MedChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/medchemcomm

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

In silico-driven multicomponent synthesis of 4,5- and 1,5disustituted imidazoles as indoleamine 2,3-dioxygenase inhibitors

S. Fallarini,[†] A. Massarotti,[†] A. Gesù, S. Giovarruscio, G. Coda Zabetta, R. Bergo, B. Giannelli, A Brunco, G. Lombardi, G. Sorba and T. Pirali^{*}

Indoleamine 2,3-dioxygenase is involved in pathological immune escape and has recently become an attractive target anti-cancer therapy. 4-Phenylimidazole (4-PI) provides a promising starting point for the development of IDO1 inhibitors. With the aim of discovering more potent ligands, a virtual library of imidazoles synthesizable *via* the van Leura multicomponent reaction was created and filtered to afford a set of 4,5- and 1,5-disubstituted imidazoles as virtual lea candidates. The compounds were selected according to their docking score and to their synthetic feasibility, synthesized and biologically evaluated. This experimental approach yielded IDO1 inhibitors with enhanced potency compared to 4-Pi the most active compounds displayed low micromolar potency, both in enzymatic and cellular assay, while showing detectable cellular toxicity. A 3D quantitative structure-activity relationship based on the electrostatic and steric ligandprotein interactions was performed.

Introduction

The kynurenine pathway is the main route for the oxidative degradation of the amino acid tryptophan, and indoleamine 2,3-dioxygenase (IDO) catalyzes the first and rate-limiting step along this pathway.¹ Over the years, this enzyme has evolved conceptually from a simple tryptophan-catabolizing enzyme into an important player in tumor immune escape.² IDO1 inhibitors have recently been identified as a priority in translational research by the immune response modifier pathway prioritization working group from the NIH.³ Indeed, several studies have offered evidences that IDO1 inhibition by small molecule inhibitors can exert anti-tumor effects, improving the efficacy of vaccination, chemotherapy or radiationtherapy.⁴ As a possible drug development target, IDO1 has a number of appealing features. An Ido1 gene knockout mouse has been reported to be viable and healthy, indicating that IDO1 inhibitors will be unlikely to produce severe mechanism-based side-effects; tryptophan and kynurenine, the upstream substrate and downstream product of the IDO1-catalyzed reaction, may serve as biomarkers to monitor disease progression and response to therapy with IDO1 modulators; small-molecule inhibitors of IDO1 offer substantial cost advantages compared to biological or cellbased therapies that aim at modulating immune response; last, crystal structure of IDO1 has been solved⁶ and this discovery has paved the way for computer-guided design and the synthesis of novel inhibitors. In this regard, the crystal structure of human IDO1 shows one binding pocket in the distal heme site (pocket A), connected to a second pocket towards the entrance of the active site (pocket B).

In 1989 4-phenylimidazole (4-PI, **1**, Fig. 1) was identified as a weak non-competitive inhibitor of IDO1⁷ and in 2006 X-rc, crystal structure of human IDO1 complexed with this ligand inhibitor was published,⁶ showing that the imidazole is coordinated to the heme iron projecting its phenyl ring towards pocket A (Fig. 2). No other specific interactions with the enzyme were described, which explains the relative low potency of this inhibitor.

5 IC₅₀ = 0.077 μM

Fig. 1 Representative reported imidazoles as IDO1 inhibitors.

4 IC₅₀ < 1 μM

HEMISTR

as a X-r.c., igand le is ring with a low

^{a.} Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2 28100 Novara, Italy.

[†] These Authors contributed equally to this manuscript.

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

ARTICLE

Fig. 2 Compound **1** bound to heme iron of IDO1. Heme depicted as grey sticks, compound **1** as cyan sticks. Red mesh: pocket A; green mesh: pocket B (PDB code: 2DOT).

In 2008, Newlink Genetics described the generation of 4-PI derivatives by introduction of substituents on the phenyl ring of 1: interestingly, the introduction of a hydroxyl group in the 2'-position led to 10-fold higher potency at IDO1 inhibition compared with 4-PI, thanks to additional interactions with Ser167 in the interior of the IDO1 active site (2, Fig. 1).⁸ Next year, the same company reported a large number of variously substituted 4-arylimidazoles together with a small set of 1,5disubstituted imidazoles, showing at best IC₅₀ values less than $20 \ \mu M.^9$ Taking advantage of these results, in a 2011 application an extensive series of compounds displaying Osubstituted 2'-hydroxyl-4-phenylimidazoles was described featuring a long extension into the B pocket, with an IDO1 inhibition in the nanomolar range (3, Fig. 1).¹⁰ Finally, in 2012 a large number of fused phenyl-imidazoles was reported (4, Fig. 1),¹¹ leading to the identification of NLG919 (undisclosed structure, IC_{50} = 28 nM), an orally available IDO1 inhibitor that has recently entered Phase I clinical trials.¹² Recently, the X-ray structure of IDO1 bound to a novel imidazothiazole inhibitor (PDB id: 4PK6) became available, showing that both pockets A and B are occupied.¹³ The most active compound described herein is 5 (Fig. 1), which displays a nanomolar potency thanks to the generation of an induced fit and the resulting interaction with Phe226 and Arg231. All these reported data point out the phenylimidazole scaffold as a promising starting point for the development of IDO1 inhibitors; indeed, its binding mode to the active site is known through X-ray crystallography, rational structural modifications of the imidazole ring have been shown to be feasible, and reasonable SAR studies are observed.

Driven by high atom and step economy, multicomponent reactions (MCRs) have emerged in the last 15 years as perfectly suited tools for the synthesis of collections of drug-like compounds to be used in hit to lead discovery.¹⁴ In this context, our research team has successfully applied MCRs to the discovery of biologically active compounds.¹⁵ In this work, we report the synthesis of 4-PI analogues *via* the van Leusen MCR, the most straightforward methodology to access to

functionally rich imidazoles known to date.¹⁶ This transformation can be exploited in the synthesis of four different series of compounds: 1,4,5-trisubstituted, 1,5- 1 1 and 4,5-disubstituted imidazoles (Scheme 1).

SO₂Tol R₁ NC + R₂−CHO + R₃−NH₂ R a) R₁, R₂, R₃≠H

Scheme 1 The van Leusen multicomponent reaction.

The van Leusen reaction represents an efficient and mild. protocol for preparing polysubstituted imidazoles in a sin pot and in a completely regioselective manner from TosMIC reagents and imines generated in situ from an aldehyde and an amine. The utility of this transformation in medicinal chemistry is exemplified by the multi-kilogram scale synthesis of a potent and selective p38 kinase inhibitor that was promoted to Phase III clinical trials by Glaxo-Smith-Kline.¹⁷ Due to the availability of many *a*-substituted TosMIC compounds, aldehydes and amines, the accessible imidazole chemical space is huge. However, it is neither practical nor possible to synthesize al interesting molecules and put them into a large compound repository. A promising and complementary strategy which leverages the strength of MCR chemistry and its exploratory power is the use of computational screening, and in particula of a structure-based virtual screening approach.

Results and Discussion

Virtual Screening

We have generated a virtual library of imidazoles synthesizable via the van Leusen MCR, developed a protocol for the structure-based virtual screening of these compounds toward IDO1, screened and filtered the virtual library, and identified (set of virtual lead candidates. The virtual library has beer created using an in house enumerating script built in perl. All starting materials, we have collected all the aldehydes, aminer and TosMIC compounds available from chemical vendors. The structures were downloaded using their web-based interfac, considering 300 Daltons the upper limit for the molecular weight. Using these criteria, we retrieved about 1,000, 1,000 and 50 compounds for aldehydes, amines and TosMIC reagents, respectively. The theoretical chemical space of this virtual library was 50,000,000. The library was filtered for drug-like compounds and a conformer library was generated with the program OMEGA2.¹⁸ The FRED software¹⁹ was used in order to dock all the compounds in the IDO1 binding site and the simulated binding energy was used to rank them all. Laci, an experienced medicinal chemist selected a set of virtual le d candidates according to their docking score and to their synthetic feasibility. The visual inspection of the ranker compounds revealed that all 1,4,5-trisubstituted and 1,4disubstituted imidazoles were discarded, suggesting that thei

Journal Name

c) R₂ = H; R₁, R₃ ≠

b) $R_1 = H; R_2, R_3 \neq H$ **d)** $R_3 = H; R_1, R_2 \neq H$

substitution patterns suffer from steric hindrance compared to 1,5- and 4,5-disubstituted imidazoles and are not suitable for interaction with IDO1 binding site. 4,5-Disubstituted imidazoles display better docking poses and fifteen structures were selected (Table 1, 6-20), while only ten 1,5-disubstituted imidazoles were considered (Table 1, 21-30). Figure 3 depicts a docking pose of compound 15, which shows one of the lowest score. 3-Bromophenyl ring is accommodated in the narrow and hydrophobic pocket A (Tyr126, Cys129, Val130, Phe163 and Phe164), while the more steric hindered pacetamidophenyl substituent can fit in the extended pocket B (Phe226 and Arg231). The docked pose of the selected compounds shows that, while they all occupy both pockets A and B, the imidazole ring is oriented very differently relative to the heme group and is not always able to form a strong nitrogen-iron bond. A figure depicting all docking results of the synthesized compounds is available in the Supplementary Information.

Fig. 3 Docked pose of compound 15 (cyan sticks). Pocket A is depicted as red lines, pocket B as green lines.

Chemistry

4,5-Disubstituted imidazoles were synthesized starting from α substituted TosMIC derivatives **h-n**. Interestingly, even these precursors were prepared by a three-component reaction, where *p*-toluensulphinic acid, aldehyde and formamide reacted in the presence of TMSiCl in toluene and acetonitrile to yield formamides **a-g** (see Supplementary Information). Subsequent dehydration performed with phosphorous oxychloride and triethylamine in THF gave access to the α functionalized TosMIC derivatives **h-n**, stable crystalline and easily-handled compounds (Scheme 2) (see Supplementary Information).²⁰

Scheme 2 Preparation of α-substituted TosMIC derivatives. Reagents and conditions: (a) TMSiCl, acetonitrile, toluene, 50 °C; (b) POCl₃, TEA, THF, -10 °C.

4,5-Disubstituted imidazoles (6-20, Table 1) were synthesized replacing primary amines with aqueous ammonium hydroxide (Scheme 3).²¹

Scheme 3 Synthesis of 4,5-disubstituted imidazoles. Reagents (conditions: (a) Piperazine, NH₄OH aq. 30%, THF, rt.

Different functionalities could be accommodated in this mild basic process (acetamido, hydroxyl, halogen, metho.., trifluoromethoxy groups). The reaction provided the desired imidazoles in moderate (7, 10, 13, 15, 17, 19, 20) to excellent (6, 11, 12, 16) yields, while in some cases the yields were poor (8, 9, 14, 18). The transformation worked with both aryl- all heteroaryl- (20) substituted TosMIC reagents. While o fluorophenylsubstituted TosMIC derivatives underwent clear cycloaddition to form the corresponding imidazoles (10-12), o methoxy- and o-chlorophenylsubstituted TosMIC reagents gave lower yields (13, 14, 18), which can be attributed to the increased congestion surrounding the benzylic carbon. Regarding the carbonyl counterpart, both aryl and benzyl (14 aldehydes were used, while electron-poor aldehydes (8, 9) reacted sluggishly.

1,5-Disubstituted imidazoles (**21-30**, Table 1) were synthesized using TosMIC itself, aryl aldehydes and primary aliphatic amines in the presence of dimethylformamide as solvent and potassium carbonate as mild base (Scheme 4). The reaction was compatible with different functional groups (halogen, hydroxyl, secondary amine, acetamido, methoxy moieties) leading to the desired imidazoles in moderate yields unde protecting group-free conditions.

Scheme 4 Synthesis of 1,5-disubstituted imidazoles. Reagents and conditions: (a) K_2CO_3 , DMF, rt.

Biological Evaluation and Structure-Activity Relationships (SAR Findings

Cytotoxicity. The measurement of cell viability is mandator / when reporting cellular IDO1 inhibitory activity, because the observed reduction of tryptophan degradation could simply be an effect of cytotoxicity. Thus, we decided to first investigate the cytotoxicity of all the synthesized compounds on A375 cell line. Cells were treated (48 h) with increasing concentration

ARTICLE

Journal Name

(0.01-100 μ M) of each compound and cell viability was measured by MTT assay. As shown in Table 1, the compounds **24-26**, **29** and **30** affected cell viability at the highest concentration tested (100 μ M), while the other compounds resulted non-cytotoxic and biocompatible at all concentrations tested. These results prompted us to subject each compound to further biological evaluation and to use them up to 30 μ M, a non-cytotoxic concentration for all compounds in this cell line.

Cellular IDO1 inhibitory activity. The ability of each compound to inhibit human IDO1 activity was first determined in an in vitro cell-based assay, which evaluates not only the inhibitory effect of the compounds, but also their capacity to permeate the cell membrane. IDO1 expression was induced in A375 cells by IFN- γ (500 U/mL) treatment (48 h) and enzymatic activity was determined by measuring the formation of the Lkynurenine (L-KYN) product by high-performance liquid chromatography (HPLC) method. IFN- γ treatment induced the expression of functional IDO1 in A375 cell line, consequently resulting in L-KYN release in the cell culture supernatant (data not shown). The ability of increasing concentrations (0.01-30 μM) of each compound to inhibit IFN-γ-mediated L-KYN production was therefore determined. Results are shown in Table 1 (see Supplementary Information for cellular concentration-response curves).

Compounds 6-11, 15-18, 20 and 21 resulted active as IDO1 inhibitors; in detail, compounds 6, 8-11, 15-16, 20 and 21 showed IC₅₀ values less than 5 μ M, while compounds 7, 17 a c 18 showed IC₅₀ values greater than 5 μ M. The most poten, IDO1 inhibitor was compound 8 with an IC₅₀ of 1.5 μ M. No inhibition was observed for compounds 12-14, 19 and 21-34 up to the highest tested concentration of 30 μ M. Surprisingly 1, that is reported to display a good inhibitory activity in enzymatic assay,⁸ did not exhibit inhibitory activity on IDO1 in cellular assay at any tested concentration. These data has shown the predictively limitation of our virtual screening protocol considering that several top ranked compounds have not IDO1 inhibitory capability.

Regarding 4,5-disubstituted imidazoles, all substitutions ir. *ortho* position of the phenyl ring reduce the IDO1 inhibite activity (**10-14**, **18**, **19**). Substitutions in *meta* positions are tolerated (**6-9**, **15-17**) and the presence of halogens yierus better IDO1 inhibitors (**8**, **9**, **15**, **17**). Substituents in *para* position are compatible with the binding pocket (acetamido methoxy, hydroxyl, trifluoromethoxy groups), leading to a wide variability of IC₅₀ values, ranging from 2.9 μ M (**15**) to no detectable activity (**12**, **13**, **19**) according to the substitution pattern of the other phenyl ring. 1,5-Disubstituted imidazoles are inactive, with the only exceptions of **21**.

Table 1 Cytotoxicity and cellular IDO1 inhibition activity of **1** and the synthesized compounds.

Cpd	Yield (%)	R ₁	R ₂	R ₃	Cell viability (%) at 100 μM ± S.E.M.	IC₅₀ (μM)
1	-	Phenyl	Н	Н	100 ± 5.1	>30
6	84	Phenyl	4-Hydroxy-3-methoxyphenyl	н	97 ± 5.6	3.5 ± 0.6
7	53	Phenyl	3,4-Dihydroxyphenyl	н	100 ± 8.4	6.3 ± 1.2
8	35	Phenyl	3-Bromophenyl	н	96 ± 8.6	1.5 ± 0.1
9	32	Phenyl	3-Chlorophenyl	н	97 ± 10.5	1.7 ± 0.1
10	54	2-Fluorophenyl	4-Acetamidophenyl	Н	100 ± 2.5	4.7 ± 0.8
11	98	2-Fluorophenyl	3-Hydroxy-4-methoxyphenyl	н	100 ± 4.3	4.9 ± 1.1
12	80	2-Fluorophenyl	4-Hydroxyphenyl	н	98 ± 3.6	>30
13	58	2-Chlorophenyl	4-Methoxyphenyl	н	100 ± 8.6	>30
14	19	2-Chlorophenyl	Benzyl	Н	98 ± 10.4	>30
15	44	3-Bromophenyl	4-Acetamidophenyl	н	100 ± 9.8	2.9 ± 0.5
16	95	3-Methylphenyl	4-Hydroxy-3-methoxyphenyl	н	98 ± 9.5	3.8 ± 1.2
17	64	3-Methylphenyl	3-Bromo-4-Hydroxyphenyl	н	100 ± 7.2	5.4 ± 1.1
18	32	2-Methoxyphenyl	3-Hydroxy-4-methoxyphenyl	н	99 ± 7.4	7.2 ± 1.2
19	48	2-Methylphenyl	3-Hydroxy-4-methoxyphenyl	н	100 ± 3.2	>30
20	40	Thiophen-3-yl	4-Trifluoromethoxyphenyl	н	98 ± 6.8	2.1 ± 0.8
21	49	н	5-Bromo-2-hydroxyphenyl	2-(Naphthalen-1-ylamino)ethyl	98 ± 10.3	3.4 ± 0.9
22	35	н	4-Methoxynaphthalen-1-yl	2-(Naphthalen-1-ylamino)ethyl	97 ± 7.2	>30
23	44	н	4-Phenoxyphenyl	2-(Naphthalen-1-ylamino)ethyl	100 ± 10.2	>30
24	30	н	4-Bromophenoxy)phenyl	2-(Naphthalen-1-ylamino)ethyl	22 ± 4.2	>30
25	35	н	2,6-Difluoro-3-hydroxyphenyl	2-(Naphthalen-1-ylamino)ethyl	53 ± 9.8	>30
26	47	н	3,5-Dibromo-2-hydroxyphenyl	2-(Naphthalen-1-ylamino)ethyl	39 ± 8.9	>30
27	55	н	2-Chloro-4-hydroxyphenyl	2-(Naphthalen-1-ylamino)ethyl	99 ± 1.5	>30
28	36	н	2-Hydroxy-5-methoxyphenyl	Cyclopropyl	96 ± 3.7	>30
29	26	н	4-Phenoxyphenyl	2-Acetamidoethyl	87 ± 6.8	>30
30	50	н	2-Hydroxy-5-methoxyphenyl	Propyl	89 ± 2.3	>30

This journal is C The Royal Society of Chemistry 2uxx

Fig. 4 (a) Different views of IDO1 active site (PDB id: 2DOT). Depicted compound: **15**, as cyan sticks. Red lines: pocket A, green lines: pocket B. (b) Different views of interaction fields derived from the 3D-QSAR analysis. Depicted compound: **15** (cyan sticks). Electrostatic effects: favourable (blue) and unfavourable (red). Steric effects: favourable (green) and unfavourable (yellow). Iron-nitrogen distance for the heme-bound nitrogen: 2.4 Å.

Enzymatic IDO1 inhibition. To evaluate whether the inhibitory activity of tested compounds could be influenced by their ability to permeate cell membranes, **1** and the most potent compounds (IC₅₀ < 3 μ M) were also tested in an enzymatic assay. Compounds **8**, **9**, **15** and **20** resulted active as IDO1 inhibitors showing an IC₅₀ comparable with that obtained in the cellular assay (see Supplementary Information for enzymatic concentration-response curves and computed Hill slope values). In enzymatic assay 4-PI inhibited IDO1 activity with a potency similar to that reported by Kumar and colleagues,⁸ confirming that **1** is active as IDO1 inhibitor. These results also suggest that the data obtained in the cellular assay could be due to an intrinsic inability of 4-PI in crossing the cell membrane.

Table 2 Enzymatic IDO1 inhibition activity of 1 and compounds 8, 9,15, 20.

Cpd	Enzymatic IC₅₀ (µM)			
1	48.0 ± 4.5			
8	1.9 ± 0.6			
9	4.7 ± 1.1			
15	2.8 ± 0.5			
20	4.5 ± 1.2			

3D-Quantitative Structure-Activity Relationship (QSAR Analysis.

As a strong correlation between docking scores and biological activity was not found, a different approach was used analyze the experimental data. Exploiting the results obtained in the cellular IDO1 inhibitory assay, we attempted to find a consistent relationship between biological activity and 31 structures of the synthesized 4,5-disubstituted imidazoles. A. the 1,5-disubstituted compounds displayed poor inhibition activity together with a narrow range of pIC₅₀, they were no included in our study. The molecules were aligned using Open3DAlign, which generates one structure-and-field basea alignment of the data set using each compound as a template During visual inspection, the best alignment was selected to perform the analysis, according to alignment scores a d superposition of imidazole substituents. Open3DQSAR²² al. Forge²³ software were used, with the aim to provide the regions in space where interactive fields may influence the activity. The 3D-QSAR models were derived for a data set of 15 compounds using 75% of the compounds in the training set and 25% in the test set. The compounds of both training ano test sets were carefully selected in order to cover the entire range of activity values. The model was evaluated U, measuring its accuracy in predicting the activity using For a software.23 The results confirmed the reliability of the 3 >-QSAR model, considering the statistical values obtained for the left-one-out (LOO) analyses ($R^2 = 0.998$, $Q^2 = 0.555$). We manually placed the 3D-QSAR model and its Molecular Interaction Fields (MIFs) inside IDO1 active site according to

ARTICLE

ARTICLE

the pockets shapes and the surrounding aminoacids using PyMOL software.²⁴ In Figure 4 MIFs and compound 15 are shown. It is possible to appreciate favorable steric contribution (green) to the predicted activity nearby the acetamido group, that protrudes into the almost unoccupied pocket B, and unfavorable steric effects (yellow) surrounding the bromophenyl substituent, that is placed in the narrow and hydrophobic pocket A. Interestingly, compound 15 displays good electrostatic interactions (blue) at the rear of pocket A; this field points to Ser167, suggesting that a hydrogen bond between the NH of the imidazole ring and this residue of the protein can be formed. This interaction is peculiar of our 4,5disubstituted imidazoles. Indeed, 4-substituted imidazoles are not prone to form this hydrogen-bond, as demonstrated by the X-ray crystal structure of IDO1 complexed with 1.⁶ Further exploration of this interaction near pocket A might improve the activity of 4,5-disubstituted imidazoles, while in pocket B electrostatic interactions are found to have a negative effect (red) and should be carefully considered in the next generation of compounds.

Experimental

Chemistry

Materials and Instrumentation. 1 and commercially available reagents and solvents were purchased from Sigma-Aldrich and Alfa Aesar and used without further purification. When needed, the reactions were performed in flame- or oven-dried glassware under a positive pressure of dry N₂. Melting points were determined in open glass capillary with a Stuart scientific SMP3 apparatus. All the target compounds were checked by IR (FT-IR Thermo-Nicolet Avatar), ¹H and ¹³C APT (Jeol ECP 300 MHz), and mass spectrometry (Thermo Finningan LCQ-deca XP-plus) equipped with an ESI source and an ion trap detector. Chemical shifts are reported in parts per million (ppm). Column chromatography was performed on silica gel Merck Kieselgel 70-230 mesh ASTM. Thin layer chromatography (TLC) was carried out on 5 cm × 20 cm plates with a layer thickness of 0.25 mm (Merck silica gel 60 F254). When necessary, they were visualized with KMnO₄. The purity of the target compounds (> 95%) was determined via elemental analysis and was within ± 0.4% of the calculated value.

General procedure for the synthesis of 4,5-disubstituted imidazoles. To a solution of aldehyde (1.5 equiv) in THF an ammonium hydroxide (4 equiv) solution (30% in water) is added. After stirring for one hour at room temperature, tosylmethylisocyanide (1 equiv) and piperazine (1.5 equiv) are added. The reaction is stirred overnight at room temperature. The solvent is evaporated and the crude material is purified by column chromatography.

2-Methoxy-4-(5-phenyl-1H-imidazol-4-yl)phenol (6). Brown solid. Yield: 84%. mp 113-114 °C. Found: C, 72.34; H, 5.35; N, 10.71. $C_{16}H_{14}N_2O_2$ requires C, 72.16; H, 5.30; N, 10.52. v_{max}/cm^{-1} 3064, 2814, 2345, 1731, 1519, 1260, 1215, 1125, 769, 698. ¹H NMR δ_H (300 MHz; DMSO-d₆) 7.75 (s, 1 H), 7.53 (d, *J* = 6.8 Hz, 2 H), 7.32 (t, *J* = 6.8 Hz, 2 H), 7.21 (m, 1 H), 7.03 (s, 1 H), 6.89 (d, *J* = 7.9 Hz, 1 H),

Journal Name

6.78 (d, J = 7.9 Hz, 1 H), 3.66 (s, 3 H). ¹³C NMR δ_{C} (75 MHz; DMSO d₆) 172.7, 170.9, 147.9, 146.5, 135.5, 134.6, 128.7, 127.8, 127.1 124.5, 120.9, 116.1, 112.5, 55.9. m/z 267 (M⁺).

4-(5-Phenyl-1H-imidazol-4-yl)benzene-1,2-diol (7). Light brown. solid. Yield: 53%. mp 81-82 °C. Found: C, 71.48; H, 4.83; N, 11.05 $C_{15}H_{12}N_2O_2$ requires C, 71.42; H, 4.79; N, 11.10. v_{max}/cm^{-1} 3129, 3060, 2295, 1874, 1514, 1274, 1116, 769, 697. ¹H NMR δ_H (300 MHz; CD₃OD) 7.75 (s, 1 H), 7.45 (d, *J* = 7.9 Hz, 2 H), 7.29-7.17 (m, 1 H), 6.88 (s, 1 H), 6.77-6.75 (m, 2 H). ¹³C NMR δ_C (75 MHz; CD₃OD), 145.1 (2 C), 132.9, 131.2, 131.0, 128.9, 128.2, 127.5, 126.9, 125.5 123.7, 119.8, 115.2. m/z 253 (M⁺).

4-(3-Bromophenyl)-5-phenyl-1H-imidazole (8). White solid. Yield: 35%. mp 178-179 °C. Found: C, 60.30; H, 3.80; N, 9.45. $C_{15}H_{11}BrN$ requires C, 60.22; H, 3.71; N, 9.36. v_{max}/cm^{-1} 2816, 2642, 1598, 1481, 958, 769. ¹H NMR δ_H (300 MHz; DMSO-d₆) 7.81 (s, 1 H), 7 - (m, 1 H), 7.49-7.20 (m, 7H), 7.22 (m, 1 H). ¹³C NMR δ_C (75 MHz⁻¹) DMSO-d₆) 137.0, 136.6, 131.0 (2C), 130.0, 129.9 (2 C), 129.2, 120.4 (2C), 128.1, 126.4, 122.2. m/z 300 (M⁺).

4-(3-Chlorophenyl)-5-phenyl-1H-imidazole (9). White solid. Yield 32%. mp 175-176 °C. Found: C, 70.78; H, 4.40; N, 11.12. $C_{15}H_{11}ClN_2$ requires C, 70.73; H, 4.35; N, 11.00. v_{max}/cm^{-1} 3055, 2985, 1600 1509, 1470, 1273, 971, 767, 699, 652. ¹H NMR δ_H (300 MHz; DMSO-d₆) 7.80 (s, 1 H), 7.51-7.26 (m, 9 H). ¹³C NMR δ_C (75 MHz; DMSO-a₆, 136.6, 133.7, 132.5, 130.8, 129.2, 129.0, 128.4, 128.1, 128.0, 127.5 127.2, 127.0, 126.1. m/z 255 (M⁺)

N-(4-(5-(2-Fluorophenyl)-1H-imidazol-4-yl)phenyl)acetamide (10) Yellow solid. Yield: 54%. mp 214-215 °C. Found: C, 69.28; H, 4.76; N, 14.24. $C_{17}H_{14}FN_{3}O$ requires C, 69.14; H, 4.78; N, 14.23. v_{max}/cm 3450, 2382, 2152, 1583, 1151, 955, 577, 412. ¹H NMR δ_{H} (300 MHz; CD₃OD) 7.80 (s, 1 H), 7.48 (d, *J* = 8.5 Hz, 2 H), 7.42-7.33 (m, 2 H), 7.30 (d, *J* = 8.5 Hz, 2 H), 7.23-7.12 (m, 2 H), 2.10 (s, 3 H). ¹³C NMR δ_{C} (75 MHz; DMSO-d₆) 168.9, 159.6 (d, *J* = 245.0 Hz), 138.7, 136 132.3, 131.0 (2 C), 130.9, 129.5, 126.9, 125.2, 119.9, 119.5, 116.6, 24.4. m/z 296 (M⁺)

5-(5-(2-Fluorophenyl)-1H-imidazol-4-yl)-2-methoxyphenol (11) Yellow solid. Yield: 98%. mp 109-110 °C. Found: C, 67.65; H, 4.71; N 9.91. C₁₆H₁₃FN₂O₂ requires C, 67.60; H, 4.61; N, 9.85. v_{max}/cm 3528, 3002, 2838, 1590, 1515, 1254, 1216, 1129, 884, 816, 761. ¹H NMR δ_H (300 MHz; DMSO-d₆) 8.90 (br s, 1 H), 7.75 (s, 1 H), 7.46-7.3; (m, 2 H), 7.25-7.21 (m, 2 H), 6.84-6.72 (m, 3 H), 3.73 (s, 3 H). ¹³C NMR δ_c (75 MHz; DMSO-d₆) 159.9 (d, *J* = 245.0 Hz), 147.4, 147.2 (d *J* = 38.4 Hz), 146.7, 138.2, 136.0, 132.4, 130.0, 125.0, 117.8, 116.3 (d, *J* = 21.1 Hz), 114.4 (2 C), 112.6 (2 C), 56.0. m/z 285 (M⁺)

4-(5-(2-Fluorophenyl)-1H-imidazol-4-yl)phenol (12). Yellow solk Yield: 80%. mp 99-100 °C. Found: C, 70.90; H, 4.35; N, 11.12 C₁₅H₁₁FN₂O requires C, 70.86; H, 4.36; N, 11.02. v_{max}/cm^{-1} 3637 3057, 2666, 2289, 1612, 1516, 1451, 1263, 1171, 836, 760. ¹H NMF δ_H (300 MHz; CD₃OD) 7.75 (s, 1H), 7.36-7.29 (m, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 7.14-7.09 (m, 2H), 6.72 (d, *J* = 8.5 Hz, 2H). ¹³C NMR δ_C (75 MHz; CD₃OD) 160.0 (d, *J* = 245.6 Hz), 156.7, 133.0, 131.5, 129.4 (d, = 8.0 Hz), 128.1, 125.1, 124.0 (d, *J* = 3.4 Hz), 123.5, 121.3 (d, *J* = 1-... Hz), 115.7 (d, *J* = 21.7 Hz), 115.0 (2C). m/z 255 (M⁺)

5-(2-Chlorophenyl)-4-(4-methoxyphenyl)-1H-imidazole (13). Wh. a solid. Yield: 58%. mp 239-240 °C. Found: C, 67.59; H, 4.65; N, 9.°° C₁₆H₁₃ClN₂O requires C, 67.49; H, 4.60; N, 9.84. v_{max}/cm^{-1} 2835 1616, 1470, 1246, 1178, 834, 762. ¹H NMR δ_H (300 MHz; CD₃OD) 7.75 (s, 1 H), 7.48 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 2 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 2 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 2 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 2 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 3 H), 7.20 (d, *J* = 7.1 Hz, 1 H), 7.39-7.30 (m, 2 H), 7.20 (m, 2

8.5 Hz, 2 H), 6.80 (d, J = 8.5 Hz, 2 H), 3.75 (s, 3 H). 13 C NMR δ_{C} (75 MHz; DMSO-d₆) 158.5, 146.1, 135.8, 135.7, 133.9, 133.4, 133.3, 130.4, 130.2, 127.8, 127.5, 127.4, 114.3, 55.6. m/z 285 (M⁺)

4-BenzyI-5-(2-chlorophenyI)-1H-imidazole (14). Yellow solid. Yield: 19%. mp 166-167 °C (dec). Found: C, 71.69; H, 4.96; N, 10.45. C₁₆H₁₃ClN₂ requires C, 71.51; H, 4.88; N, 10.42. v_{max}/cm^{-1} 2632, 1483, 1430, 1255, 1061, 966, 758. ¹H NMR δ_H (300 MHz; DMSO-d₆) 7.85 (s, 1 H), 7.50 (m, 1 H), 7.34-7.15 (m, 8 H), 3.09 (s, 2 H). ¹³C NMR δ_c (75 MHz; DMSO-d₆) 140.3, 139.9, 136.2, 132.9, 132.5, 130.2, 129.8, 129.7, 129.1, 128.9, 128.8, 127.5, 124.2, 48.0. m/z 270 (M⁺)

N-(4-(5-(3-Bromophenyl)-1H-imidazol-4-yl)phenyl)acetamide (15). Yellow solid. Yield: 44%. mp 234-235 °C (dec). Found: C, 57.40; H, 3.96; N, 11.85. C₁₇H₁₄BrN₃O requires C, 57.32; H, 3.96; N, 11.80. v_{max}/cm⁻¹ 2360, 2057, 1650, 1463, 1401, 984, 841, 686. ¹H NMR $\delta_{\rm H}$ (300 MHz; CD₃OD) 7.76 (s, 1 H), 7.63 (s, 1 H), 7.56 (d, *J* = 7.7 Hz, 2 H), 7.40-7.34 (m, 4 H), 7.20 (t, *J* = 7.9 Hz, 1 H), 2.13 (s, 3 H). ¹³C NMR $\delta_{\rm c}$ (75 MHz; DMSO-d₆) 169.1, 139.6, 138.4, 136.2, 134.4, 130.9, 129.6, 129.3, 129.2, 128.3, 125.9, 122.2,119.6,119.4, 24.6. m/z 358 (M⁺)

2-Methoxy-5-(5-(2-methoxyphenyl)-1H-imidazol-4-yl)phenol (18). Yellow solid. Yield: 32%. mp 208-209 °C. Found: C, 68.99; H, 5.46; N, 9.55. $C_{17}H_{16}N_2O_3$ requires C, 68.91; H, 5.44; N, 9.45. v_{max}/cm^{-1} 3009, 2932, 1513, 1483, 1287, 1244, 1023, 752. ¹H NMR δ_H (300 MHz; CD₃OD) 7.70 (s, 1 H), 7.30 (t, *J* = 8.2 Hz, 1 H), 7.22 (d, *J* = 7.4 Hz, 1 H), 7.02 (d, *J* = 7.4 Hz, 1 H), 6.96-6.78 (m, 4 H), 3.80 (s, 3 H), 3.67 (s, 3 H). ¹³C NMR δ_C (75 MHz; DMSO-d₆) 157.5, 156.5, 146.7, 146.4, 135.1, 131.9, 129.9, 128.8, 120.9, 120.5, 117.7, 114.4, 112.4, 112.2, 111.7. m/z 297 (M⁺)

ARTICLE

5-(Thiophen-3-yl)-4-(4-(trifluoromethoxy)phenyl)-1H-imidazole

(20). Light pink solid. Yield: 40%. mp 180-181 °C. Found: C, 54.28; H 3.00; N, 9.13. $C_{14}H_9F_3N_2OS$ requires C, 54.19; H, 2.92; N, 9.^3 v_{max}/cm^{-1} 2830, 1509, 1460, 1258, 837, 768, 653, 547. ¹H NMR δ_F (300 MHz; DMSO-d₆) 7.78 (s, 1 H), 7.68-7.55 (m, 3 H), 7.33 (m, 1 H) 7.12 (d, *J* = 5.0 Hz, 1 H). ¹³C NMR δ_C (75 MHz; DMSO-d₆) 147.6, 144.5, 136.2, 134.5, 129.4, 127.9, 127.7, 127.2, 126.5, 122.9, 121.5 120.7 (q, *J* = 254.2 Hz, 1 H). m/z 311 (M⁺)

General procedure for the synthesis of 1,5-disubstituted imidazoles. To a solution of aldehyde (1 equiv) in dry DMF, amine (1 equiv) is added. The reaction is stirred at room temperature under a nitrogen atmosphere for one hour. K_2CO_3 (3 equiv) and TosMIC (1.5 equiv) are added. When the reaction is complete (typically after 24 hours), the reaction is diluted with EtOAc and washed w ... water (x 1). The organic layer is dried over sodium sulfate and evaporated. The crude material is purified by column chromatography.

4-Bromo-2-(1-(2-(naphthalen-1-ylamino)ethyl)-1H-imidazol-5yl)phenol (21). Light green solid. Yield: 49%. mp 190-191 °C (dec). Found: C, 61,85; H, 4.49; N, 10.33. C₂₁H₁₈BrN₃O requires C, 61.78; H 4.44; N, 10.29. v_{max}/cm^{-1} 2852, 1731, 1581, 1494, 1411, 1278, 1110 771. ¹H NMR δ_H (300 MHz; CD₃OD) 7.81 (m, 1 H), 7.71-7.68 (m, 2 H), 7.37-7.34 (m, 3 H), 7.25 (m, 1 H), 7.14-7.18 (m, 2 H), 6.90 (s, 1 H) 6.81 (d, *J* = 8.8 Hz, 1 H), 6.23 (d, *J* = 7.1 Hz, 1 H), 4.26 (q, *J* = 6.3 Hz, 2 H), 3.64 (t, *J* = 6.3 Hz, 1 H), 3.50 (t, *J* = 6.3 Hz, 2 H). ¹³C NMR δ_C (7! MHz; CDCl₃) 155.0, 142.4, 139.9, 139.8, 139.7, 139.6, 134.0, 133.3, 133.2, 132.7, 128.6, 128.5, 126.8, 126.2, 125.5, 123.4, 117.7, 111.0 103.5, 60.3, 43.9. m/z 409 (M⁺)

N-(2-(5-(4-methoxynaphthalen-1-yl)-1H-imidazol-1-

yl)ethyl)naphthalen-1-amine (22). Brown oil. Yield: 35%. Found: C, 79.41; H, 5.95; N, 10.68. C₂₆H₂₃N₃O requires C, 79.36; H, 5.89; 10.68. ν_{max}/cm⁻¹ 3341, 2935, 1838, 1671, 1586, 1080, 765. ¹H NMR δ_H (300 MHz; CDCl₃) 8.35 (d, J = 8.0 Hz, 1 H), 7.75-7-72 (m, 2 H), 7.56-7.33 (m, 7 H), 7.15-7.07 (m, 2 H), 7.15 (t, J = 8.0 Hz, 1 H), 6.71 (d, J = 8.0 Hz, 1 H), 5.98 (d, J = 8.0 Hz, 1 H), 4.07-4.03 (m, 5 H), 3.34 (t, J = 5.8 Hz, 2 H), 2.27 (br s, 1 H). ¹³C NMR δ_c (75 MHz; DMSO-d₆) 156.1, 143.5, 138.8, 134.5, 134.0, 131.6, 130.6, 130.4, 129.0, 128.4, 127.9, 126.9, 126.1, 125.5, 125.4, 124.5, 123.5, 122.5, 122.0, 119.5, 116.2, 104.5, 103.0, 60.3, 44.5, 44.3. m/z 394 (M⁺)

N-(2-(5-(4-phenoxyphenyl)-1H-imidazol-1-yl)ethyl)naphthalen-1amine (23). Brown oil. Yield: 44%. Found: C, 79.95; H, 5.70; N, 10.35. $C_{27}H_{23}N_{3}O$ requires C, 79.97; H, 5.72; N, 10.36. v_{max}/ct^{-1} 3050, 1903, 1582, 1482, 1237, 770. ¹H NMR δ_H (300 MHz; CDC₁), 7.76 (d, *J* = 7.9 Hz, 1 H), 7-63-7.58 (m, 2 H), 7.47-7.35 (m, 8 H), 7.16 (t, *J* = 7.1 Hz, 1 H), 7.07-7.04 (m, 3 H), (6.99 (d, *J* = 7.7 Hz, 2 H), 6.37 (m, 1 H), 4.31 (t, *J* = 6.0 Hz, 2 H), 3.55-3.53 (m, 2 H). ¹³C NMR δ_c (75 MHz; DMSO-d₆) 157.2, 156.7, 143.7, 139.4, 134.6, 132.4, 130.9 130.7, 128.5, 127.9, 127.2, 126.2, 125.3, 124.6, 124.4, 123.6, 122.0, 119.7, 119.0, 116.5, 103.5, 44.3, 43.7. m/z 406 (M⁺)

N-(2-(5-(4-(4-bromophenoxy)phenyl)-1H-imidazol-1-

yl)ethyl)naphthalen-1-amine (24). Green oil. Yield: 30%. Found: , 67.03; H, 4.64; N, 8.73. $C_{27}H_{22}BrN_3O$ requires C, 66.95; H, 4.58; 8.67. v_{max}/cm^{-1} 3049, 2859, 2359, 1894, 1732, 1581, 1289, 770, 420 ¹H NMR δ_H (300 MHz; DMSO-d₆) 8.02 (d, *J* = 6.9 Hz, 1 H), 7.73 (d, *J* = 7.1 Hz, 1 H), 7.57 (d, *J* = 8.5 Hz, 2 H), 7.54-7.40 (m, 4 H), 7.20-7.09 (m, 3 H), 7.08-7.00 (m, 4 H), 6.31-6.29 (m, 2 H), 4.31-4.29 (m, 2 H),

ame L497 6.87 1 1? MHz. 16.5 dium feta' e anc were

3.41-3.39 (m, 2 H). ¹³C NMR δ_c (75 MHz; DMSO-d₆) 156.0, 155.7, 143.2, 139.0, 134.1, 133.0, 131.5, 130.5, 128.0, 127.4, 126.7, 125.7, 125.3, 124.1, 123.1, 121.5, 121.0, 118.8, 116.0, 115.5, 103.0, 43.8, 43.1. m/z 485 (M⁺)

ARTICLE

2,4-Difluoro-3-(1-(2-(naphthalen-1-ylamino)ethyl)-1H-imidazol-5-

yl)phenol (25). Brown solid. Yield: 35%. mp 190-191 °C. Found: C, 69.18; H, 4.73; N, 11.57. C₂₁H₁₇F₂N₃O requires C, 69.03; H, 4.69; N, 11.50. ν_{max}/cm⁻¹ 3371, 2866, 2359, 1732, 1582, 1470, 1252, 1109, 1092, 879, 404. ¹H NMR δ_H (300 MHz; DMSO-d₆) 8.03 (d, *J* = 7.9 Hz, 1 H), 8.00 (s, 1 H), 7.73 (d, *J* = 7.7 Hz, 1 H), 7-45-7.36 (m, 2 H), 7.17-6.98 (m, 5 H), 6.30 (br t, *J* = 5.2 Hz, 1 H), 6.17 (d, *J* = 6.9 Hz, 1 H), 4.12 (t, *J* = 6.6 Hz, 2 H), 3.40 (m, 2 H). ¹³C NMR δ_C (75 MHz; DMSO-d₆) 152.8 (d, *J* = 232.4 Hz), 149.2 (d, *J* = 229.3), 143.6, 142.4 (d, *J* = 12.0 Hz), 140.0, 134.5, 130.2, 128.6, 127.1, 126.3, 124.7, 123.5, 121.9, 119.7, 118.8 (m), 116.7, 111.6 (d, *J* = 27.0 Hz), 107.4 (dd, *J* = 12.0, 11.5 Hz), 103.0, 44.2, 43.7. m/z 366 (M⁺)

2,4-Dibromo-6-(1-(2-(naphthalen-1-ylamino)ethyl)-1H-imidazol-5-

yl)phenol (26). Green solid. Yield: 47%. mp 130-131 °C. Found: C, 51.79; H, 3.58; N,8.62. $C_{21}H_{17}Br_2N_3O$ requires C, 51.77; H, 3.52; N, 8.63. v_{max}/cm^{-1} 3440, 3066, 2921, 1739, 1584, 1225, 1109, 768. ¹H NMR δ_H (300 MHz; DMSO-d₆) 7.87-7.72 (m, 3 H), 7.97 (m, 1H), 7.42-7.32 (m, 3 H), 7.18-7.07 (m, 2 H), 6.94 (s, 1 H), 6.15 (d, *J* = 7.4 Hz, 1 H), 4.48 (br s, 1 H), 4.11 (t, *J* = 6.3 Hz, 2 H), 3.36 (m, 2 H). ¹³C NMR δ_C (75 MHz; DMSO-d₆) 152. 5, 143.7, 135.5, 134.6, 134.2, 133.6, 129.5, 128.8, 127.2, 126.2, 124.7, 123.5, 122.0, 117.8, 116.5, 115.3, 113.5, 111.4, 103.1, 42.3, 42.1. m/z 488 (M⁺)

3-Chloro-4-(1-(2-(naphthalen-1-ylamino)ethyl)-1H-imidazol-5-

yl)phenol (27). Green solid. Yield: 55%. mp 103-104 °C. Found: C, 69.37; H, 5.02; N, 11.60. $C_{21}H_{18}CIN_3O$ requires C, 69.32; H, 4.99; N, 11.55. v_{max}/cm^{-1} 2755, 2561, 1728, 1581, 1439, 1286, 1109, 770. ¹H NMR δ_H (300 MHz; DMSO-d₆) 8.03 (d, *J* = 7.1 Hz, 1 H), 7.86 (s, 1 H), 7.72 (d, *J* = 6.9 Hz, 1 H), 7.44-7.35 (m, 2 H), 7.24 (d, *J* = 8.2 Hz, 1 H), 7.13-7.07 (m, 2 H), 7.00 (d, *J* = 2.2 Hz, 1H), 6.88 (s, 1 H), 6.82 (dd, *J* = 8.2, 2.2 Hz, 1 H), 6.31 (t, *J* = 5.5 Hz, 1 H), 6.01 (dd, *J* = 6.3, 2.5 Hz, 1 H), 4.04 (m, 2 H), 3.34 (m, 2 H). ¹³C NMR δ_C (75 MHz; DMSO-d₆) 164.0, 148.0, 143.0, 139.5, 139.0, 138.9, 133.9, 133.0, 132.9, 131.4, 130.5, 129.0, 127.9, 126.3, 123.7, 121.0, 120.7, 119.5, 107.3, 48.5, 45.2. m/z 364 (M⁺)

2-(1-Cyclopropyl-1H-imidazol-5-yl)-4-methoxyphenol (28). Orange solid. Yield: 36%. mp 204-205 °C. Found: C, 67.85; H, 6.21; N, 12.17. C₁₃H₁₄N₂O₂ requires C, 67.81; H, 6.13; N, 12.17. v_{max}/cm⁻¹ 2828, 1814, 1600, 1513, 1279, 1214, 1113, 937. ¹H NMR $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.63 (s, 1 H), 7.01 (s, 1 H), 6.96 (d, *J* = 8.8 Hz, 1 H), 6.87 (d, *J* = 8.8 Hz, 1 H), 6.77 (s, 1 H), 3.77 (s, 3 H), 3.31 (m, 1 H), 0.86-0.81 (m, 4 H). ¹³C NMR $\delta_{\rm C}$ (75 MHz; DMSO-d₆) 152.3, 149.7, 138.1, 131.6, 128.3, 118.3, 116.8, 116.6, 115.5, 55.9, 27.4, 6.7. m/z 231 (M⁺)

N-(2-(5-(4-phenoxyphenyl)-1H-imidazol-1-yl)ethyl)acetamide (29). Yellow oil. Yield: 26%. Found: C, 71.00; H, 5.98; N, 13.10. $C_{19}H_{19}N_3O_2$ requires C, 71.01; H, 5.96; N, 13.08. v_{max}/cm^{-1} 3064, 2031, 1658, 1488, 1231, 756. ¹H NMR δ_H (300 MHz; CD₃OD) 7.74 (s, 1 H), 7.40-7.32 (m, 4 H), 7.13 (t, *J* = 7.4 Hz, 1 H), 7.09-6.97 (m, 4 H), 6.96 (s, 1 H), 4.15 (t, *J* = 6.0 Hz, 2 H), 3.30 (t, *J* = 6.0 Hz, 2 H), 1.79 (s, 3 H). ¹³C NMR δ_C (75 MHz; DMSO-d₆) 170.2, 157.0, 156.8, 139.3, 131.7, 130.8, 130.7, 128.0, 125.4, 124.4, 119.6, 119.1, 55.4, 42.6, 22.9. m/z 322 (M⁺)

4-Methoxy-2-(1-propyl)-1H-imidazol-5-yl)phenol (30). Yellow solid. Yield: 50%. Found: C, 67.29; H, 6.99; N, 12.05. C₁₃H₁₆N₂O₂ requires C, 67.22; H, 6.94; N, 12.06. v_{max}/cm^{-1} 3143, 2964, 1807, 1556, 1497 1449, 1209, 801. ¹H NMR δ_{H} (300 MHz; DMSO-d₆) 7.70 (s, 1 H), 6.87 6.70 (m, 3 H), 6.68 (s, 1 H), 3.84 (t, *J* = 7.1 Hz, 2 H), 3.68 (s, 3 H), 1 19 (sex, *J* = 7.4 Hz, 2 H), 0.68 (t, *J* = 7.4 Hz, 3 H). ¹³C NMR δ_{C} (75 MHz. DMSO-d₆) 152.1, 149.1, 137.9, 129.9, 127.6, 117.8, 116.7, 116.5 115.3, 55.5, 46.7, 23.6, 11.0. m/z 233 (M⁺)

Biology

Cell culture. Human A375 cells were cultured in DMEM medium with high glucose (4.5 g/L), containing 10% heat inactivated feta' bovine serum (FBS), 2 mM L-glutamine 100 U/mL of penicilline and 10 μ /mL of streptomycine (GE Healthcare, Milan, Italy). Cells were cultured in a humidified atmosphere (5% CO₂, 37 °C).

Cell cytotoxicity. Cell viability was measured by the 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (Min, assay, as previously described.²⁵ A375 cells were seeded (0.5 x 10^5 cells/well) in 24-well plates and treated with increasing concentrations (0.01–100 μ M) of each compound for 48 h at 37 °C in a 5% CO₂ humidified incubator. The percentage of cell viabilit was calculated as [100 (x-y)/ (z-y)], where x, y, and z were the absorbance read in compound-treated, resting and compound untreated cells, respectively.

Cellular IDO1 enzymatic assay. The enzymatic activity of IDO1 wa evaluated by measuring the levels of L-KYN into A375 cell media, as previously described.²⁶ A375 cells (5X10⁴) were seeded in a 24-wel culture plate (500 µL/well) and grown overnight. Serial DMSO dilutions (0.01–30 μ M) of each compounds in a total volume of 50(μL culture medium including a 100 μM L-tryptophan (Sigma-Aldrich) and human IFN-y (500 U/mL final concentration) per well w added into wells containing the cells. All compounds were dissolved in DMSO (Sigma-Aldrich). The DMSO final concentration in cell culture medium was always 0.1%. Equivalent amount of DMSO wa. always added to drug untreated controls. After 48h incubation, cel medium was collected, deproteinized by 20% (v/v) aqueous CCl₃COOH, centrifuged at 13,200 rpm for 10 minutes, and the amounts of L-KYN in A375 cell media were quantified with HPLC. 2(µL of supernatants were injected by a multi-sampler (Beckman Coulter, Milan, Italy) into a HPLC-UV-VIS system (System Gold Beckman Coulter), equipped with a C-18 sphereClone ODS analytical column (5 µm particle size, 250 mm x 4.0 m n; Phenomenex, Torrance, CA, USA). The mobile phase (50 m. potassium dihydrogen phosphate, 10% v/v acetonitrile; pH 4.8) war delivered at a flow-rate of 1 mL/min at room temperature, and the absorbance was measured at 330 nm. Amounts of L-KYN in A375 cell media were quantified on the basis of a calibration curve obtained using the same HPLC-UV-VIS experimental setting. IC₅₀ values were calculated from concentration-response curve

obtained in at least three different experiments run in triplicate.

rhIDO1 enzymatic assay. rhIDO1 activity was determined as follo In brief, the standard reaction mixture (200 µL) contained 50 m^{M4} potassium phosphate buffer (KPB) (pH 6.5), 20 mM ascorbic acid (neutralized with NaOH and HCl) (Sigma Aldrich), 100 µg/mL catalase (Sigma Aldrich), 10 µM methylene blue (Alfa Aesar,

Heysham, Lancashire, United Kingdom), 100 μ M L-tryptophan (Sigma Aldrich), 50 nM rhIDO1 (Origene, Bologna, Italy), and dimethyl sulfoxide (DMSO) solution of the compound (4 μ L). The reaction was carried out at 37 °C for 60 min and stopped by the addition of 40 μ L of 30% (w/v) CCl₃COOH. After heating at 50 °C for 15 min, the reaction mixture was centrifuged at 1500 g for 10 min. The supernatant (150 μ L) was transferred into a well of a 96-well microplate and mixed with 150 μ L of 2% (w/v) *p*-dimethylaminobenzaldehyde (Ehrlich's reagent) in acetic acid. The yellow pigment derived from kynurenine was measured at 490 nm using an Ultramark Microplate Imaging System (Bio-Rad). IC₅₀ values were calculated from concentration-response curves obtained in at least three different experiments run in triplicate.

Statistical analysis. Results are expressed as means ± SEM of at least three different experiments run in triplicate. The software GraphPad 5.0 for Windows (GraphPad Software, La Jolla, California, USA) was used as a nonlinear regression model for analysis of the concentration–response data to obtain the 50% inhibitory concentration value (IC_{50}).

Molecular modeling

All molecular modeling studies were performed on a Tesla workstation equipped with two Intel Xeon X5650 2.67 GHz processors and Ubuntu 10.04 (www.ubuntu.com). Different software was used to elaborate the chemical information: PerlMol²⁷ and OpenEye (www.eyesopen.com) applications. The protein structures and 3D chemical structures were generated in PyMol.²⁴

Compounds source. The collection of reactants was retrieved from ZINC.²⁸ This searchable database includes chemical structures available from chemical vendors. The structures were downloaded using the web-based interface and filtered using FILTER software²⁹ from OpenEye to select compounds containing aldehyde, amine or TosMIC moieties. Additionally, we made 300 Daltons the upper limit for the molecular weights for the structures, facilitating compatibility with synthetic drugs. Using these criteria, 932 aldehydes, 983 amines and 54 TosMIC were retrieved. The reactants were saved as canonical SMILES.

Generation of database. An *in house* perl script based on PerlMol²⁷ was used to retrieve each reactant and perform a virtual combinatorial reaction with all downloaded compounds. The resulting structures were filtered using Lipinski's rule of 5,³⁰ the most stable tautomers were calculated and the retained SMILES for 1,4,5-trisubstituted (49,472,424 compounds), 1,5-disubstituted (916,156 compounds), 1,4-disubstituted (53,082 compounds) and 4,5-disubstituted (50,328 compounds) imidazoles were saved. Each structure was rebuilt as a 3D structure using OMEGA2.¹⁸

Preparation of protein. The X-ray structure of the 4-phenylimidazole-IDO1 complex was used in this study, entry code 2DOT.⁶ Water molecules were removed, all hydrogen atoms and MMFF94 charges were added. Then, the complex was transferred into fred_receptor and prepared for docking with FRED.¹⁹ The interaction with iron moiety of heme group was used as a

constraint: if an atom of the molecule was within an acceptable distance to it, the docking pose was retained; if not, the compound was discarded.

Virtual screening procedure. Conformations were generated for all structures using OMEGA2 (maximum number of conformations 350, rmsd threshold: 1.0 Å),¹⁸ and charges were assigned according to MMFF94 scheme.³¹ Docking was performed with FRED.¹⁹ Docket conformations were scored using Chemgauss4 (see Supporting Information for the docked pose of the synthesized compounds).³²

3D-QSAR conformer generation. 4-PI (**1**) and 4,5-disubstitutec imidazoles **6-20** were taken into account. The sixteen compounds used to generate the 3D-QSAR model were processed using OpenEye software suite according to the following scher FixPKA³³ to assign correct protonation at pH 7, tautomers in order to generate the most aromatic tautomer for each compound and finally OMEGA2¹⁸ to generate one minimized 3D conformation for each compound in sdf file format. As we wanted to focus on 4,5 diarylimidazoles, the inactive compound **14**, that displays a benzyl substituent, was removed from the list of molecules used to built the 3D-QSAR model.

3D-QSAR model generation. According to the Open3DTools² workflow the sdf containing all data set was processed with Open3DAlign,²² which generates one structure-and-field base alignment of the data set using each compound in the file as a template and leading to fifteen different alignments. Following visual inspection, the alignment 0012 based on compound 13 was selected to perform the analysis, taking into account alignmen scores and superposition of imidazole substituents. In particular, in this alignment the smaller substituents were all identically orient as well as the more hindered ones (See Supplementary Information for a pocket-binding hypothesis of compounds 1 and 6-20). IC_{50} values were converted to pIC₅₀ and added to the sdf file. In this step we set to an arbitrary value (150 μ M) the IC₅₀ for compounds **1** and 13, while the IC₅₀ values of 12 and 19 were extrapolated as these compounds inhibited IDO activity without reaching the maxima inhibition at the highest concentration tested (30 μ M). The data se was split into a training set and a test set (containing respectively 75% and 25% of the total compounds). In order to generate consistent statistical model we selected the compounds of the training and test sets so that they span across the entire range of pIC₅₀ values (see Supplementary Information). The analysis we performed with Open3DQSAR software and then the model war evaluated again using command line version of Forge²³ skipping in software alignment and conformational hunt, and using LOO type cross validation (R^2 = 0.998, Q^2 = 0.555) (see Supplementar Information).

Conclusions

4-PI is a non-competitive inhibitor of IDO1 and represents a promising starting point for the development of more potent compounds, as demonstrated by the amount of patent. displaying imidazoles as IDO1 inhibitors and by the recent introduction of the fused imidazole NLG919 into Phase

ARTICLE

clinical trials. The van Leusen multicomponent reaction has the potential to generate large and diverse libraries of imidazoles: thus, in order to reduce the number of theoretical possibilities to a practical level for synthesis and testing, a virtual screening approach was used and afforded a series of 4,5- and 1,5disubstituted imidazoles as putative IDO1 inhibitors. These compounds were synthesized and tested, leading to the identification of four 4,5-disubstituted imidazoles that display a 10-fold improvement in potency compared to 4-PI in enzymatic assay, are able to permeate the cell membrane, in contrast to 1, and show no detectable toxicity in cells. A 3D-QSAR analysis applicable to 4,5-diaryl imidazoles was performed. A putative hydrogen bond between the NH of the imidazole ring and Ser167 of the protein might be responsible for the improvement of potency, together with favorable interactions with the partially occupied pocket B.

The information obtained in this study, together with the performed 3D-QSAR analysis, demonstrate that the 4,5disubstituted imidazole scaffold might provide a new direction for future design of IDO1 inhibitors. Further efforts to discover promising candidates are in progress and aim to optimize molecular recognition by pocket B: this would help to increase potency together with selectivity for IDO1 over other targets and especially heme proteins.

Acknowledgements

This study was financially supported by Associazione Italiana per la Ricerca sul Cancro (AIRC) (Grant 15918), Italy. We also gratefully acknowledge support from Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) (PRIN 2010-2011; Grant 2010W7YRLZ 002), Italy.

Notes and references

- D. H. Munn and A. L. Mellor, Trends Immunol. 2013, 34, 137-1 143.
- 2 M. Platten, W. Wick and B. J. Van den Eynde, Cancer Res. 2012, 72, 5435-5440; G. C. Prendergast, C. Smith, S. Thomas, L. Mandik-Nayak, L. Laury-Kleintop, R. Metz and A. J. Muller, Cancer Immunol. Immunother. 2014, 63, 721-735; J. M. Gostner, K. Becker, F. Uberall and D. Fuchs, Expert Opin. Ther. Targets 2015, 19, 605-615.
- 3 J. Godin-Ethier, L.-A. Hanafi, C. A. Piccirillo and R. Lapointe, Clin. Cancer Res. 2011, 17, 6985-6991.
- E. Dolusic and R. Frederick, Expert Opin. Ther. Patents 2013, 23, 1367-1381; U. F. Rohrig, S. R. Majjigapu, P. Vogel, V. Zoete and O. Michielin, J. Med. Chem. 2015, DOI: 10.1021/acs.jmedchem.5b00326.
- 5 B. Baban, P. Chandler, D. McCool, B. Marshall, D. H. Munn and A. L. Mellor, Curr. Cancer Drug Targets 2009, 9, 938-952.
- 6 H. Sugimoto, S. Oda, T. Otsuki, T. Hino, T. Yoshida and Y. Shiro, Proc. Natl. Acad. Sci. USA 2006, 103, 2611-2616.
- 7 M. Sono and S. G. Cady, Biochemistry 1989, 28, 5392-5399.
- S. Kumar, D. Jaller, B. Patel, J. M. LaLonde, J. B. DuHadaway, W. P. Malachowski, G. C. Prendergast and A. J. Muller, J. Med. Chem. 2008, 51, 4968-4977.
- 9 WO2009132238, 2009.
- 10 WO2011056652, 2011.
- 11 WO2012142237, 2012.
- 10 | J. Name., 2015, 00, 1-3

- 12 NCT02048709, https://clinical trials.gov, (accessed July 2015); S. Crunkhorn, Nat. Rev. Drug Dis. 2014, 13, 879.
- 13 S. Tojo, T. Kohno, T. Tanaka, S. Kamioka, Y. Ota, T. Ishii, K. Kamimoto, S. Asano and Y. Isobe, ACS Med. Chem. Leit. 2014, 5, 1119-1123.
- 14 Dömling A, W. Wang and K. Wang, Chem. Rev. 2012, 112 3083-3135.
- 15 M. Guasconi, X. Lu, A. Massarotti, A. Caldarelli, E. Ciraolo, G. C. Tron, E. Hirsch, G. Sorba and T. Pirali, Org. Biomol. Chem 2011, 9, 4144-4149; T. Pirali, V. Faccio, R. Mossetti, A. A. Grolla, S. Di Micco, G. Bifulco, A. A. Genazzani and G. C. Tron, Mol. Div. 2010, 14, 109-121; A. A. Grolla, V. Podestà, M. G Chini, S. Di Micco, A. Vallario, A. A. Genazzani, P. L. Canonico G. Bifulco, G. C. Tron, G. Sorba and T. Pirali, J. Med. Chem. 2009, 52, 2776-2785.
- 16 A. M. van Leusen, J. Wildeman and O. H. Oldenziel, J. Org Chem. 1977, 42, 1153-1159; J. Sisko, A. J. Kassick, M. Mellinger, J. J. Fiulan, A. Allen and M. A. Olsen, J. Org. Che 2000, 65, 1516-1524; D. van Leusen and A. M. van Leusen, In Organic Reactions, Overman, L. E., Ed.; John Wiley & So New York, 2001, vol. 57. pp. 417.
- 17 J. Sisko and M. Mellinger, Pure Appl. Chem. 2002, 74, 1349
- 18 OMEGA, version 2.4.6; OpenEye Scientific Software: Santa Fe, NM. http://www.eyesopen.com; P. C. D Hawkins, A. Skillman, G. L. Warren, B. A. Ellingson and M. T. Stahl, J Chem. Inf. Model. 2010, 50, 572-584; P. C. D. Hawkins and A. Nicholls, J. Chem. Inf. Model. 2012, 52, 2919-2936.
- 19 FRED, version 3.0.0; OpenEye Scientific Software: Santa Fe, NM. http://www.eyesopen.com; McGann, M. J. Chem. Inj Model. 2011, 51, 578-596.
- 20 J. Sisko, M. Mellinger, P. W. Sheldrake P. W. and N. H. Baine Tetrahedron Lett. 1996, 37, 8113-8116; J. Sisko, M. Mellinger, P. W. Sheldrake and N. H. Baine, Org. Synth. 2000 77.198-202.
- 21 J. Sisko, A. J. Kassick, M. Mellinger, J. J. Fiulan, A. Allen and M. A. Olsen, J. Org. Chem. 2000, 65, 1516-1524.
- 22 P. Tosco, T. Balle and F. Shiri J. Comput. Aided Mol. Des. 2011, 25, 777-783.
- 23 Cresset Group. http://www.cressei group.com/products/forge/. Forge V.10
- 24 The PyMOL Molecular Graphics System, version 1.3; Schrödinger LLC: 2010.
- 25 S. Fallarini , T. Paoletti, C. O. Battaglini, P. Ronchi, L. Lay, R Bonomi, S. Jha, F. Mancin, P. Scrimin and G. Lombardi, Nanoscale 2013, 5, 390-400.
- 26 S. Fallarini, T. Paoletti, L. Panza and G. Lombardi, Biochem Pharmacol. 2008, 76, 738-750.
- 27 I. Tubert-Brohman, Perl J. 2004, 8, 3-5; I. Tubert-Brohman 2004. http://www.perlmol.org.
- 28 J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad and R. G. Coleman, J. Chem. Inf. Model. 2012, 52, 1757-1768.
- 29 FILTER, version 2.0.2; OpenEye Scientific Software: Santa NM. http://www.eyesopen.com.
- 30 J. Lipinski, Pharmacol. Toxicol. Methods 2000, 44, 235-49.
- 31 T. A. Halgren, J. Comput. Chem. 1996, 17, 520-552.
- 32 M. R. McGann, H. R. Almond, A. Nicholls, J. A. Grant and F. K Brown, Biopolymers 2003, 68, 76-90.
- 33 Quacpac, version 1.6.3.1; OpenEye Scientific Software: Santa Fe, NM. http://www.eyesopen.com.

This journal is © The Royal Society of Chemistry 20xx

MedChemComm

A virtual library of 50,000,000 compounds synthesizable via the van Leusen MCR was created, screened and filtered to afford a series of disubstituted imidazoles with improved properties compared to the parent compound 4-phenylimidazole.

1 IC₅₀ (rhIDO) = 48.0 μM IC₅₀ (A375) > 30 μM

IC₅₀ (rhIDO) = 2.8 μM IC₅₀ (A375) = 2.9 μM

