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Property-based characterization of kinase-like ligand space for 

library design and virtual screening 

Dávid Bajusz, György G. Ferenczy and György M. Keserű*
 

A property-based desirability scoring scheme has been developed for kinase-focused library design and ligand-based pre-

screening of large compound sets. Property distributions of known kinase inhibitors from the ChEMBL Kinase Sarfari 

database were investigated and used for a desirability function-based score. The scoring scheme is easily interpretable as 

it accounts for six molecular properties: topological polar surface area and the number of rotatable bonds, hydrogen bond 

donors, aromatic rings, nitrogen and oxygen atoms. The performance of the Kinase Desirability Score (KiDS) is evaluated 

on both public and proprietary experimental screening data.

Introduction 

Phosphorylation is a ubiquitous signaling and regulating 

mechanism in living organisms. Kinases are enzymes that carry 

out the phosphorylation of mostly other proteins or other 

types of substrates. They function by transferring a phosphate 

group from a bound ATP-molecule to a Ser/Thr/Tyr residue on 

the substrate(s). There are more than 500 protein kinases 

encoded in the human genome1, accounting for a total of 2% 

of all human genes.2 Abnormalities in protein phosphorylation 

are precursors to a variety of malignancies ranging from cancer 

to autoimmune diseases: for many of them, small-molecule 

inhibition of the involved protein kinase has been shown to be 

an effective therapy. Consequently, protein kinases currently 

constitute the second most exploited drug target class after 

GPCRs.3 

Since kinases have one well-defined function and share their 

endogenous ligand (ATP), their ATP-binding pockets are very 

well-conserved across the whole kinome. Thus, medicinal 

chemists face a great challenge in designing kinase inhibitors 

with sufficient selectivity towards the given target to avoid 

unwanted side effects. Even though the field has seen the 

advent of type II inhibitors in the 2000’s4, the majority of 

reported kinase inhibitors are still type I ligands. (Type II 

inhibitors bind to the inactive or “DFG-out” conformation of 

kinases as opposed to type I inhibitors that bind to the ATP-

binding pocket in an active or “DFG-in” conformation.) 

Moreover, as our understanding of the mechanism of action of 

type II inhibitors improves, it is becoming clearer that this class 

of compounds is not inherently more selective than ATP-site 

inhibitors.
5
 Thus, the predominant approach towards kinase 

inhibitor design is still the small-molecule targeting of the ATP-

site, even more so as the majority of available structural and 

biochemical data refer to type I inhibitors. 

Virtual screening has been proven to be a useful approach in 

the hit discovery of kinase targets.
6,7

 However, due to the 

significant increase of the commercially and/or synthetically 

available druglike (and leadlike) chemical space, structure-

based screening methods are facing capacity challenges. As a 

solution, less accurate but quicker filters can be applied prior 

to the actual virtual screening (e.g. docking) to derive a more 

focused dataset of manageable size. 

Various approaches have been applied previously to assemble 

kinase-focused compound libraries (virtual and physical as 

well), including substructure-based methods
8–13

 and similarity-

based methods.
14–16

 Most recently, Singh and coworkers 

explored the possibility of characterizing kinase-like ligands 

based on physicochemical descriptors.
17

 With the increasing 

amount of publicly available inhibitor activity data
18

, this 

approach becomes an attractive opportunity, since 

substructure- and similarity-based methods inherently retrieve 

molecules that are structurally similar to the reference 

compound(s), limiting the ability to identify inhibitors with 

novel scaffolds. In contrast, property-based methods do not 

have this limitation. The Kinase-Like Score (KLS) introduced by 

Singh and coworkers characterizes kinase-like ligand space on 

a statistical basis: it considers nine descriptors and scores them 

according to a formula that assumes normal distribution. 

A suitable MPO (multi-parameter optimization
19

)
 
method for 

compound profile optimization is the desirability function.
20,21

 

The essence of the underlying concept is that for each 

descriptor, a tailor-made scoring function is introduced, which 

reflects the “desirability” of the various possible values of that 

descriptor (e.g. how prevalent that descriptor value is among 

reference compounds). Desirability functions usually take 

values between 0 and 1, and generally either a sum or a 

product of the individual scores is calculated at the end of the 
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process to produce the overall desirability score. Recent 

examples of studies that involve desirability function-based 

optimizations include Cruz-Monteagudo and coworkers’ paper 

on global QSAR studies
22

, Avram and coworkers’ article on the 

characterization of pesticide-like compounds
23

, and a GPCR-

focused library design implementation by our group.
24

 

In this paper, we present a desirability function-based scoring 

scheme (Kinase Desirability Score or KiDS) using topological 

descriptors to screen kinase-like ligands. Based on this study, 

KiDS can be applied as a pre-filter for kinase-like ligands in 

virtual screening campaigns or alternatively it might support 

designing kinase-focused libraries. 

Methods 

We have developed and tested a desirability function-based 

scoring scheme (KiDS) for the quick and computationally 

efficient filtering of large compound collections. The study 

mostly involved enrichment tests on datasets, where known 

kinase inhibitors were mixed into a larger set of random 

molecules from a commercial compound database. Thorough 

external validation was also carried out on publicly available 

(Pubchem Bioassay) and proprietary (Gedeon Richter Plc.) HTS 

datasets. We have also examined the correlation between 

KiDS score and kinase promiscuity using full matrix data from 

the EMD Millipore Kinase Screening dataset in ChEMBL.
25

 The 

following sections cover the applied computational methods in 

more detail. 

Database retrieval 

Structures and activity data of known kinase inhibitors (used as 

actives) were retrieved from the ChEMBL Kinase Sarfari 

database (version 17).
26

 Duplicate entries were removed and 

the largest fragment was kept for each entry. Only those 

molecules with a corresponding activity measurement of type 

B (“Binding”, such as IC50 or Ki in an enzyme-based assay) were 

kept and activity values were converted to IC50 where Ki or Kd 

were provided. For molecules with multiple activities, the 

lowest IC50 values were kept. Actives were defined as 

molecules that exhibit an IC50 ≤ 10 µM value on at least one 

kinase. The Mcule Purchasable Compounds Database was 

utilized as the source of random molecules (identified as non-

actives)
27

, which were filtered to exclude any known kinase 

actives present in the ChEMBL Kinase Sarfari or the Pubchem 

test set (see below). To reduce the effect of molecular size, the 

input databases were focused to leadlike compounds, as 

defined by Teague and co-workers (250 ≤ MW ≤ 350, logP ≤ 

3.5, rotB ≤ 7) .
28

 Several datasets were compiled, where actives 

and non-actives were mixed in an approximately 1:9 ratio. The 

Training set contained 2500 actives from ChEMBL and 22803 

non-actives from Mcule, while Test set 1 counted 1923 actives 

(ChEMBL) and 18000 non-actives (Mcule), and Test set 2 

counted 730 actives (PubChem
29

) and 6300 non-actives 

(Mcule). Both test sets were used for external validation. An 

additional effort for external validation involved the exchange 

of the random molecules: in Test sets Z, 1Z and 2Z, the non-

actives from Mcule were exchanged to 20000 randomly 

selected leadlike compounds from ZINC
30,31

 (while the kinase 

actives were the same as in the Training set and Test sets 1 

and 2, respectively). The open source cheminformatics 

platform KNIME (version 2.9.1) was used for all dataset 

operations.
32

 Removal of counter ions and the  calculation of 

molecular descriptors were carried out with the KNIME 

implementation of JChem software (version 6.3.0), using 

Standardizer and Calculator Plugins.
33

 The KNIME workflow for 

the calculation of KiDS is available on our website: 

http://medchem.ttk.mta.hu. A quick visual reference for the 

calculation of KiDS is provided in Figure 1. 

Desirability functions 

Scoring (classifier) variables were selected from a pool of 

commonly used molecular descriptors: molecular weight, logP, 

TPSA, pKa of the most acidic and basic centers and the 

numbers of hydrogen bond acceptors and donors, heavy 

atoms, rings, rotatable bonds, nitrogen and oxygen atoms, 

aromatic, aliphatic and fused rings. (For the actual descriptors 

that finally constituted the Kinase Desirability Score, see the 

“Results” section.) As a first measure of inspection, Mann-

Whitney U tests were carried out to establish whether the 

differences in the medians of the descriptors are statistically 

significant. The descriptors were tested for 2500 active and 

2500 non-active molecules from the Training set and the 

results were significant at the p = 0.05 level (in fact, p values 

approximated 0). Since there is a known trend for statistical 

tests to be more sensitive as the size of the sample increases, 

we have inspected the distributions visually as well (on 

categorized histograms) and preferred those descriptors for 

which substantial differences were detected. For statistical 

testing and histogram plotting, STATISTICA 12 was applied.
34

 

Desirability functions as introduced by Harrington
20

 and 

Derringer
21

 were defined for a number of molecular 

descriptors as custom-made functions that assign a value 

between 0 and 1 (desirability score) to each possible 

descriptor value. Generally, the assigned desirability scores 

were higher as the prevalence of the given descriptor value 

was higher among actives and lower among non-actives. (For a 

more detailed description, see the “Results” section and 

Figures S1-S6.) The additive approach was taken to summarize 

the separate desirabilities based on the descriptors, i.e. the 

overall Kinase Desirability Score was defined as the sum of the 

desirability scores obtained for the descriptors independently. 

Evaluation 

To assess the performance of the scoring scheme, enrichment 

studies were carried out on the Training set and on the two 

independent Test sets. Enrichment factors (EF) at 0.5%, 1%, 2% 

and 5%, receiver operating characteristic curves (ROC) and 

area under the ROC curve (AUC) values were calculated to 

evaluate the results. Enrichment factors were defined as 

suggested by Jain and Nicholls
35

 to provide a size-independent 

measure of early enrichment: 

  EFx% = (TPRx%) / x%, (1) 

i.e. the enrichment factor is equal to the ratio of the true 

positive rate and the false positive rate for a given false 
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positive rate x% (in other words, Y / X for a specific point on 

the ROC curve). Conventional enrichment factors, defined as: 

  EFx% = (Nact, x% / Nx%) / (Nact / N) (2) 

were also calculated and included in the Supplementary 

information. (Here, Nact, x% and Nx% are the number of actives 

and the total number of compounds in the top x% of the 

ranked list (respectively), while Nact and N are the number of 

actives and the total number of compounds in the whole 

dataset, respectively.) 

The ROC curve is the plot of %(true positives) vs. %(false 

positives) for the ranked list of objects (here, molecules). The 

straight diagonal line is a reference that corresponds to 

random classification. AUC is the area under the ROC curve 

which is calculated numerically. 95% confidence intervals are 

reported for both the AUC values and the enrichment factors 

as elaborated by Nicholls.
36

 

Results 

Development of the scoring scheme 

Six descriptors were chosen to be included in the Kinase 

Desirability Score: topological polar surface area (TPSA) and 

the number of rotatable bonds (rotB), nitrogen atoms (NN), 

oxygen atoms (NO), aromatic rings (Arom) and hydrogen bond 

donors (HBD). For discrete descriptors (all of the above except 

for TPSA), desirability scores are assigned based on a simple 

decision matrix presented in Table 1. The score for a given 

property value is assigned based on robust statistical 

parameters (the median and the interquartile range) of that 

property among kinase actives and random molecules. (For 

example, if a property value for a compound is inside the 

interquartile range of that property for kinase actives, but 

outside of the interquartile range for random molecules, the 

desirability score assigned to that property is 1.) For the TPSA, 

the score continuously increases from 0 to 1 between the 

median TPSA’s of random molecules and kinase actives, and 

decreases to 0 as it approaches the top of the upper quartile 

for kinase actives. (See Supplementary Figure S1). The 

graphical representations of the desirability functions are 

reported in Supplementary Figures S1-S6, while the definitions 

of the functions are reported in Supplementary Table S1. 

From the distributions of these descriptors among kinase-like 

and random molecules, the following general observations can 

be drawn: among kinase-like compounds, less oxygen atoms 

and rotatable bonds, higher polar surface area, and more 

aromatic rings, nitrogen atoms and hydrogen bond donors are 

preferred than what can be observed for random compounds. 

These differences are reflected in the definitions of the 

desirability functions of KiDS.  

Evaluation of the scoring scheme 

Performance on the Training and Test sets. The ROC curves 

presented in Figure 2 display high AUC values, together with a 

steep initial curve that corresponds to good early enrichments 

(see Table 2). Early enrichments are especially important when a 

small portion of the top scoring functions are sought while the 

general character of the ROC curve and the good AUC value are 

substantial when a larger part of the screened dataset is 

selected for subsequent studies. The results suggest the 

applicability of KiDS for both scenarios. (Conventional 

enrichment factors are reported in Supplementary Table S2, 

while categorized histograms of the KiDS distributions are 

presented in Supplementary Figures S7-S9.) 

External validation has been carried out on Test sets 1 and 2, 

and clearly the deterioration of the results (with respect to the 

training set) is negligible, confirming the robustness of the 

scoring method. An additional external validation was carried 

out to verify the robustness of the Kinase Desirability Score: 

the random compounds from Mcule (in the Training and both 

Test sets) were exchanged to a set of 20000 random leadlike 

compounds from ZINC to assess whether the scoring method is 

dependent on the starting dataset. (Figure 2B) Deterioration of 

the performance parameters was negligible, suggesting that 

the performance of KiDS does not depend significantly on the 

source of the examined database. (Enrichment factors and 

AUC values are reported in Supplementary Tables S3 and S4.) 

The active:non-active ratio on the other hand influences this 

performance as shown in the next section. 

KiDS also outperforms the Kinase-Like Score (KLS) of Singh et 

al.
17

 (presented on Figure 2 as a reference), justifying its use 

for the mentioned purposes. An explanation for the improved 

performance of KiDS relative to the Kinase-Like Score (KLS)
17

 is 

that while KLS accounts only for the property distributions of 

kinase actives, KiDS considers the differences between kinase 

actives and random, commercially available compounds. The 

same can be specified as the reason for KLS being sensitive to 

the source of random compounds, while KiDS is not (Figure 2 

B). In this context, it is worth noting that the ability to 

distinguish and characterize different compound databases 

was a key requirement during the development of KLS. While 

the primary purpose of KLS was to examine compound 

databases, KiDS was developed with the intention to provide a 

general tool for property-based pre-screening for structure-

based virtual screens and as such, it provides a better 

alternative for this task than KLS. 
Performance on screening datasets. As an additional measure 

to validate the Kinase Desirability Score, one proprietary 

(Gedeon Richter) and three publicly available (Pubchem 

Bioassay) HTS datasets were subjected to scoring and 

evaluation with KiDS (and also with KLS as a reference). With 

this calculation, we assess whether the application of KiDS as a 

pre-filtering step increases the chance of finding active 

molecules in a smaller portion of the entire HTS set (thus 

reducing the effective cost of finding an active molecule). Since 

KiDS was developed for the pre-screening of leadlike 

molecules, the HTS sets were first focused to this size range.
28

 

Table 3 summarizes the composition of these (pre-filtered) 

HTS sets, as well as the AUC values of their evaluation with 

KiDS and KLS.
17

 ROC curves of the evaluations are presented in 

Figure 3. (Due to the very small number of confirmed actives, 

enrichment factors are not reported for these datasets.) 
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It is apparent from the results that the scoring of the screening 

datasets with KiDS is effective in selecting a subset enriched in 

kinase ligands. For example, the experimental testing of the 

top half of the HTS set published as AID 604 in Pubchem 

Bioassay (Figure 3C) would result in identifying 80% of the 

actives that are found during the testing of the whole dataset. 

Similar result is obtained for AID 524 while KiDS gave 

somewhat inferior results for the Gedeon Richter’s HTS (60% 

confirmed actives in the top scored 50%) and performed 

better for AID 619 where over 90% of actives are identified in 

the top scored 50% set. (Clearly, the performance is worse 

than for the training and test sets presented earlier, but that 

can be attributed to the much lower active:inactive ratios of 

the Pubchem Bioassay HTS sets.) Moreover, KiDS proved to be 

superior to KLS in each case. These results support that the 

application of KiDS as a pre-filtering step can reduce the 

effective cost of finding active molecules in a kinase-directed 

high-throughput screening. 

KiDS and kinase promiscuity. To examine the relationship 

between KiDS and the likeliness of activity on a kinase, we 

have calculated the KiDS scores for the EMD Millipore Kinase 

Screening dataset in ChEMBL.
25

 The dataset contains 158 well-

known kinase inhibitors, out of which 40 are leadlike.28 

Promiscuity was defined as the number of kinase targets on 

which a compound is active. (Actives were defined as those 

compounds that exhibit ≤ 50% residual activity in the screening 

concentration of 1 or 10 µM.) It is important to stress that the 

purpose of KiDS is not the selection of promiscuous 

compounds: correlating KiDS to the promiscuity of well 

characterized compounds only serves as a tool here to assess 

the likeliness of a given compound to be active on an arbitrary 

kinase. On Figure 4, a significant linear correlation can be 

observed between KiDS and the average number of kinases hit 

(with a correlation coefficient of R
2
 = 0.838). In other words, a 

higher KiDS score does confer a higher chance of finding the 

given compound to be active on an arbitrary kinase of interest. 

Conclusions 

Virtual screening of large chemical databases is one of the 

most powerful strategies generating viable chemical starting 

points for kinase inhibitor discovery programs.
6,7

 Structure-

based methods, however, are increasingly demanding 

computationally as the size of the screened database 

increases. Although substructure- and similarity-based 

screening methods are faster, they are less likely to identify 

structurally novel hit compounds, and thus they are less suited 

to expand the chemical space of kinase inhibitors. To get 

around this problem, we identified property-based pre-

screening as a useful step prior to structure-based approaches. 

In this study we introduced a molecular property-based 

scoring scheme, the Kinase Desirability Score (KiDS). The 

scoring scheme involves custom desirability functions based on 

six molecular descriptors: topological polar surface area (TPSA) 

and the number of rotatable bonds (rotB), nitrogen atoms 

(NN), oxygen atoms (NO), aromatic rings (Arom) and hydrogen 

bond donors (HBD). Scores between 0 and 1 are assigned to 

each of the descriptors and summed up to give the Kinase 

Desirability Score. KiDS is flexible in the sense that it does not 

impose very strict constraints regarding either of the involved 

molecular properties. Therefore, it allows for the identification 

of structurally novel kinase inhibitors. 

KiDS was developed and tested using a dataset of known 

kinase inhibitors (ChEMBL) and random compounds from a 

commercial compound databases (Mcule and ZINC), and its 

performance was assessed with early enrichment factors, ROC 

curves and AUC values on Training and independent Test sets. 

External validation also involved testing its performance on 

proprietary and public HTS datasets as well as full matrix 

screening data. In the latter case, a significant correlation 

between the KiDS score and kinase promiscuity could be 

observed. 

The good and consistent performance parameters suggest that 

KiDS is useful as a pre-screening step in virtual screening 

workflows and for kinase-focused library design, as well. It also 

presents a more efficient alternative for these tasks than the 

previously suggested Kinase-Like Score (KLS). In HTS 

campaigns, a KiDS-based pre-screening can reduce the 

effective cost of finding hit compounds. 
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Tables 

Table 1 Decision matrix for the assignment of desirability scores 

 median (act.) IQR (act.) other (act.) 

median (rand.) –a 0.5 0 

IQR (rand.) 1 0.5 0 

other (rand.) 1 1 0, 0.2b 

a No descriptors were selected where the medians of the kinase actives and random molecules coincide. 

b In cases where a value is outside the interquartile range (IQR) for both sets, a score of 0.2 is assigned when the given value is visibly more common among kinase 

actives than random molecules (see Figures S1-S6). 

Table 2 Performance evaluation of the Kinase Desirability Score: early enrichment factors and AUC values 

Dataset Active 
Random 

compounds 

EF0.5%
 a EF1%

 a EF2%
 a EF5%

 a AUC a 

KiDS KLSb KiDS KLSb KiDS KLSb KiDS KLSb KiDS KLSb 

Training 2500 22803 
23.2 

(1.9E-2) 

1.90 

(5.1E-3) 

14.2 

(9.9E-3) 

1.79 

(3.5E-3) 

10.6 

(5.6E-3) 

1.78 

(2.4E-3) 

7.1 

(2.5E-3) 

1.44 

(1.3E-3) 

0.786 

(9.6E-3) 

0.544 

(0.012) 

Test 1 1923 18000 
22.6 

(2.4E-2) 

1.87 

(6.5E-3) 

14.0 

(1.3E-2) 

1.40 

(3.9E-3) 

10.9 

(7.2E-3) 

1.46 

(2.8E-3) 

6.9 

(3.2E-3) 

1.33 

(1.7E-3) 

0.778 

(0.011) 

0.537 

(0.014) 

Test 2 730 6300 
18.9 

(6.1E-2) 

3.78 

(2.6E-2) 

14.8 

(3.6E-2) 

3.15 

(1.7E-2) 

9.9 

(1.9E-2) 

2.81 

(1.1E-2) 

6.2 

(8.6E-3) 

1.81 

(5.3E-3) 

0.757 

(0.019) 

0.532 

(0.023) 

a 1.96σ values (corresponding to 95% confidence intervals) are given in parentheses.36 

b Performance parameters obtained for the same datasets with the KLS score of Singh et al. are provided as a reference.17 

Table 3 Summary of the HTS sets applied for external validation 

#a AIDb Target 

Activity 

threshold 

(µM)c 

Confirmed 

active 
Inactive 

KiDS 

AUCd 

KLS 

AUCd,e 

A GR Undisclosed kinase target 70%f 28 7480 
0.574 

(0.110)f 

0.397 

(0.116) 

B 
524 (screening) 

548 (confirmatory) 
Protein kinase A (PKA) 60 40 22447 

0.700 

(0.075) 

0.557 

(0.086) 

C 
604 (screening) 

644 (confirmatory) 
Rho-associated protein kinase 2 (ROCK2) 10 35 20895 

0.682 

(0.080) 

0.603 

(0.083) 

D 
619 (screening) 

785 (confirmatory) 
Polo-like kinase 1 (PLK1) 50 14 30336 

0.791 

(0.102) 

0.523 

(0.131) 

a Panel identifier on Figure 3. 

b Pubchem Bioassay IDs (where applicable). GR: Gedeon Richter Plc. proprietary HTS dataset. 

c IC50 value, below which a molecule is considered a confirmed active. 

d 1.96σ values (corresponding to 95% confidence intervals) are given in parentheses.36 

e AUC values obtained for the same datasets with the KLS score of Singh et al. are provided as a reference.17 

f 70% inhibition at the HTS screening concentration of 10 µM. (As confirmation, single-point inhibition measurements were carried out at 10 µM in duplicate.) 

Figures 

Figure 1 Workflow representation of the calculation of KiDS. The last step corresponds to the application of KiDS as a filtering criterion. 
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Figure 2 Evaluation of the Kinase Desirability Score. (A) ROC curves of the evaluation of the Training and Test sets with KiDS. In addition to the AUC values being close to 0.8, the 

initial slopes are quite high, which corresponds to good early enrichment factors (as reported in Table 2). A negligible deterioration of the results is observable for the Test sets 

(relative to the Training set), which suggests that the predictive power of the scoring method is sufficiently high, and thus it can be used for prospective applications. A ROC curve 

acquired for the Training set with the application of the Kinase-Like Score (KLS) of Singh et al. 
17

 is provided as a reference (thick black line). (B) Additional validation has been 

carried out with a different set of non-actives. The actives from the Training and Test sets were mixed with 20000 randomly selected leadlike molecules from the ZINC leadlike 

subset
30,31

 to produce Test sets Z, 1Z and 2Z. The results are consistent with the curves presented in (A), confirming that no loss of performance was observed upon the exchange 

of the source of random compounds. A reference curve is provided once again for Test set Z with the KLS score of Singh et al.
17

 

Figure 3 External validation of KiDS on proprietary (A) and publicly available (B-D) datasets of HTS campaigns. (See Table 3 for details) The ROC curves suggest the applicability of 

KiDS as a pre-screening step in HTS campaigns to reduce the necessary instrumentation (and thus, the effective cost) for finding hit compounds. 

Figure 4 Plot of KiDS vs. average number of kinases hit for the EMD Millipore Kinase Screening dataset in ChEMBL.
25

 For each point (X,Y), Y equals the number of kinases hit 

averaged over the compounds possessing a KiDS score less than or equal to X. A significant linear correlation can be observed between the KiDS score and kinase promiscuity, with 

R
2
 = 0.838. 
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