NJC Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/njc

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Fabrication of copper sulfide using a Cu-based metal organic framework for colorimetric determination and efficient removal of Hg²⁺ in aqueous solutions

Yuhao Xiong, Linjing Su, Haiguan Yang, Peng Zhang, Fanggui Ye*

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

CuS particles (PCuS) were facilely synthesized by wet-treatment of a Cu-based metal organic framework (HKUST-1). PCuS possesses an impressive intrinsic peroxidase-like activity. As a result of this affinity, PCuS readily binds to 3,3',5',5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H₂O₂)

¹⁰ (K_m values of 29 μ M and 150 μ M toward TMB and H₂O₂, respectively). Interestingly, when Hg²⁺ was added, the HgS produced in conjunction with the specific binding sites on the surface of PCuS remarkably inhibited the peroxidase-like activity of PCuS. On the basis of this unique property, a sensing platform for the colorimetric detection of Hg²⁺ was established. In addition, high surface area and strong affinity to Hg²⁺ makes PCuS an excellent adsorbent for Hg²⁺ (2105 mg g⁻¹). These results indicate that

¹⁵ PCuS using HKUST-1 as a precursor could be a useful material for the facile detection and efficient removal of Hg^{2+} in environmental abatement applications.

Introduction

With the rapid development of nanoscience and related technologies, copper-based nanomaterials are playing an ²⁰ important role in industries such as printed electronics¹, semiconductors ², and imaging and sensing devices ³. One such material, copper sulfide (CuS), has attracted considerable attention due to its unique optical, photovoltaic, catalytical, and many other properties ⁴. Many methods have been developed to

- ²⁵ synthesize CuS, including thermolysis, microwave irradiation, and template-assisted methods. Most of them, however, have disadvantages, such as high-temperature requirements, air-free conditions, or elaborate and costly synthesis routes ⁵. Therefore, a simple new method for the fabrication of CuS is needed.
- ³⁰ Metal-organic frameworks (MOFs) are a fascinating new class of crystalline porous materials that have emerged in the past decade⁶. MOFs have attracted much attention in building inorganic materials nanostructures⁷ thanks to their high surface area, diverse porosity, and customizable chemical properties. For
- ³⁵ example, CeO₂ ⁸, Co₃O₄ ⁹, ZnO ¹⁰, and CuO ¹¹ have been synthesized using MOF templates. MOF-derived functional inorganic materials have demonstrated several advantages. These include: 1) ability to transform many inorganic compounds into nanomaterials based on the wide variety of MOFs available, 2)
- ⁴⁰ high surface area, and 3) a large variety of possible pore sizes ¹². Using MOFs, inorganic nanomaterials with new properties, and expanded capabilities can be synthesized compared with their traditionally built counterparts. However, although MOFs are good templates for fabricating inorganic materials, the costly a propagation processes limits their large cashs propagation and the second second
- 45 carbonization process limits their large-scale preparation and

application. Recently, an encouraging breakthrough in synthesizing inorganic materials using MOFs as a precursor has been achieved by Lin's group ^{13,14}. They reported a simple wettreatment method of fabricating porous indium sulfide and ⁵⁰ zirconium phosphate, which showed good performance for lanthanide and heavy metals extraction. This method is easy to operate and does not require complicated ligand synthesis and activation steps.

Mercury ions (Hg²⁺) pose a significant threat to the environment 55 and public health. The United States Environmental Protection Agency (EPA) has established a maximum allowable concentration of 10 nM in drinking water ¹⁵, which is a minuscule quantity. Hence, the efficient removal of Hg²⁺ from the environment is recognized as a top priority by the World Health 60 Organization ¹⁶. A convenient, effective, and rapid method for Hg²⁺ monitoring and removal in water has, thus, become a top global priority. Colorimetric sensors are low-cost, simple, and practical devices for effectively monitoring Hg²⁺, for which recent improvements have been demonstrated ¹⁷. In other 65 developments, high-adsorption materials are improving the ability to collect Hg²⁺. Thiol-functionalized porous materials possess an excellent ability for Hg²⁺ adsorption due the strong affinity of Hg²⁺ and S-containing ligands. However, most of the reported colorimetric sensors for Hg²⁺ detection were based on 70 the high cost of noble metal nanoparticles (such as Au and Pt). In addition, the preparation process of these nanoparticles was tedious and time-consuming, and complex purification procedures were also necessary ^{15,18-21}. Moreover, a tedious post synthetic method was often used to modify thiol-functionalized ⁷⁵ porous materials for Hg²⁺ adsorption ²². This reality prompted us to consider the feasibility of developing a method for the rapid

(1)

preparation of porous CuS directly acting as both an Hg^{2+} detection platform and an adsorbent.

Encouraged by this possibility, we pursued the synthesis of CuS particles using HKUST-1 as a precursor through a facile wet-

- ⁵ treatment method (designated as PCuS). Our synthesized PCuS demonstrated high catalytic activity in terms of mimicking peroxidase activity and excellent adsorption capability toward Hg²⁺ without any post synthetic modification. As expected, Hg²⁺ showed remarkable inhibition of the peroxidase-like activity of
- ¹⁰ PCuS (similar to poisoning catalysts). Based on this interesting phenomenon, a colorimetric platform for detection of Hg²⁺ with good sensitivity, selectivity, and rapidity was constructed. All things considered, our results suggest that the synthesized PCuS particles may be used as a peroxidase mimic for Hg²⁺ detection ¹⁵ and also as an excellent adsorbent for Hg²⁺ removal. This
- capability of PCuS particles will likely expand the scope of applications for HKUST-1.

Experimental section

Reagents and materials

- ²⁰ Cu (NO₃)₂·3H₂O, 1,3,5-benzenetricarboxylic acid (H₃BTC) and anhydrous ethanol were purchased from Shanghai Chemical Reagents Corporation (Shanghai, China). Sodium sulfide nonahydrate (Na₂S·9H₂O) and a hydrogen peroxide solution (30 wt% H₂O₂) were provided by Shantou Xilong Chemical Factory
- ²⁵ (Guangdong, China). 3,3,5,5-tetramethylbenzidine (TMB) was purchased from TCI (Shanghai, China). HgCl₂ was supplied by J&K Scientific (Beijing, China). Other reagents were obtained from Aladdin Chemistry Co. Ltd. (Shanghai, China). Ultrapure water was produced by a Millipore purification system (Bedford, ³⁰ MA, USA) and was used to prepare all aqueous solutions.

Characterizations

Powder X-ray diffraction (XRD) patterns were performed on a D/max 2550 VB/PC diffractometer (Rigaku, Japan). Fourier transform infrared (FT-IR) spectra ($4000-400 \text{ cm}^{-1}$) were

- ³⁵ recorded in KBr discs on a PE Spectrum One FT-IR spectrometer (Perkin Elmer, USA). Raman spectra were recorded on an inVia spectrometer (Renishaw, UK). Thermogravimetric analysis (TGA) was performed on a LABSYS Evo TGDSC/DTA instrument (Setaram Instrumentation, France). Morphology and
- ⁴⁰ chemical composition were measured by FEI Quanta 200 FEG SEM (Philips, The Netherlands) equipped with an energydispersive X-ray system. The N₂ adsorption-desorption isotherm was measured using an adsorption instrument (3Flex, Micromeritics, USA).

45 Synthesis of HKUST-1

HKUST-1 was prepared by a slightly modified solvothermal method 23 . 0.90 g of Cu(NO₃)₂·3H₂O was dissolved in 12 mL ultrapure water and mixed with 0.42 g of H₃BTC in 12 mL anhydrous ethanol. The resulting solution was sealed in a 50-mL

 $_{50}$ Teflon-lined stainless steel autoclave for 12 h at 120 $^\circ\!C$. After the solution was cooled, the solid product was collected by filtration, washed three times with ethanol and water, and vacuum dried at 60 $^\circ\!C$.

Synthesis of PCuS

ss 10.0 mg of the HKUST-1 template and 5.0 equivalents of Na₂S·9H₂O were suspended in 2.0 mL of ultrapure water. Then these two mixtures were mixed well and agitated overnight. The black product was collected by centrifugation, washed with water, and vacuum dried at 60 $^{\circ}$ C.

60 Peroxidase-like activity of PCuS

The peroxidase-like activity of PCuS was investigated by catalytic oxidation of a peroxidase substrate, TMB, in the presence of H_2O_2 . Solutions used for the kinetic analysis with TMB as the substrate consisted of 40 µL PCuS solution (2.5 mg ⁶⁵ mL⁻¹), 30 mM H_2O_2 , and varying concentrations of TMB (0, 0.2, 0.5, 0.8, 1.1, 1.4, 1.7 and 2.0 mM). Similarly, solutions used for the kinetic analysis of H_2O_2 as the substrate consisted of 40 µL PCuS (2.5 mg mL⁻¹), 1.4 mM TMB, and varying concentrations of H_2O_2 (0, 10, 20, 30, 40, 50, 60, and 70 mM). The kinetic ⁷⁰ parameters were calculated based on Lineweaver–Burk plots of the double reciprocal of the Michaelis–Menten equation

 $1/V = K_{\rm m}/V_{\rm max} (1/[\rm C]+1/K_{\rm m})$

where V is the initial reaction rate, V_{max} is the maximal reaction rate, C is the substrate concentration, and K_{m} is the Michaelis-⁷⁵ Menten constant.

Detection of Hg²⁺

Standard solutions for the determination of Hg^{2+} were prepared as follows: 20 µL of PCuS solution (2.5 mg mL⁻¹) were added to 2.64 mL acetate buffer (0.2 M, pH 4.0). Specific volumes of 80 HgCl₂ stock solution were added to the PCuS-acetate buffer solutions to reach a final concentration. After standing for 15.0 min at room temperature, 200 µL of TMB (2.0 mM) and 140 µL H₂O₂ (5.0 wt %) were added to each solution. After these solutions stood at room temperature for 20 min, the absorption at 85 655 nm (A₆₅₅) signals were recorded for each solution using a Cary 60 spectrophotometer (Agilent, USA).

Hg²⁺ adsorption

All experiments were performed at room temperature (25 °C). 2.0 mg of PCuS were added into 4.0 mL Hg²⁺ solutions with different ⁹⁰ concentrations. After adsorption for a pre-determined time, the supernatants were separated from the adsorbent by centrifugation (4500 rpm, 5 min) and analyzed for the concentration of Hg²⁺ according to a published procedure ²⁴. The adsorption capacity, q_e (mg g⁻¹), for Hg²⁺ was calculated using the following equation

⁹⁵ $q_e = (C_0 - C_e)V/m$ (2) where $C_0 (mg L^{-1})$ and $C_e (mg L^{-1})$ is the initial and final concentrations of Hg^{2+} , respectively. V is the volume of Hg^{2+} solution (L), and m is the weight of PCuS (g).

Results and discussion

100 Characterization of PCuS

HKUST-1 is one of the most well-known and easily obtainable MOF, herein, HKUST-1 was prepared by a simple solvothermal method and then served as the precursor to synthesis PCuS. From HKUST-1 to PCuS, XRD, FT-IR, SEM and TGA etc. ¹⁰⁵ characterization techniques were used to study the crystalline structures, functional groups, morphology and so on. Fig. 1 shows the XRD patterns for HKUST-1 and PCuS. Fig. 1a compares the diffraction peaks of the synthesized HKUST-1 with a simulated one, indicating the successful preparation of HKUST-1. Fig. 1b presents the XRD pattern obtained for our synthesized PCuS using HKUST-1 as a precursor, and all the diffraction peaks consistent with the standard data of CuS (JCPDS card 78-⁵ 2121). The diffraction peaks located at 27.70°, 29.21°, 31.85°, 32.78°, 48.01°, 52.68°, and 59.32° can be indexed to the (101), (102), (103), (006), (110), (108), and (116) planes of CuS,

respectively. The strongest peak at (110) indicates the preferential growth direction 5, 25. The XRD results show that the HKUST-1 has been successfully transformed into CuS via a wet treatment method.

Fig. 1 XRD patterns of (a) HKUST-1, and (b) PCuS.

- ¹⁵ The morphology transformation from HKUST-1 to PCuS was investigated by SEM. Fig. 2 shows SEM images of HKUST-1, PCuS, and HKUST-1 together with PCuS. From these, it can be seen that the sulfidation reaction could induce an obvious change in morphology and the typical octahedral structure of HKUST-1
- ²⁰ has disappeared and sphere-like particles have appeared and closely attached to each other, indicating an etching of HKUST-1 and the self-assembly of PCuS have occurred. These results suggest that the original organic linkages in HKUST-1 were exchanged by S²-layered bridges (further supported by FT-IR
- ²⁵ spectrum, Fig. S1) and formation of PCuS particles. When HKUST-1 and PCuS coexist (indicated by blue and red circles, respectively) in a solution and this solution is treated with Na₂S, PCuS particles self-assembled on the surface of the HKUST-1

crystal (Fig. 2d). This self-assembly event suggests that etching ³⁰ of HKUST-1 is from the surface of the octahedral structure crystals to the inner. The FT-IR spectra of HKUST-1 and PCuS are shown in Fig. S1. The peaks observed for HKUST-1 at 1642-1371 cm⁻¹ were typical for the symmetrical stretching of bonds in the carboxylate groups in

Fig. 2 SEM images of (a) HKUST-1, (b, c) PCuS, and (d) HKUST-1 and PCuS coexistence.

H₃BTC. The peaks at 728 cm⁻¹ can be assigned to the Cu–O stretching vibration. For the PCuS sample, the characteristic ⁴⁰ peaks for H₃BTC and Cu–O almost disappeared (except for 1642 cm⁻¹), and new peaks at about 485 cm⁻¹ appeared, resulting from Cu-S stretching. After Hg²⁺ adsorption, the peaks from Cu-S stretching decreased, which may be explained by the partial conversion of Cu-S to Hg-S. The Raman spectra of PCuS at 470 ⁴⁵ cm⁻¹ for Cu-S also revealed that Hg²⁺ adsorption has reduced the quantity of Cu-S (Fig. S2).

The results from energy-dispersive spectroscopy (EDS) showed that PCuS contains 0.35% C, 14.52% O, 21.67% S and 62.6% Cu, respectively (Fig. S3a.). The presence of 0.35% C shows that $_{50}$ H₃BTC, when exchanged by S²⁻ cannot be completed removed by washing (The result was also confirmed by its FT-IR). The elemental mapping revealed S and Cu were uniformly distributed in PCuS (Fig. S3b). The thermal stability of PCuS was investigated, and the TGA result is shown in Fig. S4. This result 55 shows that coordinated water was driven off first. The second stage was caused by decomposition of residual H₃BTC, which could not be completely removed by washing. Last, it can be seen that the thermal decomposition of the S-bridging ligand occurs with the formation of CuO. Calculations using the TGA results 60 show a copper content of 62% in PCuS. This number agrees well with the EDS analysis. The N2 adsorption-desorption isotherms of PCuS is presented in Fig. 3. it could be seen that the PCuS was almost non-porous. However, the Brunauer-Emmett-Teller (BET) surface area of the PCuS was calculated to be 35 m² g⁻¹. 65 This high surface area may be from the rough surface of PCuS and offers plenty of active sites for adsorption and can facilitate

catalytic reactions, which can result in better absorbing and catalytic performance. These results provide strong evidence that PCuS had been successfully synthesized.

Fig. 3 N₂ adsorption-desorption isotherms of PCuS.

Peroxidase-like activity of PCuS

The peroxidase-like activity of PCuS was studied by catalytic oxidation of the peroxidase substrate, TMB, in the presence of H_2O_2 . As shown in Fig. S5, only PCuS and H_2O_2 did not show ¹⁰ significant catalytic activity for TMB in an acetate buffer. In contrast, the TMB- H_2O_2 system in the presence of PCuS exhibited a strong absorbance at 655 nm, indicating that PCuS possesses remarkable peroxidase-like activity. The peroxidase-like activity might be due to the hydroxide radicals that were

¹⁵ produced by Fenton's reaction. A possible mechanism outlined in the following equations describes this reaction 26

$$Cu2+ + H_2O_2 \rightarrow H^+ + CuOOH^+$$
(3)
$$CuOOH^+ \rightarrow HOO^+ + Cu^+$$
(4)

 $CuOOH^+ \rightarrow HOO^{\bullet} + Cu^+$ $Cu^+ + H_2O_2 \rightarrow Cu^{2+} + OH^{\bullet} + OH^-$

- $Cu^+ + H_2O_2 \rightarrow Cu^{2+} + OH^{\bullet} + OH^{-}$ (5) ²⁰ To better understand the peroxidase-like activities of PCuS, steady-state kinetic parameters for the reaction in TMB and H_2O_2 were determined. TMB and H_2O_2 concentration-dependent reaction rate curves are shown in Fig. 4. The curves display typical Michaelis–Menten behavior. By using a Lineweaver–
- ²⁵ Burk plot, the Michaelis–Menten constant (K_m) and maximum initial velocity (V_{max}) values were obtained for both TMB and H₂O₂ (Table S1). These parameters showed that the synthesized PCuS possessed a high affinity for TMB and H₂O₂. This phenomenon benefited from the large surface areas and a wide ³⁰ range of pore sizes in PCuS.

Hg²⁺ sensing

As displayed in Fig. 5, PCuS catalyzes the oxidation of the TMB- H_2O_2 solution, which led to the strong absorbance at 655 nm. However, when Hg^{2+} was added, the catalytic activity of PCuS ³⁵ was dramatically inhibited. This inhibition of significant catalytic activity could be attributed to the extremely low K_{sp} value (2 × 10⁻⁵²) for HgS in conjunction with highly specific binding sites on the surface of PCuS. Hence, the active sites on PCuS were blocked, a phenomenon that is similar to catalyst poisoning.

Fig. 4 Plots of the steady-state kinetic calculations using the Michaelis– Menten model and Lineweaver–Burk model for PCuS: (a) and (c) varying [TMB] at a fixed [H₂O₂] (30 mM), (b) and (d) varying [H₂O₂] at a fixed [TMB] (1.4 mM).

Fig. 5 Absorption curves of the reaction products of TMB oxidation in the absence and presence Hg^{2+} .

As mentioned in Section 1, S atoms are essential for Hg²⁺ sensing ⁵⁰ and absorption, so the amounts of Na₂S used in the fabrication of PCuS on the inhibition of Hg²⁺ were optimized. It was concluded from Fig. S6a, that five equivalents of Na₂S produced an optimal ΔA ($\Delta A = A_{0-} A$, where A_{0} and A were the absorbance intensities in the absence and presence of Hg²⁺). All future work, ⁵⁵ therefore, used 5.0 equivalents of Na₂S in the PCuS fabrication. The quantity of PCuS was also reviewed. As shown in Fig. S6b, 20 µL of the PCuS solution (2.5 mg mL⁻¹) produced the largest ΔA . Hence, all future work used 20 µL of the PCuS solution.

Using 20 μ L of the PCuS solution, a series of solutions with ⁶⁰ different concentrations of Hg²⁺ was analyzed. The results are shown in Fig. 6. A linear relationship between ΔA and [Hg²⁺] over the concentration range of 3.0-40 μ M (R=0.9899) was observed. The limit of detection (LOD) for Hg²⁺ (S/N=3) ²⁷ was calculated to be 0.22 μ M. After the completion of these ⁶⁵ quantitative analyses, the method for adsorbing mercury ions was reassessed. Different other metal ions were used to replace Hg²⁺, as shown in Fig. S7. These ions were tested under the same experimental conditions as Hg²⁺, and none of the metals was detected. The results indicated that the revised method had s excellent selectivity for Hg²⁺. This selectivity was attributed to the very low K_{sp} value for CuS (6 × 10⁻³⁶). K_{sp} for CuS is much lower than other metal sulfides, even PbS (8 × 10⁻²⁸), so the control metal sulfides did not form on the surface of PCuS. To test whether our method was functional in real life applications,

¹⁰ pond water was tested through a standard addition method. As shown in Table S2, the recovery of Hg^{2+} was between 93.6 and 108%. These results indicated that this colorimetric method was applicable for the determination of Hg^{2+} in real samples.

Fig. 6 Linear calibration of (a) the reaction system at varied Hg^{2+} concentrations, and (b) typical UV-vis spectra for the systems plotted in (a).

Hg²⁺ adsorption

- ²⁰ For the Hg²⁺ adsorption test, adsorption isotherms and adsorption kinetics were chosen for understanding the mechanism of adsorption. As shown in Fig. 7, the adsorption amount gradually increased and then reached a platform with the increase in the concentration of Hg²⁺. At equilibrium, the maximum adsorption
- ²⁵ capacity of PCuS was 2105 mg g⁻¹. The equilibrium adsorption data were analyzed with the Langmuir adsorption model ²⁸

$$\frac{c_e}{q_e} = \frac{c_e}{Q_m} + \frac{1}{Q_m K_L} \tag{6}$$

where $C_e (mg L^{-1})$ is the equilibrium concentration, $q_e (mg g^{-1})$ is the equilibrium adsorption capacity, $Q_m (mg g^{-1})$ is the ³⁰ maximum adsorption capacity, and $K_L (L g^{-1})$ is the Langmuir constant.

As shown in Fig. S8, a straight line was obtained when C_e/Q_e was plotted against C_e (R²=0.99). This result indicated that the adsorption of Hg²⁺ conforms nicely to the Langmuir adsorption ³⁵ model, showing monolayer coverage of Hg²⁺ on the surface of the PCuS ²⁹. Moreover, as presented in Table S3, the maximum adsorption capacity of PCuS was much higher than that reported previously, suggesting that PCuS possessed a superior adsorption capacity for Hg²⁺ ³⁰⁻³³.

Fig. 7 Equilibrium adsorption capacity Q_e versus equilibrium concentration C_e for the adsorption of Hg²⁺.

Fig. 8 shows the effect of contact time on adsorption. The adsorption capacity of Hg²⁺ increased significantly in the first 45 ⁴⁵ min and then reached equilibrium. Adsorption kinetic characteristics were examined next. A pseudo-second-order model was used to fit the experimental data as follows ³⁴

$$\frac{t}{q_t} = \frac{1}{k_2 {q_e}^2} + \frac{t}{q_e}$$
(7)

where q_e and q_t are the adsorption capacities (mg g⁻¹) at ⁵⁰ equilibrium and at time t (min), respectively, and k_2 is the rate constant for pseudo-second-order adsorption (g mg⁻¹ min⁻¹).

The plot of Hg^{2+} using this pseudo second-order kinetic adsorption is shown in Fig. S9. The experimental data fit well with the pseudo second-order model (R²=0.99). This result ⁵⁵ implies that the rate-limiting step may be the chemisorption process ³⁵.

Fig. 8 Effect of contact time on adsorption of Hg²⁺ on PCuS.

For the desorption experiment, Hg^{2+} could not be eluted due to the strong binding force between Hg^{2+} and S^{2-} . However, s considering the simple synthetic routes and high adsorption capacity of PCuS, the one-time use of the Hg^{2+} adsorbent will be likely acceptable.

Conclusions

- In summary, CuS particles were successfully synthesized by wet ¹⁰ treatment of HKUST-1 and used as a novel peroxidasemimicking system for the colorimetric detection and efficient removal of Hg²⁺ from Hg-contaminated samples. The synthesized CuS particles showed several unprecedented advantages. First, the synthetic steps for producing CuS particles were simple and
- ¹⁵ easy to perform. More importantly, using HKUST-1 as the precursor provided high surface areas for CuS particles. Second, based on the strong interaction between Hg^{2+} and S^{2-} , CuS particles played a role not only as a peroxidase-mimicking detector for Hg^{2+} , but also as an excellent adsorbent for Hg^{2+}
- $_{\rm 20}$ removal. Notably, the outstanding adsorption capacity (>2100 mg g^-1) of Hg^{2+} has exceeded many other competing adsorbents. This work should facilitate the utilization of CuS in environmental abatement applications.

Acknowledgements

²⁵ The financial support from the National Natural Science Foundation of China (21365005), Guangxi Natural Science Foundation of China (2014GXNSFGA118002) and Innovation Project of Guangxi Graduate Education (YCSZ2015090) is gratefully acknowledged.

30 Notes and references

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, P. R. China.

35 Corresponding author: Prof. Fanggui Ye Tel: +86-773-5856104; fax: +86-773-5832294 E-mail address: fangguiye@163.com

- S. C. Riha, D. C. Johnson and A. L. Prieto, *J Am Chem Soc*, 2011, 133, 1383-1390.
- Y. Wu, C. Wadia, W. Ma, B. Sadtler and A. P. Alivisatos, *Nano Lett*, 2008, 8, 2551-2555.
- 3. S. Goel, F. Chen and W. Cai, Small, 2014, 4, 631-645.
- W. He, H. Jia, X. Li, Y. Lei, J. Li, H. Zhao, L. Mi, L. Zhang and Z. Zheng, *Nanoscale*, 2012, 4, 3501.
- 45 5. L. Mi, W. Wei, Z. Zheng, Y. Gao, Y. Liu, W. Chen and X. Guan, *Nanoscale*, 2013, 5, 6589.
 - H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, *Science*, 2013, **341**, 1230444.
 - 7. Y. Song, X. Li, L. Sun and L. Wang, *RSC Adv.*, 2015, **5**, 7267-7279.
- 50 8. S. Maiti, A. Pramanik and S. Mahanty, *Chem. Commun.*, 2014, **50**, 11717-11720.
 - 9. W. Wang, Y. Li, R. Zhang, D. He, H. Liu and S. Liao, *Catalysis Communications*, 2011, **12**, 875-879.
 - S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J. H. Kang, S. Wi, B. Park and C. R. Park, *J Am Chem Soc*, 2013, **135**, 7394-7397.
- A. Banerjee, U. Singh, V. Aravindan, M. Srinivasan and S. Ogale, Nano Energy, 2013, 2, 1158-1163.
- C. Sun, J. Yang, X. Rui, W. Zhang, Q. Yan, P. Chen, F. Huo, W. Huang and X. Dong, *J. Mater. Chem. A*, 2015, 16, 8483-8488.
- 60 13. C. W. Abney, J. C. Gilhula, K. Lu and W. Lin, Adv Mater, 2014, 26, 7993-7997.
 - C. W. Abney, K. M. L. Taylor-Pashow, S. R. Russell, Y. Chen, R. Samantaray, J. V. Lockard and W. Lin, *Chem Mater*, 2014, 26, 5231-5243.
- 65 15. G. Wu, S. He, H. Peng, H. Deng, A. Liu, X. Lin, X. Xia and W. Chen, Anal Chem, 2014, 86, 10955-10960.
 - S. Kabiri, D. N. H. Tran, S. Azari and D. Losic, ACS Applied Materials & Interfaces, 2015, 969373680.
 - 17. Z. Yan, M. Yuen, L. Hu, P. Sun and C. Lee, RSC Adv., 2014, 4, 48373-48388.
 - W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang and Y. Fu, Biosensors and Bioelectronics, 2015, 66, 251-258.
 - Y. Deng, X. Wang, F. Xue, L. Zheng, J. Liu, F. Yan, F. Xia and W. Chen, *Anal Chim Acta*, 2015, 868, 45-52.
- 75 20. L. Zhan, C. M. Li, W. B. Wu and C. Z. Huang, *Chem. Commun.*, 2014, **50**, 11526-11528.
 - G. Wang, L. Jin, X. Wu, Y. Dong and Z. Li, *Anal Chim Acta*, 2015, 871, 1-8.
- 22. F. Ke, L. Qiu, Y. Yuan, F. Peng, X. Jiang, A. Xie, Y. Shen and J. Zhu, *J Hazard Mater*, 2011, **196**, 36-43.
- 23. K. Schlichte, T. Kratzke and S. Kaskel, *Micropor Mesopor Mat*, 2004, **73**, 81-88.
- 24. R. P. A. W. Paradkar, Anal Chem, 1994, 66, 2752-2756.
- 25. A. K. Dutta, S. Das, S. Samanta, P. K. Samanta, B. Adhikary and P. Biswas, *Talanta*, 2013, **107**, 361-367.
- Q. Cai, S. Lu, F. Liao, Y. Li, S. Ma and M. Shao, *Nanoscale*, 2014, 6, 8117-8123.
- L. Guo, Y. Xu, A. R. Ferhan, G. Chen and D. Kim, J Am Chem Soc, 2013, 135, 12338-12345.
- 90 28. W. Xiao, P. Zhao, S. Deng and N. Zhang, New J. Chem., 2015, 39, 3719-3727.
 - Y. Li, S. Zhu, Q. Liu, Z. Chen, J. Gu, C. Zhu, T. Lu, D. Zhang and J. Ma, *Water Res*, 2013, 47, 4188-4197.
 - L. Sun, Y. Li, M. Sun, H. Wang, S. Xu, C. Zhang and Q. Yang, New J Chem, 2011, 35, 2697-2704.
 - S. Ravi, M. Selvaraj, H. Park, H. Chun and C. Ha, New J Chem, 2014, 38, 3899-3906.
- 32. Y. Xie, B. Yan, C. Tian, Y. Liu, Q. Liu and H. Zeng, *J. Mater. Chem. A*, 2014, **2**, 17730-17734.
- 100 33. Z. Qu, L. Yan, L. Li, J. Xu, M. Liu, Z. Li and N. Yan, ACS Applied Materials & Interfaces, 2014, 6, 18026-18032.
 - 34. Q. Li, Z. Wang, D. Fang, H. Qu, Y. Zhu, H. Zou, Y. Chen, Y. Du and H. Hu, New J. Chem., 2014, 38, 248-254.
- 35. X. Zhao, D. Liu, H. Huang, W. Zhang, Q. Yang and C. Zhong, *Micropor Mesopor Mat*, 2014, **185**, 72-78.

Graphical abstract

Table of Contents

From Cu-based metal organic framework to copper sulfide by wet-treatment: towards colorimetric determination and efficient removal of Hg²⁺