographical 2D and 3D image of V_2O_5 thin film with ≈ 900 nm thickness deposited at P_{12} position. This V_2O_5 thin film exhibits higher thickness than the one deposited at P_{12} position. The nano level grains with pin holes and voids are observed in 2D image of P_{12}. The smaller grains are joined together to form bunches of grains in the surface of the film. The AFM images are correlated with XRD patterns and also indicate a columnar growth of V_2O_5 films. The highly dense state of topography is observed with an inhomogeneous distribution of grains on the surface as shown in Fig.4. AFM reveals the granular nature of particles and agglomeration of particles is seen from the 3D micrographs. These images support the SEM data (ESI) revealing tight packing density.

(c) Optical and electrical properties

The optical properties of V_2O_5 thin films were analyzed using UV-Vis-NIR spectrometer recorded at room temperature in air. Fig. 5(a) represents spectral transmittance as a function of wavelength for V_2O_5 thin films of different thickness measured at normal incidence. The transmittance percentage is decreased from 82 to 60 % in the visible region as film thickness increases. This is associated with the higher packing density of thicker films resulting in higher grain boundary scattering. The optical properties dissimilarity might be

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Thickness (nm): 30 nm</th>
<th>Crystallite Size (nm)</th>
<th>Dislocation Density (×10^6 lines/m²)</th>
<th>Micro strain lines²/m²</th>
<th>Crystallites per unit area (10^9 crystallites/m²)</th>
<th>No of Crystallites</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>1200</td>
<td>31</td>
<td>1.01</td>
<td>0.025</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>P_1</td>
<td>1100</td>
<td>35</td>
<td>0.82</td>
<td>0.022</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>P_2</td>
<td>998</td>
<td>40</td>
<td>0.63</td>
<td>0.020</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>P_3</td>
<td>910</td>
<td>45</td>
<td>0.54</td>
<td>0.017</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>P_4</td>
<td>840</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The variation in film thickness influences the film stresses induced in the layers. Consequently the dislocation density is increased due to the release of stresses built-up in the layers. The maximum value of strain and dislocations exhibited at higher thickness V_2O_5 thin films improves the stoichiometry in the films, which in turn causes the volumetric expansion of films. The functional dependency of strain and dislocation density and decrease of crystallite size indicates that the alteration of substrate position is the key factor for creating structures of various sizes with limited strain and dislocations. The dislocation density and microstrain values are increased with the film thickness may be due to the strain induced mismatch of thermal expansion coefficient between the material (8×10^{-6}/K) and glass substrate (4.6×10^{-6}/K)[1]. The texture coefficient gives the quantitative information about the preferential
that indirect band gap shifts towards higher energy with shrinkage in crystallite size. The band gap is increased from 2.18 to 2.36 eV with corresponding crystallite size reduction of 45 – 31 nm for V$_2$O$_5$ thin films deposited at different substrate positions. It is well known that the optical properties of the vanadium pentoxide are strongly affected by the type and concentration of defects in the sample. The enrichment of bandgap with reduction of crystallites size suggested that the surface defects are responsible for the intra-gap states. Furthermore, the experimental transmittance data are used to calculate the optical constants for much strengthen our observation.

The capability of a material to absorb light is estimated by its absorption coefficient \(\alpha \). The band gap value of semiconductors can be evaluated by employing the following equation:

\[
\alpha h\nu = K(h\nu-E_g)^n
\]

where \(\alpha \) is absorption coefficient, \(h\nu \) is the discrete photon energy, \(K \) is a constant, \(E_g \) is the band gap energy and \(n \) depends upon the type of optical transmission in the band gap region. The band gap value is estimated using \(n=1/2 \) corresponding to indirect band gap transition. The extrapolation of plot to the \(x \)-axis gives the band gap energy of V$_2$O$_5$ thin film (Fig. 5(b)). The energy band gap value of electron beam evaporated V$_2$O$_5$ thin film is found to be 2.18-2.36 eV using Tauc’s plot. The indirect band gap energy of V$_2$O$_5$ thin film is found to be 2.36 eV for higher thickness films and this value is in good agreement with the earlier report. The crystallite size and strain values are given predominant role to shift band gap energy from lower to higher. The crystallinity of V$_2$O$_5$ thin films are proven by XRD pattern due to the film thickness alterations. In the present work, the increase in the band gap energy may be attributed to predominant crystallite size reduction and enhancement of strain with enlargement of FWHM at higher film thickness. It is evident
prepared V$_2$O$_5$ films. The complex dielectric constant values are decreased with increase of film thickness, which may be due to the reduction of grain boundaries thereby changing the structure and morphology of the surface. It has been well established that the complex dielectric constant clamp down as the size of quantum confined physical systems are in the nanometric range. The observation of dielectric suppression might be due to the atomic coordination-number imperfection, which dictates that the size dependence of the atoms orientation and electron-phonon coupling, thus determines the entire band structure such as band gap reduction or expansion. Optical conductivity, which is defined as the transport of photons in a material is one of the powerful tools for studying the electronic states of semiconductors. The optical conductivity of V$_2$O$_5$ thin films deposited at various substrate positions as a function of wavelength are estimated using refractive index and absorption coefficient and displayed in the fig. S3(c). The optical conductivity values are originated from the inter band transition due to electron–phonon interaction.

Fig. 6(a) The variation of refractive index as a function of wavelength for V$_2$O$_5$ thin films with various thickness; (b) The variation of extinction coefficient as a function of wavelength for V$_2$O$_5$ thin films various thickness

Fig. 7(a) shows photoluminescence (PL) emission spectra at room temperature for V$_2$O$_5$ thin films deposited at various thicknesses using an emission wavelength of 258 nm. A wide emission peak is observed at ~485 and 526 nm. The peak broadening and intensity is increased as increase of film thickness which is due to the enrichment behaviour of luminescence properties of V$_2$O$_5$. The Gaussian resolved peak position is enlightened in the fig. 7(b) for V$_2$O$_5$ thin film deposited at P$_7$ position which yielded maximum film thickness in the present work. The closeness of PL peak position with the absorption edge implied that the luminescence is related to the band edge recombination in V$_2$O$_5$ thin films. The peak emission near ~542 nm may be due the recombination of conduction band lowest split-off V-3d electron and valence band O-2p electron. Interestingly, the emission spectra revealed that the V$_2$O$_5$ thin films have exhibited considerable enhancement in the luminescence properties due to variations in film thickness. It is known that the nano level crystallite size generally possess a high-density of surface state. These surface states may act as traps for the photo excited carriers and may suppress excitonic luminescence considerably. This result may be attributed to effective distribution of surface states in V$_2$O$_5$ matrix, thereby enhancing the luminescence yield. The luminescence spectra band diagram is provided to represent the dual peak emission (fig. 7(c)). The wide range of Gaussian resolved emission peak for lower thickness V$_2$O$_5$ thin films is given in fig. S4(a-d).

Fig. 7 (a) Photoluminescence spectra of V$_2$O$_5$ thin films deposited at different thickness by adjusting substrate positions; (b) Gaussian resolved PL spectra of 1200 nm thick V$_2$O$_5$ thin film; (c) The luminescence spectra band diagram for V$_2$O$_5$ thin films.

Fig. 8 shows that the electrical transport properties for V$_2$O$_5$ thin films measured by van der Pauw Hall measurement. As the film thickness increases, the resistivity decreases and the carrier concentration and mobility of the films are increase. The transport properties of thin film are greatly influenced by their crystallinity.
This may lead to enhancement of mobility and carrier concentration with increase of film thickness. Also, the amorphous signatures at lower film thickness contributed to higher resistivity in these films. V$_2$O$_5$ thin film with higher thickness has lower resistivity (1011 Ωcm) and high mobility (496 $cm^2/V.s$) and carrier concentration (3.202 10^{13} cm$^{-3}$) compared to other thin films deposited at lower thickness. This is a desired property for electrochromic device 56. There are very few experimental reports available in literature for RT Hall measurement of V$_2$O$_5$ thin films. Abo et al., reported RT Hall measurement for thin films deposited at various substrate temperatures. They showed that the conductivity in V$_2$O$_5$ thin films are due to the presence of complex charge transfer mechanism of V$^{4+}$ ions 57. Manil et al., reported temperature dependent Hall measurement for crystalline and amorphous thin films 58. The reported higher mobility value than the previous reports is be due to the homogeneous surface nature, lower crystallite size and higher crystallinity at higher thickness prepared V$_2$O$_5$ thin film.

![Figure 8](image_url) Room temperature Hall measurement properties variation of V$_2$O$_5$ thin films deposited at different thickness by adjusting substrate positions.

Conclusions

We have demonstrated the formation of highly oriented V$_2$O$_5$ thin films with an orthorhombic phase using the Electron Beam – Physical Vapour Deposition (EB-PVD) technique. The film thickness was varied by adjusting the substrate position on the substrate holder and the thickness were found to be in the range of 800-1200 nm. The prepared V$_2$O$_5$ thin films were crystalline with orientation along (001) lattice plane. XRD and Raman studies were carried out for the structural confirmation of prepared V$_2$O$_5$ films. Optical characterization shows that the characteristic transition of semi-conductive indirect band gap energy was lying between 2.18 and 2.36 eV. The optical parameters like refractive index, extinction coefficient, dielectric constant and optical conductivity values were determined from Swanepeol’s proposed formulae. Morphological studies revealed that uniform morphology with nano-sized grains were occupied the entire surface of the film. The mobility and carrier concentration values increased with increase of film thickness V$_2$O$_5$ thin films with higher thickness can be optimized and used as a suitable candidate for electrochromic applications.

Acknowledgements

One of the authors, Shrividhya Thiagarajan gratefully acknowledges the UGC-BSR, New Delhi, India for providing financial support.

References

Highly crystalline α-V$_2$O$_5$ thin film nanostructures with single phase exhibiting higher mobility was prepared by EB-PVD technique.