
NJC

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/c0xx00000x

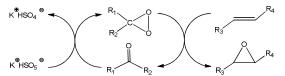
www.rsc.org/xxxxxx

ARTICLE TYPE

A versatile method of epoxide formation with the support of peroxy ionic liquids

Przemysław Zawadzki^b, Karolina Matuszek^a, Wojciech Czardybon^b, Anna Chrobok^{a*}

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x


5 The application of the peroxy ionic liquid 1-butyl-3-methylimidazolium peroxymonosulphate as an oxidation agent and a solvent for the synthesis of epoxides was described. The 2.5-molar excess of the peroxy ionic liquid to olefin was applied. The reaction system consisted of 1,1,1-trifluoroacetone as the oxirane precursor, which was used with the molar ratio of 1:3 relative to olefin and water solution of NaHCO₃. In these conditions the epoxidation of 4-bromocinnamic acid led to the epoxide formation at the ambient temperature in 30 minutes. Dioxiranes, generated from the peroxy ionic liquid and 1,1,1trifluoroacetone, demonstrated an encouraging potential for epoxidation of a variety of other olefins: styrene, limonene, stilbene, linalyl acetate and a complex steroid molecule with high yields of final epoxides from 65-98%.

15 Introduction

Epoxides due to their high reactivity, which is caused by a highly strained tricyclic ring, under certain conditions and in the presence of selected nucleophile can be converted to a wide range of valuable derivatives. Epoxides are important synthetic 20 building blocks widely used in the chemical industry in the production of pharmaceutical products, flavours, fragrances, resins, adhesives or paints.²⁻⁶

Most epoxidation systems use catalysts based on transition metals (V, Mn, W, Ti, Re, etc.) which activate oxidants, such as 25 H₂O₂ or hydroperoxides. However, non-metal epoxidation using dioxiranes can also be performed. Dioxiranes are usually generated from the potassium peroxymonosulphate salt KHSO₅ and ketones as an efficient and remarkably versatile class of oxidants.⁷ The commercial sources of KHSO₅ are low-cost 30 industrial bulk chemicals, e.g., the triple salt OxoneTM (2KHSO₅ KHSO₄ K₂SO₄). These products are stable oxidizing agents commonly used in the fine chemicals synthesis: they are easy to handle, non-toxic and generating non-polluting byproducts. Epoxidations of olefins proceeded via in situ generated 35 dioxiranes (Scheme 1) often require a range of pH 7-8, higher pHs lead to rapid autodecomposition of Oxone TM. 10 The in situ oxidation with dioxiranes presents many advantages, such as e.g. the possibility of regeneration of the parent ketones after the oxygen transfer. In early works, a two-phase solvent system was 40 employed, in which the solubility properties of alkene and ketone played a crucial role.

In our previous works, alternative methods of the oxidation of ketones or alcohols with KHSO₅ were presented. The first method was based on the use of an alternative solvent, such as an 45 ionic liquid, to dissolve KHSO₅ and eliminate water from the

 $\textbf{Scheme 1} \ \text{Catalytic cycle of oxidation by the ketone/ Oxone}^{\text{TM}} \ \text{method}$

reaction system.11 The work referred to above demonstrated that the use of homogenous conditions is critical for oxidation of 50 ketones with KHSO₅ to lactones, which was provided by ionic liquids. The second method used a phase transfer catalysis to avoid hydrolysis of lactones. 12

Unique physical properties of ionic liquids, such as low volatility, thermal stability, are an attractive alternative to organic 55 solvents. Excellent solubility of organic and inorganic compounds in ionic liquids and the possibility of easy recycling of these salts have evoked wide interest in their application in the organic synthesis as solvents. The last decade brought much interest in task-specific ionic liquids, which are terms that refer to 60 the potential design capacity of ionic liquids for chemical tasks. 13 Building on this, we demonstrated a new class of task-specific ionic liquids with peroxymonosulphate anions, e.g. 1-butyl-3methylimidazolium salt (Scheme 2). The resulting salts were liquids at the room temperature and served as oxidants and 65 solvents in the model oxidation of cyclohexanol to εcaprolactone.14

Ionic liquids used as solvents in epoxidation reactions of a broad substrate scope with various oxidation agents were used to improve yield, selectivity or rate of the reaction. 15,16 The 70 epoxidation of alkenes by OxoneTM was also investigated in ionic liquids. To this aim 2-alkyl-3.4-dihyroisoguinoliunium salts were used as catalysts. ^{17,18} The effectiveness of the reaction systems depended on the miscibility of the reagents with the ionic liquids.

Scheme 2. 1-butyl-3-methylimidazolium peroxymonosulphate [bmim][HSO₅]

The application of water miscible ionic liquids gave similar ⁵ results to the conventional acetonitrile based systems. ¹⁷

As presented above, new methods of epoxidation of alkenes are an ongoing area of research. This work is focused on the development of a versatile method of the epoxide ring formation using novel task-specific ionic liquids based on the peroxysulfate 10 anion as both the oxidants and the solvent.

Results and Discussion

For the initial study a model epoxidation of 4-bromocinamic acid was chosen to determine crucial parameters for the epoxide ring formation. Among dioxiranes the most 15 dimethyldioxirane and 1,1,1 -trifluoroacetone (TFA) were used, as in their case high electronegativity of fluorine makes them a epoxidising agent. From amongst peroxymonosulphate ionic liquids 1-butyl-3-methylimidazolium salt [bmim][HSO₅] was chosen as a model oxidation agent. The 20 use of [bmim][HSO₅] eliminated the addition of other solvents to the reaction system, while typical solvents like water/acetone or water/acetonitrile were used for comparative tests with Oxone TM. Due to the short life of the in situ forming reactive dioxiranes, the reaction system required stabilization by the introduction of 25 EDTA and maintaining the pH around 7-8 by the addition of NaHCO3 (Table 1).

For comparison reasons the experiments were carried out with OxoneTM. The order of addition of the reagents was as follows: olefin and NaHCO₃ were suspended in the acetone/water mixture, 30 then a water solution of EDTA was added. The molar ratio of olefin to NaHCO3 was 1:15. OxoneTM was the last reagent which was introduced under vigorous stirring and allowed to react at 20-25 °C for an appropriate time. The reaction progress was monitored with Ultra Performance Liquid Chromatography 35 (UPLC) (Table 1).

For the presented experiments, even if acetone was used as a solvent and the dioxirane precursor in a big excess (the molar ratio of olefin to acetone was 1:50) together with OxoneTM (the molar ratio of olefin to OxoneTM was 7), only 60% yield of 40 epoxide was achieved in 4 h (Table 1, entry 1). In the next step, attempts to eliminate acetone using a more reactive dioxirane precursor, TFA with acetonitrile as a solvent, were performed. The molar ratio of olefin to TFA was 1:5 and even when OxoneTM was used in big excess, still the yield reached only 43% 45 in 1h (Table 1, entry 2).

The system was strengthened by the addition of the ionic liquid [bmim][HSO₅]. It is worth to note that in the first experiment the ionic liquid [bmim][HSO₅] (Table 1, entry 3) was added in the first step, together with water. OxoneTM, as applied 50 above, was the last component. The yield of epoxide was higher, but the reaction stopped after 4h and a full conversion was not reached, probably because of the creation of a highly viscous mixture, very difficult to stir.

55 Table 1 Influence of reaction conditions on epoxidation of 4-bromocinamic acid with OxoneTM or [bmim][HSO₅]

No	. Solvent	Source of dioxirane		Time	Yield of epoxide [%] ^c
1	H ₂ O/acetone ^a	acetone	2.5 (Oxone TM)	5 min	17
	H ₂ O/acetone ^a	acetone	2.5 (Oxone TM)	1 h	50
	H ₂ O/acetone ^a	acetone	2.5 (Oxone TM)	24 h	50
	H ₂ O/acetone ^a	acetone	7 (Oxone TM)	4h	60
2	H ₂ O/acetonitrile ^b	TFA	5 (Oxone TM)	5 min	20
	H ₂ O/acetonitrile ^b	TFA	5 (Oxone TM)	24 h	20
	H ₂ O/acetonitrile ^b	TFA	7 (Oxone TM)	5 min	20
	H ₂ O/acetonitrile ^b	TFA	7 (Oxone TM)	1 h	43
3	$\text{H}_2\text{O}/[\text{bmim}][\text{HSO}_5]^b$	TFA	$5 (Oxone^{TM}) + 7 [bmim][HSO_5]$	5 min	60
	$\mathrm{H}_2\mathrm{O}/[\mathrm{bmim}][\mathrm{HSO}_5]^b$	TFA	$5 (Oxone^{TM}) + 7 [bmim][HSO_5]$	4 h	60
4	$H_2O/[bmim][HSO_5]^b$	TFA	7 [bmim][HSO ₅]	5 min	88
	$H_2O/[bmim][HSO_5]^b$	TFA	7 [bmim][HSO ₅]	30 min	99

^a reaction conditions: olefin (0.10 g, 0.44 mmol), NaHCO₃ (0.50 g, 6.60 mmol), 2 ml acetone/water (1:1 v/v), 1 ml water solution of EDTA (0.40 mol/dm³), RT; ^b reaction conditions: olefin (0.10 g, 0.44 mmol), NaHCO₃ 60 (0.50 g, 6.60 mmol), 1 ml water, 1 ml acetonitrile, 1 ml water solution of EDTA (0.40 mol/dm³), TFA (0.24 g, 2.20 mmol), RT; ^c yield was determined by UPLC, no by-products were detected, only unreacted olefin was found

The use of the ionic liquids [bmim][HSO₅] with OxoneTM gave 65 a much better conversion of 4-bromocinamic acid compared to the reaction with OxoneTM alone in conventional solvents (Table 1, entry 3). These observations drive us to a conclusion that maybe there is a possibility of eliminating OxoneTM completely from the reaction mixture and performing this synthesis only with 70 the presence of a ionic liquid. Additionally, we have observed that the order of the reagents addition may have a crucial role on the outcome of the reaction. Theoretically, a ionic liquid added as a thirst system component can react with the basic NaHCO₂ before it starts to react with ketone to form dioxirane. On the other hand, dioxiranes are very reactive species, and thus they are highly unstable. Therefore, it is necessary to avoid a situation where all of the formed dioxirane decomposes before it starts to react with olefin.

Taking the observation made in the last experiment into 80 account (Table 1, entry 4) OxoneTM was eliminated from the system and [bmim][HSO₅] was added as the last reagent. This time we achieved our goal, the reaction was fast and a full conversion was observed after 30 minutes.

In order to determine the influence of crucial factors on the 85 course of the model reaction several experiments in the conditions determined above (Table 1, entry 4) were performed. At first a sufficient amount of oxidizing agent was established. To this aim [bmim][HSO₅] was added to the reaction system in portions. After the addition of each portion the conversion of 90 olefin and yield of the product were analyzed with UPLC (Fig. 1). The results lead to a conclusion that the necessary molar ratio of olefin to the ionic liquid to obtain almost 100% of the product is only 2.5.

In the next stage the impact of the presence of stabilizing 95 agents: EDTA and NaHCO₃ as well as water on the reactivity of olefin was checked (Table 2). It was confirmed that the base and water are necessary to keep the desirable pH of the reaction

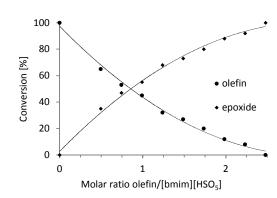


Fig. 1 Influence of the amount of the ionic liquid [bmim][HSO₅] on the conversion of 4-bromocinnamic acid and yield of epoxide in the presence of TFA and EDTA at RT

5 system (Table 2, entry 3). However, when the reaction is carried out in the presence of the [bmim][HSO₅] there is no need for further stabilization of dioxiranes by the EDTA complex.

Table 2. Influence of additives on the epoxidation of 4-bromocinnamic acid in the presence of TFA and [bmim][HSO₅]^a

No.	EDTA [ml]		Molar ratio olefin/NaHCO ₃		Conversion of olefin [%]	Yield of epoxide [%] ^b
1	_	_	15	5	3	4
1			15	30	6	6
2.	1	1	_	5	0	0
-	•	•		30	0	0
3	_	1	15	5	45	45
		1	13	30	100	99

 10 reaction conditions: olefin (0.10 g, 0.44 mol), NaHCO₃ (0.50 g, 6.60 mmol), 1 ml water, 1 ml water solution of EDTA (0.40 mol/dm³), TFA (0.24 g, 2.20 mmol), [bmim][HSO₅] (0.25 g, 1.10 mmol), RT; ^b yield and conversion were determined by UPLC

In the experiments presented above, the molar ratio of olefin to 15 TFA was 1:5. The possibility of lowering the amount of ketone was also checked (Table 3). It was found that 3 equivalents of 1,1,1-trifluoroacetone are enough to reach a full conversion of olefin after 30 minutes. It was proved by Shi et al. that TFA form much more stable dioxirane species comparing 20 dimethyldioxirane. Even catalytic amounts of ketone were enough to obtain a satisfactory conversion, although the reaction requires several hours to be completed. 19 The reaction without the addition of TFA does not occur what can be the proof of the necessity of formation of dioxirane during the reaction.

25 **Table 3.** Influence of the amount of TFA on epoxidation of 4bromocinnamic acid in the presence of NaHCO₃ and [bmim][HSO₅]^a

No.	Molar ratio olefin/TFA	Reaction time [h]	Conversion of olefin [%]	Yield of epoxide $[\%]^b$
1	5	0.5	100	99
2	3	0.5	100	99
3	2	0.5	90	91
4	1	0.5	60	60
5	<u>_</u> c	24h 24h	80 0	80 0

^a Olefin (0.10 g, 0.44 mol), NaHCO₃ (0.50 g, 6.60 mmol), 1 ml water, [bmim][HSO₅] (0.25 g, 1.10 mmol) RT; ^b yield was determined by UPLC; the reaction without TFA

The proposed mechanism for epoxidation of 4-bromocinamic with [bmim][HSO₅] as an oxidant is presented on the

scheme 3. In the first step the carbonyl group from TFA 1 is attacked by [HSO₅] peracid anion to form the intermediate 2. In the next steps the formation of dioxirane 4 occurs. In the end the 35 resulted dioxirane oxidises 4-bromocinnamic acid 5 to its epoxide

Scheme 3 Proposed mechanism for epoxidation of olefin with [bmim][HSO₅]

The new method has already shown a significant improvement in comparison with the conventional process of epoxidation it terms of yield and stabilization requirements. Another advantage of this method would be easy isolation of the product. After a simple aqueous work-up and extraction with ethyl acetate it is 45 possible to isolate the desired 3-(4-bromophenyl)oxirane-2carboxylic acid with 98% yield and 99% purity (determined by

Finally, the most active reaction system was examined in epoxidation of various olefins to determine its practical potential. 50 A few derivatives which are commonly used for this type of reaction were selected: styrene, stilbene, limonene, linalyl acetate and also steroid structure (IMDA). The yields of epoxides obtained in the reaction with a very strong oxidation agent mchloroperbenzoic acid (m-CPBA) were also presented for 55 comparison. Organic percarboxylic acids as typical oxidants are fairly expensive, often poorly-stable and hazardous, and this consequently limits their commercial application. Therefore, the new approach with relatively stable peroxy ionic liquids appears to be a very attractive alternative.

Styrene was oxidized to epoxide with the conversion of 60% in the presence of m-CPBA in 30 minutes. In comparison with the use of the liquid a complete conversion was observed peroxy ionic within the same period of time (Table 4, entry 2). Similar results were observed with epoxidation of limonene, where the 65 use of the ionic liquid improved conversion of the reaction. In this process conversion was not completed mainly due to the fact that bisoxidased products were formed during this reaction (Table 4, entry 3). In the oxidation of linally acetate improvements of both the reaction time and conversion in comparison to the 70 traditional method were observed (Table 4, entry 4). Stilbene was oxidized very rapidly (Table 4, entry 5). Just after 5 minutes a complete conversion was observed.

Encouraged with very good results we have tried to perform the reaction on more complex system. In case of steroid molecule 75 (iso-masticadienonic acid, Table 4, entry 6), the application of the Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Table 4 Epoxidation of selected olefins in the presence of TFA and [bmim][HSO₅]^a

No.	Olefin	Epoxide	Oxidising agent	Reaction time	Conversion of olefin [%] ^b	Yield of epoxide [%] ^b
l Br⁄		о о о о о о о о о о о о о о о о о о о	m-CPBA	30 min	80	80
	B		[bmim][HSO ₅]	30 min	100	99 (98)
2			m-CPBA	30 min	60	60
			[bmim][HSO ₅]	30 min	100	99 (85)
3			m-CPBA	1h	100	50°
			[bmim][HSO ₅]	1h	100	80^{c} (65)
4			m-CPBA	1h	90	90
			[bmim][HSO ₅]	10 min	100	99 (90)
5			m-CPBA	5min	20	20
			[bmim][HSO ₅]	5 min	100	99 (72)
6		Million Committee	m-CPBA	1h	100	99
			[bmim][HSO ₅]	20 min	100	99 (70)

^a Olefin (0.20 g, 0.88 mmol), NaHCO₃ (1.00 g, 12.12 mmol), 2 ml water, TFA (0.29 g, 2.64 mmol), [bmim][HSO₃] (0.50 g, 2.20 mmol), RT; ^b yield and conversion were determined by UPLC/MS, in the parenthesis isolated yields; 20% of bisoxidised product was observed (determined by NMR)

peroxy ionic liquid led to a 5-times shorter reaction time 5 comparing to peracid. It is also worth to mention that this type of derivatives are very attractive in terms of biological activity and epoxide can be treated as versatile reagent for further functionalization.

Conclusions

10 A new and effective method of epoxidation of olefins in the presence of 1,1,1-trifluoroacetone and versatile peroxy ionic liquid was developed. Peroxy ionic liquid based on the 1-methyl-3-butylimidazolium cation bears the peroxy function in the ion structure as peroxymonosulphate [HSO₅]. Peroxymonosulphate 15 ionic liquid does not contain the ballast of inorganic salts (KHSO₄ and K₂SO₄) against OxoneTM, which results in an easier

work-up and product purification. A ionic liquid acts as both and oxidant and a reaction medium. In this work it was demonstrated that using the developed method high yields of epoxides and 20 short reaction times can be reached. Forevermore, epoxides can be easily isolated from the reaction mixture by simple extraction.

Experimental

Materials

1-Butyl-3-methylimidazolium bromide, sulfuric acid, OxoneTM, 25 acetone. 1.1.1-trifluoroacetone. acetonitrile. 4-bromocinnamic acid, styrene, stilbene, limonene, linalyl acetate, NaHCO3, mchloroperbenzoic acid and EDTA were purchased from Sigma Aldrich. Iso-masticadienonic acid was purchased from Angene

International Limited. [bmim][HSO₅] was synthesized according to the literature procedure. 14

Instrumentation

The structure and purity of all the synthesized substances were 5 confirmed by the NMR analysis. ¹H NMR spectra were recorded Bruker 400 MHz in CDCl₃ or DMSO (internal standard TMS). All epoxides were characterised by comparing their NMR spectra with those of authentic samples. UPLC analyses were performed using a Shimadzu UPLC DAD detector and an Acquity UPLC 10 HSS C18 column (Waters, 50 mm x 2.1 mm x 1.8 μm).

Methods

General method of the epoxidation reaction with [bmim][HSO₅]: olefin (0.44 mmol) was suspended in 1ml of water followed by the addition of solid NaHCO₃ (6.60 mmol) and TFA (1.32 15 mmol). Next [bmim][HSO₅] (1.10 mmol) was added dropwise and the reaction was stirring at RT. Periodically, 20 µl of the samples diluted with 1.5 ml of acetonitrile/water mixture were collected during the reaction to monitor the progress of the reaction utilising UPLC. After the reaction was finished, the post-20 reaction mixture was filtered off and the residue was acidified with 1MHCl in the ice bath, then 3x20ml of ethyl acetate was added and extractions were performed. The organic layer was washed with brine and dried over Na₂SO₄. After evaporation of the solvent epoxides were obtained with 65-98% yields.

3-(4-bromophenyl)oxirane-2-carboxylic acid(1): ¹H NMR (400 MHz, DMSO) δ 13.30 (s, 1H), 7.58 (d, J = 8.5 Hz, 2H), 7.33 (d, J= 8.5 Hz, 2H, 4.14 (d, J = 1.8 Hz, 1H), 3.65 (d, J = 1.9 Hz, 1H).**2-phenyloxirane (2):** ¹H NMR (400 MHz, CDCl3) δ (ppm) 7.16-30 7.45 (m, 5H), 3.82(dd, J= 2.5 Hz,J= 4.3 Hz,1H), 3.16 (dd, J= 2.5 Hz, J=4.3 Hz, 1H), 2.82 (dd, J= 2.5 Hz, J= 4.3 Hz, 1H).

1-methyl-4-(prop-1-en-2-yl)-7-oxabicyclo[4.1.0]heptane ¹H NMR (400 MHz, CDCl3): δ (ppm) = 1.13-2.27 (m, 7H), 1.55 (bs, 3H), 1.71 (s, 3H), 3.02 (t, H, J = 5.5 Hz), 4.75 (s, 2H).

35 5-(3,3-dimethyloxiran-2-yl)-3-methylpent-1-en-3-yl (4): 1 H NMR (400 MHz, DMSO) δ 6.02 – 5.88 (m, 1H), 5.12 (ddt, J = 16.1, 11.0, 1.2 Hz, 2H), 2.66 (s, 1H), 1.96 (d, J = 0.7 Hz,3H), 1.94 - 1.74 (m, 2H), 1.48 (m, 5H), 1.20 (d, J = 15.6 Hz, 6H). **2,3-diphenyloxirane (5):** ¹H NMR (400 MHz, CDCl3): δ (ppm) 40 3.95 (s, 2H,), 7.40-7.8 (m, 10H).

2-methyl-3-[(4S)-4-[(2S,11S,15S)-2,6,6,11,15-pentamethyl-5oxotetracyclo $[8.7.0.0^2, 7.0^{11}, 1^5]$ heptadec-1(10)-en-14-yl]pentyl] oxirane-2-carboxylic acid (6): ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.11 (td, J = 1.3 Hz, 1H), 2.67 – 2.39 (m, 4H), 2.02 (ddd, J $_{45} = 20.3, 10.1, 6.2 \text{ Hz}, 6\text{H}), 1.94 (d, J = 1.3 \text{ Hz}, 3\text{H}), 1.83 - 1.61$ (m, 5H), 1.53 (ddd, J = 33.1, 18.6, 13.3 Hz, 6H), 1.35 (ddd, J =15.6, 12.3, 9.9 Hz, 1H), 1.26 (d, J = 7.0 Hz, 3H), 1.13 – 1.03 (m, 8H), 0.93 (dd, J = 15.8, 3.3 Hz, 7H), 0.78 (s, 3H).

Acknowledgements

50 This work was financed by the Polish National Science Centre (Grant no. UMO-2012/06/M/ST8/00030).

Notes and references

- ^a Silesian University of Technology, Faculty of Chemistry, Department of 55 Chemical Organic Technology and Petrochemistry, ul. Krzywoustego 4, Gliwice 44-100, Poland, Fax: 48 322371032; Tel: 48 322372917; e-mail: anna.chrobok@polsl.pl
- ^b Selvita S.A., ul. Bobrzyńskiego 14, 30-348 Kraków, Poland

- A. K. Yudin, Aziridines and Epoxides In Organic Synthesis, WILEY-WCH: Weinheim, 2006.
- a) H. Shi, S. Hong-Chang, X. Wang, R. Hua, Z. Zhang and J. Tang, Tetrahedron, 2005, 61, 1297; b) X. Wang, H. Shi, C. Sun and Z. Zhang, Tetrahedron, 2004, 60, 10993.
- 3. G. L. Adams, P. J. Carroll and A. B. Smith, J. Am. Chem. Soc., 2012, **134**, 4037.
- T. Hübscher and G. Helmchen, Synlett, 2006, 9, 1323.
- M. Seki, T. Furutani, R. Imashiro, T. Kuroda, T. Yamanaka, N. Harada, H. Arakawa, M. Kusamab and T. Hashiyama, Tetrahedron Lett., 2001, 42, 8201.
 - a) S. Ted Oyama, Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, Elsevier Science: Amsterdam 2008, p. 3-99; b) R. L. Davis, J. Stiller, T. Naicker, H. Jiang and K. A. Jørgensen, Angew. Chem., Int. Ed., 2014, 53, 7406.
 - Dan Yang, Acc. Chem. Res., 2004, 37, 497.
 - H. Hussain, I. R. Green and I. Ahmed, Chem. Rev., 2013, 113, 3329.
 - S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue and R. G. Wilde, J. Org. Chem., 1995, 60, 1391.
- 80 10 R. E. Montgomery, J. Am. Chem. Soc., 1974, 96, 7820.
 - 11. A. Chrobok, Synlett, 2011, 3, 391; A. Chrobok, Tetrahedron, 2010, 66. 6212.
- 12. S. Baj, A. Chrobok, and A. Siewniak, Appl. Cat. A: Gen., 2011, 395, 49
- 85 13. H. Olivier-Bourbigou, L. Magna and D. Morvan, Appl. Cat. A: Gen., 2010, 373, 1,
- 14. K. Matuszek, P. Zawadzki, W. Czardybon and A. Chrobok, New J. Chem., 2014, 38, 237.
- 15. J. Muzart, Adv. Synth. Catal., 2006, 348, 275.
- 90 16. D. Betz, P. Altmann, M. Cokoja, W. A. Herrmann and F. E. Kuhn, Coord. Chem. Rev., 2011, 255, 1518.
- 17. J. M. Crosthwaite, V. A. Farmer, J. P. Hallett and T. Welton, J. Mol. Catal. A: Chem., 2008, 279, 148.
- 18. S. Baj, M. Belch and M. Gibas, Appl. Catal. A: Gen., 2012, 433, 197.
- 19. a) S. Denmark, Z. Wu, C. M. Crudden and H. Matsuhashi, J. Org. Chem., 1997, 62, 8288; b) L. Shu and Y. Shi, J. Org. Chem., 2000, **65**, 8807.

A new method for the synthesis to epoxides in the presence of peroxy ionic liquids as an oxidiary grantful at of Chemistrage 6 of 6

1-butyl-3-methylimidazolium peroxymonosulphate