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Discovery of C-shaped aurone human neutrophil elastase 

inhibitors  
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An activity screening of a library of aurones led to the identification of sub-

micromolar HNE inhibitors. The activity is rationalized by a C-shape 

conformation that allows tight binding to human neutrophil elastase S1 

and S2 pockets. 

Human Neutrophil Elastase (HNE, EC 3.4.21.37) is a serine protease 

of the chymotrypsin superfamily that is stored in the primary 

azurophilic granules of polymorphonuclear neutrophils. HNE is 

naturally involved in the degradation of diverse structural proteins, 

such as elastin, or functional proteins toward the activation of other 

proteases, such as matrix metalloproteinases, but also plays an 

important role on pathogen killing by cleaving structural proteins of 

the outer cell wall of gram-negative bacteria. On the other hand, 

the imbalance between HNE and its endogenous inhibitors leads to 

severe tissue injuries associated to the onset and progression of 

several diseases such as chronic obstructive pulmonary disease 

(COPD, reported by the World Health Organization as the third 

leading cause of death worldwide), rheumatoid arthritis, pulmonary 

emphysema and psoriasis.
1
 Moreover, it has been postulated that 

HNE can contribute to non-small cell lung cancer progression.
2
 

A wide range of chemical scaffolds with different mechanisms of 

action against HNE were reported over the last decades, 

nevertheless only Sivelestat (ONO-5046), an acylating agent from 

Ono Pharmaceuticals, has been launched at the Japanese market 

for acute lung conditions, however failed FDA approval. Hence, 

there is an urgent need for new scaffolds toward HNE inhibition. 

One of the main pitfalls of the drug discovery process toward HNE-

related diseases is the target flexibility due to induced-fit events 

upon the binding of different ligands.
3, 4

  For example a potent non-

covalent dihydropyrimidone inhibitor was co-crystallised with HNE 

revealing a unique orientation addressing HNE S1 and S2 subsites, 

in which the formation of a deep and well-defined cavity at S2 was 

first described (Fig. 1).
4
 The shape complementarity between the 

induced S2 cavity and the P2 moiety of the inhibitor opens the way 

to a new potential “C-shaped” HNE inhibitor discovery (Fig. 1). 

Moreover, Bayer HealthCare recently disclosed BAY 85-8501, a 

picomolar dihydropyrimidone that also presents a frozen bioactive 

conformation toward tight S1 and S2 pocket interactions. BAY 85-

8501 is currently in Phase 2 clinical trials for safety and efficacy 

evaluation in patients with non-cystic fibrosis bronchiectasis.
5
  

Our group has been engaged in the development of HNE inhibitors 

with new architectures such as the potent oxo-β-lactam class,
6
 or 

kojic acid derived inhibitors identified by a computer-aided 

campaign.
7, 8

 The exploitation of the reactivity of covalent inhibitors 

also allowed us to design a selective fluorescent activity-based 

probe, as a tool for molecular functional analysis for HNE-related 

disease proteomes.
9
 Following our journey pursuing new lead 

structures for HNE inhibition we envisaged the aurone derivatives 

as potential C-shape candidates toward adequate conformation for 

HNE non-covalent inhibition (Fig. 1). An in-house aurone library 

with 25 derivatives was then screened against HNE in order to 

evaluate the conformation-activity relationship within a diverse 

collection of compounds with a wide range of substituents around 

the aurone scaffold. 

 

Fig. 1 Structure of HNE in complex with a dihydropyrimidone inhibitor with “C-shape” 

conformation (PDB 3Q77)
4
  and envisaged aurone scaffold. 
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The therapeutic potential of aurones has been highlighted with 

recent studies disclosing their anti-cancer,
10, 11

 antimicrobial,
12

 

antiparasitic,
13

 anti-viral,
14

 and anti-inflammatory
15

 activities. In 

addition, aurones can also act as modulators of ABC drug 

transporters
16

 and present inhibitory activity against 

acetylcholinesterase
17

 and MAO-B
18

. However, no report on the 

conformation-activity relationship as major responsible for 

biological outcome has been described.  

A library of aurones was previously developed by our group in order 

to probe its activity against Plasmodium falciparum.
13

 These were 

synthesized by aldol condensation of benzofuranones with the 

appropriately substituted benzaldehydes, leading to the desired 

aurones with Z configuration, the thermodynamically more stable 

isomer.
13

 Microwave assisted synthesis using palladium catalyzed 

protocols was also used for aurone scaffold extension. Envisaged as 

potential C-shape HNE inhibitors, aurone activity was screened at 

10 µM in order to identify aurone hits toward HNE inhibition (Table 

1). 

Table 1. Aurone library assayed against HNE. 

Compd R
1
 R

2
 HNE act 

[I]10µM 

%
a 

IC50 

(HNE)/ 

µM±SD 

LE 

1 H 2-Br 100 ND
 

ND 

2 H 3-Br 100 ND ND 

3 H 4-Br 100 ND ND 

4 H 4-Ph 110 ND ND 

5 H 4-(C6H4-4’-F) 87 ND ND 

6 H 4-( C6H4-4’-Cl) 67 ND ND 

7 H 4-( C6H4-4’-CHO) 105 ND ND 

8 H 4-(3’-Quinoline) 88 ND ND 

9 H 4-[5’-(Pyridin-2’-NH2)] 82 ND ND 

10 H 4-NMe2 10 2.9±0.8 0.39 

11 H 4-(NHPh) 22 1.4±0.8 0.34 

12 H 4-(NHBn) 19 0.9±0.3 0.34 

13 H 4-(OC6H4-4’-Me) 100 ND ND 

14 H 4-(OC6H4-4’-Cl) 36 0.5±0.3 0.35 

15 H 4-Bn 58 4.4±2.6 0.31 

16 H 3-Ph 69 ND ND 

17 H 3-(C6H4-4’-Cl) 41 0.5±0.3 0.37 

18 H 3-(C6H4-4’-CHO) 49 1.1±0.3 0.33 

19 H 3-(3’-Quinoline) 87 ND ND 

20 H 3-Bn 44 2.9±1.4 0.32 

21 7-OMe H 87 ND ND 

22 6-OH H 76 ND ND 

23 6-OH 4-NMe2 19 5.1±1.6 0.35 

24 6-OH 4-(OC6H4-4’-Me) 49 ND ND 

25 6-OH 4-(OC6H4-4’-Cl) 41 1.5±0.4 0.31 

a
Remaining HNE activity in the presence of [I]=10 µM. ND- non determined. 

Inspection of Table 1 reveals that aurones with small R
2 

substituents 

at ring B are inactive (e.g. 1-3). Similarly, larger and rigid R
2
 groups 

at C-4 lead to poorly active compounds (e.g. 4-9). The exception 

were aurones with an amine (10 and 12), aniline (11) or 4-(4’-

chloro)phenoxy (14) groups, with IC50 values ranging from 0.51 to 

2.9 µM. These results may reflect a lack of flexibility imparted by 

rigid C-4 substituents that does not favor the C-shape conformation 

in the active site, which is recovered in the presence of a more 

flexible linker. In contrast, aurones with aryl groups at C-3 were 

well-tolerated indicating that 3-substitution pattern may favor the 

C-shape conformation in the active site of HNE. For example, 

moving the 4-chlorophenyl substituent from C-4 (6) to C-3 (17) led 

to a dramatic increase of potency.    

Kinetic studies were performed for aurone 12. The inhibitor and 

substrate were added to the enzyme and product formation was 

monitored over 120 min, at different inhibitor concentrations (Fig. 

2). Progress curve analysis show concentration but no time-

dependent inhibition, in line with a competitive mechanism.
7, 19, 20

 

 

Fig. 2 Plots of progress curves for HNE inhibition by aurone 12 (0-100 µM). No time-

dependent inhibition was observed and lines indicate linear best fits. 

In order to have a molecular insight for aurone HNE inhibitors mode 

of action, molecular docking studies were performed using GOLD 

version 5.2.0 software and HNE 3D coordinates from PDB ID: 3Q77, 

where HNE forms a complex that revealed the ability of a non-

covalent dihydropyrimidone inhibitor to adopt a induced-fit C-

shape inactivation of the enzyme.
4, 21

 

The docked poses for the active aurones clearly show the ability of 

these derivatives (10, 12, 14, 17, 20 and 25, Fig. 3) to form a well- 

defined C-shape that promotes the induced-fit toward HNE 

inhibition. We can observe for all derivatives that the aurone ring is 

well accommodated in the S2 pocket establishing π-π stacking 

interactions with His57 and should be responsible for the induced-

fit event leading to the movement of Leu99 toward a solvent 

accessible area resulting in a deeper S2 pocket. Moreover, the 

active compounds present appropriate size and conformation for a 

correct pose that well-fits both S1 and S2 pockets (Fig. 3). In 

addition, the presence of a hydroxyl group at C-6 is well tolerated at 

the P2 moiety of the aurone but does not lead to extra favorable 

interactions (25, Fig. 3). Weaker inhibitors as 10 and 20 show a 

suitable C-shape with the aurone occupying the S2 pocket, 

nevertheless the inhibitor length does not allow a fulfilling of the 
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deep S1 pocket. When we observe the docked poses for the 

inactive compounds 2 and 13 (Fig. 3), we can foresee that 

compound 2 is too small to promote the induced-fit as the aurone 

does not completely fit toward the S2 pocket end while the same 

happens on the opposite side of the molecule where the 

phenylbromide moiety is not well accommodated in S1 deep 

subsite, disrupting the possibility for tight binding to HNE. On the 

other hand compound 13 has extended size with a methyl group at 

the opposite end of the aurone and, in agreement with its 

inactivity, we were unable to find docked poses that suggest the 

occupancy of both S1 and S2 subsites. 

 

 
Fig. 3 Docked poses for aurone human neutrophil inhibitors using GOLD5.2 software. The ability for a well-defined C-shape conformation leads to increased potency 
due to S1 and S2 complementarity. Pictures performed using MOE package.

22
  

Ligand efficiency (LE) is a useful metric assessing the druggability of 

leads and targets.
23

 Regarding the acceptable value for LE, the 

aurones now disclosed as HNE inhibitors are suitable as lead 

compounds for further development (Table 1). Moreover, the 
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assayed aurones were shown to be non-cytotoxic against cultured 

human cells (HEK293T) presenting EC50 values, in general, higher 

than 100 μM, leading to selectivity indices (SI = 

EC50(HEK293T)/IC50(HNE)) higher than 20.
13

 Hence, as anticipated 

the aurone scaffold acts as a C-shape non-covalent inhibitor of HNE 

depending on the scaffold decoration that might lead to further 

development toward more potent HNE inhibitors with adequate 

drug like properties. 

Conclusions 

A new class of human neutrophil elastase based on the aurone 

scaffold was discovered, presenting sub-micromolar activities. 

The ability of aurones to form a C-shape conformation 

depending on the substitution pattern may role induced-fit 

events that allow tight binding to HNE S1 and S2 pockets. The 

suitable ligand efficiency and the lack of cytotoxicity opens the 

way for further development of aurone HNE inhibitors and 

computer-aided techniques will be valuable tools for the 

design of more potent molecules with adequate C-shape 

complementarity to HNE S1 and S2 subsites. 
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