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Dislocation strain as the mechanism of phonon scattering at grain 
boundaries  

Hyun-Sik Kim,
a,b,c

 Stephen D. Kang,
a,b

 Yinglu Tang,
a,b

 Riley Hanus
a
 and G. Jeffrey Snyder*

a,b
 

Thermal conductivities of polycrystalline thermoelectric materials 

are satisfactorily calculated by replacing the commonly used 

Casimir model (freqeuncy-independent) with grain boundary 

dislocation strain model (frequency-dependent) of Klemens. It is 

demonstrated that the grain boundaries are better described as a 

collection of dislocations rather than perfectly scattering 

interfaces. 

Reduction of lattice thermal conductivity has been one of the 

most productive routes towards improving thermoelectric 

figure of merit
1
, zT = S

2
σT/κ where S, σ, T, and κ are the 

Seebeck coefficient, electrical conductivity, temperature and 

the thermal conductivity, respectively. The thermal 

conductivity, κ, can be attributed to heat transported along 

with the conduction of electrons and holes (κe), and from 

phonons (lattice vibrations) travelling through the lattice (κl). 

The lattice thermal conductivity, κl, can be suppressed with 

disorder among many length scales, ranging in size from as 

small as an atom (point-defect scattering) up to a few 

millimetres (boundary scattering)
2
. Especially, the effects of 

boundary scattering are of utmost importance for 

thermoelectric performance. 

Boundary scattering was first observed in a single crystal by de 

Haas and Biermasz
3
. The phonon scattering at sample 

boundaries was explained by Casimir
4
 who suggested that the 

phonon mean free path (MFP) could be approximated as the 

sample size (frequency-independent). The frequency 

independence of the Casimir model means that the sample 

boundaries are just as effective at limiting the MFP of short 

wavelength phonons as they are for long wavelength phonons. 

The Casimir model could be considered phenomenological, in 

the sense that it does not specify a real condition (at the 

atomic level) of the interface.  

Berman suggested that scattering of phonons at grain 

boundaries could limit the MFP the same way phonon 

scattering on sample boundaries did, and since then the grain 

size of polycrystalline materials has been adopted as the MFP 

in the Casimir model (also known as grey model)
5, 6

. Although 

it may be suitable to use sample dimension as the MFP due to 

perfect acoustic mismatch at perfectly rough sample surfaces, 

it is not entirely appropriate for grain size because adjacent 

grains have similar acoustic impedance.  

Recently, Wang et al. demonstrated that the grey model failed 

to explain the κl of nanocrystalline silicon
7
. At low temperature, 

it was observed that the measured κl followed a T
2
 trend 

instead of a T
3
, which was predicted in the grey model. This 

result implies a MFP that depends on frequency as 𝛬𝐵
−1~ 𝜔, 

Conceptual Insight 

For 50 years, we have commonly been using Casimir’s 

theory that describes the scattering of heat-carrying 

lattice vibrations (phonons) on the sample boundaries to 

also describe the reduction of thermal conductivity due to 

grain boundaries. In the frequency-independent Casimir 

model, phonons simply cannot travel across the 

boundaries, which is not the case in grain boundaries. This 

and a growing body of experimental and computational 

evidence shows that phonon scattering at grain 

boundaries is more complex than previously assumed. 

However, the precise mechanism of phonon scattering at 

grain boundaries is unknown. Here we show that 

frequency-dependent grain boundary dislocation strain 

scattering may be responsible. The conceptual insight 

here is that the grain boundary dislocation strain model 

can substitute for the Casimir model. More importantly, 

the two models can be distinguished at low temperature 

in fine-grained materials such that experimental evidence 

supports the grain boundary dislocation strain model. In 

this way, we suggest that grain boundaries themselves are 

best conceptualized as a collection of dislocations, which 

opens novel possibilities for materials design. 
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where ΛB and ω are the boundary scattering MFP and phonon 

frequency, respectively.  

Frequency-dependent ΛB was first introduced by Ziman in an 

attempt to apply the Casimir model to materials with real 

boundaries
8
. Roughness of sample boundaries was taken into 

consideration in a frequency-dependent specularity term 

included in the ΛB. However, the Ziman model did not predict 

𝛬𝐵
−1~ 𝜔; it can be considered a phenomenological term. Hua 

and Minnich
9
 successfully predicted Wang et al.’s results via 

Monte Carlo simulations which included frequency-dependent 

phonon transmissivity at grain boundaries
7
 (consistent with 

𝛬𝐵
−1~ 𝜔 ). The frequency-dependent interfacial (Kapitza) 

resistance of grain boundaries manifested itself even in 

molecular-dynamics simulations
10, 11

. For example, Young and 

Maris
12

 found phonon transmission coefficient decreasing with 

increasing frequency for the Kapitza resistance at an interface 

between two dissimilar solids. Moreover, the thermal 

conduction in thin films was commonly depicted with Fuchs-

Sondheimer equation with the frequency-dependent 

specularity term from the Ziman model
13-15

. Unfortunately, 

above models and simulations for frequency-dependent ΛB are 

only phenomenological without any mechanisms because they 

do not specify real conditions of the boundaries.  

In this work, we propose that interface scattering could be due 

to strain at grain boundaries described analytically as 

dislocation strain as formulated by Klemens 
16

. Here we show 

that the κl calculated previously with the grey model can be 

equally satisfactorily modelled with Klemens’ grain boundary 

dislocation scattering term by using appropriate value for 

dislocation density. A most promising example is a recent 

demonstration of exceptional zT (~1.86 at 320 K) in 

Bi0.5Sb1.5Te3 where grain boundary dislocations are produced 

by liquid-phase compaction
17

. The grey model plus dislocation 

scattering we used in Kim et al.
17

 is here entirely replaced by 

the dislocation scattering. The dislocation model demonstrates 

its superiority by predicting a T
2
 trend instead of the T

3
 of the 

grey model for the nanocrystalline silicon
7
 system of Wang et 

al..  

Finally we show that the Klemens model suggests dislocation 

boundary scattering can be enhanced by engineering 

compositional changes around dislocations in alloys as 

observed in silicon-germanium alloys
18-20

 (not predicted by 

Casimir model). 

Models for phonon scattering 

From the kinetic theory of gases, the lattice thermal 

conductivity (κl) can be expressed as arising from the heat 

capacity of phonons (C), phonon velocity (v), and total 

relaxation time (τtotal), as a function of ω such that  

𝜅𝑙 =  
1

3
∫ 𝐶(ω) 𝑣2(ω) 𝜏total(ω) 𝑑ω.         (1) 

Using the Debye model (phonon group velocity is constant), 

Callaway’s equation for the κl becomes   

𝜅𝑙 =  
𝑘𝐵

2𝜋2𝑣
(

𝑘𝐵𝑇

ℏ
)

3

∫
𝜏total(𝑧) 𝑧4𝑒𝑧

(𝑒𝑧−1)2

𝜃 𝑇⁄

0
𝑑𝑧,         (2) 

where kB, ℏ, θ, and z are the Boltzmann constant, reduced 

Planck’s constant, Debye temperature, and  ℏ𝜔/𝑘𝐵𝑇 , 

respectively
21

. The κl of a material can be calculated using eqn 

(2), once its τtotal (z) is determined from individual relaxation 

times (τi) for different scattering processes according to 

Matthiessen’s rule 

𝜏total(𝑧)−1 =  ∑ 𝜏𝑖(𝑧)−1
𝑖 = 𝜏𝑈

−1 + 𝜏𝑃𝐷
−1 + 𝜏𝐵

−1.         (3) 

Relaxation times associated with Umklapp scattering (τU), 

point-defect scattering (τPD), and frequency-independent 

boundary scattering (τB), which assumes completely inelastic 

(specularity zero) scattering at the grain boundaries are most 

commonly considered. The τB has been found to be a good 

model for surfaces (of nanowires for instance) where there is 

perfect acoustic mismatch at the interface between the 

material and vacuum. Frequency-independent τB is given by
22

 

𝜏𝐵
−1 =

𝑣

𝑑
 ,         (4) 

where d is the experimentally determined grain size. Umklapp 

scattering occurs when phonons in a crystal are scattered by 

other phonons. Its relaxation time is of the form
22

  

𝜏𝑈
−1 = 𝐴𝑁

2

(6𝜋2)1 3⁄

𝑘𝐵𝑉1 3⁄  𝛾2𝜔2𝑇

𝑀𝑣3
 ,          (5) 

where V, γ, and M are the atomic volume, Grüneisen 

parameter, and the atomic mass. The parameter AN takes 

normal phonon-phonon scattering (total crystal momentum 

conserving process) into account
23

. Point-defect scattering 

arises from an atomic size disorder in alloys. The disorder is 

described in terms of the scattering parameter (Г) within the 

τPD formula as
24

 

 𝜏𝑃𝐷
−1 =

𝑉𝜔4

4𝜋𝑣3
Г .         (6) 

In eqn (6), Г is related to the difference in mass (∆M) and 

lattice constant (∆a) between two constituents of an alloy as
25

 

Г = 𝑥(1 − 𝑥) [(
∆𝑀

𝑀
)

2
+

2

9
{(𝐺 + 6.4𝛾)

1+𝑟

1−𝑟
}

2
(

∆𝑎

𝑎
)

2
] ,          (7) 

where x and r are the fractional concentration of either of 

constituents and the Poisson ratio, respectively. The 

parameter (G) represents material dependent (∆K/K)(R/∆R) 

where ∆K and ∆R are the contrast in the bulk modulus and that 

in the local bond length, respectively. The G was regarded as 

an adjustable parameter in the calculation.  

Phonon scattering of dislocations in a grain boundary can be 

treated as resulting from scattering by dislocation cores (τDC) 

and by the dislocation strain (τDS) as
16, 26

 

𝜏𝐷𝐶
−1 = (

2

𝑠𝑑
)

𝑉4 3⁄

𝑣2 𝜔3 ,          (8) 

𝜏𝐷𝑆
−1 = 0.6 × 𝐵𝐷,𝑒𝑓𝑓

2 (
2

𝑠𝑑
) (𝛾 + 𝛾1)2𝜔 [

1

2
+

1

24
(

1−2𝑟

1−𝑟
)

2
{1 +

√2 (
𝑣L

𝑣T
)

2
}

2

],         (9) 
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where BD,eff, γ, γ1, vL, and vT are the magnitude of effective 

Burgers vector, Grüneisen parameter, change in Grüneisen 

parameter, longitudinal phonon velocity, and the transverse 

phonon velocity, respectively. The change in Grüneisen 

parameter (γ1) in 𝜏𝐷𝑆
−1 describes the modulation of solute 

atom concentration by strain fields around dislocations in 

alloys. Initially, Klemens derived eqn (8) and (9) for collections 

of single dislocations (with density ND) within a grain. As 

dislocations could be easily introduced into grains by 

deformation, Klemens’ equations were often used to compute 

κl of strained materials
27, 28

. When arrays of dislocations at 

boundaries (or interfaces) were found physically equivalent to 

a sum of individual dislocations within a grain
8
, κl reductions 

from dislocations, which originated due to lattice mismatch 

between thin film and substrate
29

, or between different 

phases in polycrystalline materials
30

 were explained by 

Klemens’ equations. Nevertheless, the consideration of the 

scattering effect of dislocation arrays at grain boundaries of 

single-phase polycrystalline materials has been scarce. Here 

we replace the density of dislocations per unit area (ND) used 

by Klemens with ND ≈ 2/(d × s), where d is the average grain 

size and s is the average spacing between dislocation cores in 

order to apply Klemens equations to phonon scattering of 

grain boundary dislocations where average grain size can be an 

observed parameter. 

 

Dislocation scattering can explain thermal conductivity without 

the need for boundary scattering 

Recently, a dramatic zT improvement in Bi0.5Sb1.5Te3 was 

attributed to substantially low κl
(17)

. In ref. 
17

 we showed that 

modelling the boundary scattering with the normally expected 

𝜏𝐵
−1 along with the experimentally determined 𝜏𝑈

−1 + 𝜏𝑃𝐷
−1 

was insufficient to explain the low κl of Bi0.5Sb1.5Te3 with dense 

dislocation arrays at grain boundaries. The additional 

scattering mechanisms, 𝜏𝐷𝐶
−1  and 𝜏𝐷𝑆

−1  from dislocations 

were required to explain the κl. In this section we show that 

within the range of physically reasonable parameters, once 

dislocation scattering is included, since an array of dislocations 

situated in the plane makes a grain boundary
31

 the traditional 

boundary scattering 𝜏𝐵
−1  is not necessary to satisfactorily 

model the data.  

In ref. 
17

 various forms of Bi0.5Sb1.5Te3 samples were 

considered to self-consistently model the κl. The parameters 

AN and G in 𝜏𝑈
−1 and 𝜏𝑃𝐷

−1 (eqn (5) and (6)), respectively 

were determined by fitting the modelled κl to the 

experimental κl of large grained (Bi1-xSbx)2Te3 alloys
32

 with 

varying x. The use of reliable literature values determined 

experimentally, eliminates or minimizes the parameters 

needed for the κl calculation. 

The κl of the samples fabricated via different processing routes 

(Ball milling: BM, melt spun with stoichiometric tellurium: S-

MS, and melt spun with excess tellurium: Te-MS) were 

modelled using the 𝜏𝐵
−1 expected from the average grain size 

(d) observed in the microscopy (“grey model” in table 1) where 

significant bipolar contributions (κbp) were present at high 

temperatures. For BM and S-MS samples, the scattering 

terms 𝜏𝑈
−1 + 𝜏𝑃𝐷

−1 + 𝜏𝐵
−1 were sufficient to explain the κl. 

However, the Te-MS required the introduction of dislocation 

scatterings 𝜏𝐷𝐶
−1 and 𝜏𝐷𝑆

−1 using values of the observed ND 

and the fitted BD,eff as listed in table 1, “grey + dislocation”. The 

fitted BD,eff was within reasonable expectation
33

, especially 

considering the compounding effect leading to reinforcement 

of grain boundary dislocation scattering expected by 

Klemens
16

. 

 

 

 

 

 

Table 1 Theoretical total relaxation rate (𝜏𝑡𝑜𝑡𝑎𝑙
−1) considered for grey model and GBDS model. 

Sample 

𝜏total(𝑧)−1 =  𝜏𝑈
−1 + 𝜏𝑃𝐷

−1 + 𝜏𝑖
−1 

grey model (“grey + dislocation” for Te-MS) GBDS model 

𝜏𝑖
−1 

BD,eff 

(Å) 

d 

(μm) 

s 

(nm) 

ND 

(cm
-2

) 
𝜏𝑖

−1 
BD,eff 

(Å) 

d 

(μm) 

s 

(nm) 

ND 

(cm
-2

) 

BM 𝜏𝐵
−1 - 20 - - 𝜏𝐷𝐶

−1 + 𝜏𝐷𝑆
−1 12.7 20 9.1 1.1×109 

S-MS 𝜏𝐵
−1 - 0.3 - - 𝜏𝐷𝐶

−1 + 𝜏𝐷𝑆
−1 12.7 0.3 21.5 3.1×1010 

Te-MS 𝜏𝐵
−1 + 𝜏𝐷𝐶

−1 + 𝜏𝐷𝑆
−1 12.7 0.3 3.3 2.0×1011 𝜏𝐷𝐶

−1 + 𝜏𝐷𝑆
−1 12.7 0.3 3.0 2.2×1011 

 Fig. 1 Lattice and bipolar contribution to thermal conductivity of BM, S-MS, and Te-MS 

samples. Filled circle – experimental data, empty diamond – frequency-independent 

boundary scattering model (grey model), and solid line – grain boundary dislocation 

strain scattering model (GBDS model).  

 

Now that we have concluded that  𝜏𝐷𝐶
−1 and  𝜏𝐷𝑆

−1 are 

required to model some of the grain boundary scattering in 

some samples, we can explore the possibility of this 

mechanism replacing the 𝜏𝐵
−1 term entirely to model all of the 

boundary scattering in all the samples studied.  
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Indeed, an equally satisfactory model exists by entirely 

replacing the 𝜏𝐵
−1 term in 𝜏𝑡𝑜𝑡𝑎𝑙

−1 of BM, S-MS, and Te-MS 

with 𝜏𝐷𝐶
−1 and 𝜏𝐷𝑆

−1 by using reasonable values of BD,eff and 

ND as shown in Table 1 (“GBDS model”). The scattering from 

strain field induced by the dislocations is stronger than that 

from dislocation cores
16

. Therefore the scattering by grain 

boundary dislocations (from both strain field and cores) is 

termed as grain boundary dislocation strain (GBDS) scattering 

for simplicity. The BD,eff and γ1 values were kept unchanged 

from those acquired for Te-MS in the “grey + dislocation”. 

There are different kinds of grain boundaries, consisting of 

different kinds of defects, that produce the strain that scatters 

phonons. Nevertheless, it has been suggested that most if not 

all defects at grain boundaries can be described as some 

combination of dislocations
16, 34-39

. Even if all types of grain 

boundaries cannot be entirely defined by dislocations, the 

usefulness of GBDS model requires only that dislocation strain 

is a dominant mechanism for boundary scattering. 

Smaller grain size, d, which leads to increased scattering 

in  𝜏𝐵
−1 (“grey model”) translates into a larger dislocation 

density (ND) in “GBDS model” (Table 1). Besides, the stronger 

GBDS (given the same d) which could not be described in 

terms of phenomenological 𝜏𝐵
−1 was taken into account in a 

greater ND. Therefore, ND for different samples were fit to the 

experimental κl (κbp is the same for both models) whose 

numbers are given in Table 1 (“GBDS model”).  

Previously, the ND estimated from experimentally determined 

dislocation spacing in Te-MS and used in “grey + dislocation” 

was 2.0×10
11

 (cm
-2

) (ref. 
17

), but with only a 10% increase in ND, 

2.2×10
11

 (cm
-2

) (which is still physically reasonable), we can 

equally adequately describe the exceptionally low κl of Te-MS 

using “GBDS model” (orange solid line in Fig. 1). As anticipated, 

much weaker scatterings from GBDS in BM and S-MS are 

manifested in their fitted ND (Table 1), which are one or two 

orders magnitude smaller than that of Te-MS while in the 

range expected for polycrystalline materials
40

. Similar results 

can be applied to PbTe given removing boundary scattering by 

GBDS scattering can sufficiently explain the data like we show 

in Bi-Sb-Te. 

Effect of scatterings from dislocation cores and strain field can 

be best understood when the spectral thermal conductivity 

(κs) is plotted. 

𝜅𝑠 =
3𝑘𝐵𝜔2

2𝜋2𝑣
𝜏(𝜔)         (10) 

As described in the κs for S-MS (Fig. 2), while Umklapp 

scattering is effective in all frequency range, point defect 

scattering and boundary scattering (frequency-independent) 

only scatter high and low frequency phonons, respectively. 

Similar to the boundary scattering (green line – grey model), 

dislocation cores and strain field scatterings reduce thermal 

conductivity at low frequencies (orange line – GBDS model). 

Although the κs curves for the grey model (green curve fig 2) 

and the GBDS model (orange curve fig 2) do not coincide 

exactly in Fig. 2, their κl agree well (green curves Fig 1) with 

each other because the κl is the area under the κs curve.   
 

 

Fig. 2 Spectral thermal conductivity of S-MS. U (Umklapp), PD (Point-Defect), and B 

(frequency independent Boundary scattering) are accounted for the calculation. For 

grey model, U, PD, and B are considered as relevant scattering mechanisms (green solid 

line). Meanwhile, in GBDS model B has entirely been replaced by DC and DS (orange 

solid line).  

 

Dislocation scattering model superior to boundary scattering 

model at low temperatures 

In a recent study by Wang et al. on nanocrystalline Si
7
, it was 

shown that the traditional frequency-independent boundary 

scatterings fails to correctly predict the observed κl, even 

qualitatively. The grey model predicts a T
3
 temperature 

dependence (green dotted line in Fig. 3) while the 

experimental measurements show a temperature dependence 

closer to T
2
 at low temperatures. 

Wang et al. were able to predict a T
2
 temperature dependence 

using Born von Karman (BvK) model (group velocity is not 

constant), along with frequency-dependent boundary 

scattering relaxation rate (𝜏𝐵,𝜔
−1) approximated as 

𝜏𝐵,𝜔
−1 = 𝑐

𝑣𝜔

𝑑
 ,          (11) 

where c is the dispersion relation dependent constant. The 

model in ref. 7, however, is phenomenological in that no 

mechanism was given for the frequency dependence. 

Here we propose that GBDS may be the mechanism that leads 

to the frequency dependence. Because the GBDS model 

includes both a dislocation strain field term with ω 

dependence and a dislocation core term with ω
3
 dependence 

(for scattering relaxation rates) it cannot exactly reproduce the 

model in ref. 7, instead we show the GBDS model gives a 

satisfactory fit (Fig. 3). All the parameters and constants from 

Debye model in ref. 7 were re-utilized except for the boundary 

scattering, which was replaced by 𝜏𝐷𝐶
−1 and 𝜏𝐷𝑆

−1. The γ1 for 

Si was taken to be zero as Si is not an alloy, and for simplicity, 

lattice constant of Si (5.4 Å) was substituted for BD,eff. Similar to 

the (Bi0.25Sb0.75)2Te3 case, the dislocation spacing (s) was 

adjusted to match the experimental results. The fitted s (0.76 ~ 

0.94 nm) for nanocrystalline Si was still above the minimum 

theoretical dislocation spacing (lattice constant ~ 0.5 nm). The 

fit is nearly as good as the frequency-dependent BvK model in 
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ref. 7 suggesting dislocation scattering may be the underlying 

mechanism in κl reduction due to grain boundary scattering. 

Fig. 3 Lattice contribution to thermal conductivity of various Si samples. Si single (Si 

single crystal), Si 550 (nanocrystalline Si with 550 nm average grain size), Si 114 

(nanocrystalline Si with 114 nm average grain size), and Si 76 samples (nanocrystalline 

Si with 76 nm average grain size) are plotted. Filled circle – experimental data, dashed 

line – Wang and Dames’ Born von Karman model using frequency-dependent boundary 

scattering model (“BvK-ω model”), and solid line – Wang and Dames’ Debye model 

using our GBDS scattering model in lieu of Wang and Dames’ frequency-dependent 

boundary scattering model (“Debye-GBDS model”). For comparison, Wang and Dames’ 

Debye model using frequency-independent boundary scattering (“Debye-grey model”) 

for Si 550 is plotted in green dotted line.  

 

Alloys 

Experimental κl data of Si-Ge alloys by Savvides and Goldsmid
18, 

19
 were also examined to show that the GBDS model can 

replace the grey model completely, which also revealed a new 

strategy for further suppressing κl. This mechanism utilizes the 

change in Grüneisen parameter that accompanies the 

compositional changes around dislocations in alloys. 

The change in Grüneisen parameter (γ1) of  𝜏𝐷𝑆
−1 can 

strengthen or weaken the scattering due to GBDS depending 

on mass and volume mismatch between constituents of the 

alloy. The γ1 can be estimated as 

𝛾1 =
𝑉𝑐0𝐾

𝑘𝐵𝑇𝑎

(𝛾𝛼2 − 𝛼𝛽) ,         (12) 

with α and β being  

𝛼 =
(𝑉′−𝑉)

𝑉
,       𝛽 =

1

2

(𝑀−𝑀′)

𝑀
 ,        (13) 

where V’, V, M’, M, K, c0, and Ta are the atomic volume of 

impurity, that of host, average atomic mass of impurity, that of 

host, bulk modulus of host, concentration of impurity in the 

alloy and the sample annealing temperature, respectively. For 

Te-MS, which is a (Bi0.25Sb0.75)2Te3 alloy, the theoretical γ1 is 

positive reinforcing the GBDS scattering
17

. 

Savvides and Goldsmid
18, 19

 compared the relative change in κl 

from nanostructuring for different Si-Ge alloy compositions. In 

particular, they plotted the κl ratio of polycrystalline Si-Ge with 

different grain sizes (containing boundaries and point defects, 

κPD,B) relative to that of single crystal alloy (containing only 

point defects, κPD). Simply comparing two 30% alloys (Fig. 4) 

cannot provide any information on relative strength of the 

boundary scatterings in the alloys since the Fig. 4 plots the 

ratio of κPD,B and κPD. In fact, according to Savvides and 

Goldsmid’s calculated κPD,B / κPD using the grey model (dashed 

lines in Fig. 4), less intense point-defect scattering in Si0.7Ge0.3 

was held responsible for the lower κPD,B / κPD of Si0.7Ge0.3.  

Replacing the 𝜏𝐵
−1 in the Savvides and Goldsmid’ model with 

the GBDS model, a reasonable fit to the experimental data was 

achieved (solid lines in Fig. 4) considering the uncertainty 

involved in determining the size of the grains (represented 

with error bars in Fig. 4).  

For Si0.7Ge0.3 and Si0.3Ge0.7, s = BD,eff = 7 Å (in eqn (8) and (9)) 

was adopted to produce the solid lines in Fig. 4. Even if the 

effective Burgers vector is larger than that normally expected 

for Si and Ge (5.4 Å and 5.5 Å, respectively), given the 

uncertainty of the models, we can still deduce that the GBDS 

model can provide an alternative to the Casimir model for 

boundary scattering.  

If GBDS is indeed the correct mechanism for boundary 

scattering, the Klemens theory implies that the scattering due 

to impurity modulation around grain boundary dislocation 

strain field in Si-Ge alloys plays a vital role in further reducing 

the κl. The change in Grüneisen parameter (γ1 in eqn (12)) of 

the Si-Ge alloys increase the overall Grüneisen parameter (γ + 

γ1) in eqn (12) by 3.4 times for Si0.7Ge0.3 and about 2.1 times 

for Si0.3Ge0.7 reinforcing GBDS scattering accordingly. Now that 

the increased GBDS scattering becomes the dominant 

scattering mechanism, the discrepancy in κPD,B / κPD for the two 

30% alloys can be explained with the degree of impurity 

modulation (γ1). The theoretical γ1 for various thermoelectric 

materials are listed in Table 2.  

 

Fig. 4 Ratio of thermal conductivities whose departure from unity measures the 

boundary scattering effect. The ratio between κPD,B (κl where point-defect and 

boundary scatterings are present) and κPD (κl where only point-defect scattering is 

present) for different grain sizes (d) is shown at 300 K. Plots in orange are for Si0.3Ge0.7 

alloy and blue for Si0.7Ge0.3 alloy. Filled circle – experimental data, dashed line – 

Savvides and Goldsmid’ model using grey model (grey model), and solid line – Savvides 

and Goldsmid’ model using our GBDS scattering model in lieu of the grey model (GBDS 

model).  
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Table 2 Theoretical change in Grüneisen parameter (γ1) for thermoelectric materials. 

Material
 

α β γ K (GPa) Ta (K) γ1 (γ + γ1) / γ 

(Bi0.25Sb0.75)2Te3  0.09 a) -0.18 2.3 b) 45 d) 753 c) 1.1 1.49 

PbTe0.75Se0.25 
-0.15 a) 0.07 1.45 a) 39 d) 700 e) 1.4 1.99 

Pb0.97Mg0.03Te 
-0.02 a) 0.27 1.45 a) 39 d) 700 e) 0.03 1.02 

Si0.7Ge0.3 
0.13 f) -0.79 0.56 a) 98 d) 1200 g) 1.3 3.32 

Si0.3Ge0.7 
-0.12 f) 0.31 0.76 a) 75 d) 1200 g) 0.8 2.07 

Mg2Si0.7Sn0.3 
0.19 a) -0.09 1.32 a) 49 d) 1000 h) 1.6 2.20 

Taken from: a)ref. 22; b)ref. 41; c)ref. 17; d)ref. 42; e)ref. 43; f)ref. 44; g)ref. 45; h)ref. 46 

Conclusions 

In summary, straightforwardly applicable frequency-

dependent phonon scattering due to dislocation strain in grain 

boundaries (GBDS model) can replace the most commonly 

used frequency-independent boundary scattering (grey model) 

to accurately predict the κl. Although the grey model is in wide 

use, it has been difficult to align with observed phenomena. 

The theoretical κl of Bi-Sb-Te, Si, and Si-Ge previously modelled 

with grey model were recalculated using GBDS model with 

equally satisfactory results. At low temperatures, boundary 

scattering is better described with scattering due to GBDS. We 

revisited Wang et al.’s thermal conductivity calculation (Debye 

model) using frequency-independent boundary scattering (~T
3
) 

which deviated from experimental thermal conductivity (~T
2
) 

at low temperatures. Accuracy of the Debye model is much 

improved when frequency-independent boundary scattering is 

changed to GBDS scattering. It is concluded that the scattering 

from GBDS is the more likely mechanism for the grain 

boundary scattering than the grey model derived for boundary 

scattering at the sample boundaries. Strengthening of the 

GBDS scattering via impurity modulation around dislocations 

in alloys opens possibilities for grain boundary engineering as a 

means toward more efficient thermoelectric materials. 
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