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Spatiotemporal multistage consensus clustering in molecular 

dynamics studies of large proteins 
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b
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, Rudolf Karch

a
, 

Wolfgang Schreiner
a* 

The aim of this work is to find semi-rigid domains within large proteins as reference structures for fitting molecular 

dynamics trajectories. We propose an algorithm, multistage consensus clustering, MCC, based on minimum variation of 

distances between pairs of Cα-atoms as target function. The whole dataset (trajectory) is split into sub-segments. For a 

given sub-segment, spatial clustering is repeatedly started form different random seeds, and we adopt the specific spatial 

clustering with minimum target function: The process described so far is stage 1 of MCC. Then, in stage 2, the results of 

spatial clustering are consolidated, to arrive at domains stable over the whole dataset. We found that MCC is robust 

regarding the choice of parameters and yields relevant information on functional domains of the Major Histocompatibility 

Complex (MHC) studied in this paper: The α-helices and β-floor of the protein (MHC) proved to be most flexible and did 

not contribute to clusters of significant size. Three alleles of the MHC, each in complex with ABCD3 peptide and LC13 T-cell 

receptor (TCR), yielded different patterns of motion. Those alleles causing immunological allo-reactions showed distinct 

correlations of motion between parts of the peptide, the binding cleft and the complementary determining regions (CDR)-

loops of the TCR. Multistage consensus clustering reflected functional differences between MHC alleles and yields a 

methodological basis to increase sensitivity of functional analyses of bio-molecules. Due to the generality of approach, 

MCC is prone to lend itself as a potent tool also for the analysis of other kinds of big data. 

Introduction 

Background 

Rapid increase of computational speed at reasonable costs has 

empowered molecular dynamics (MD) as a tool for analyzing 

bio-molecular function at an atomistic level 
1-6

. In particular, 

the term immuno-informatics 
7-10i

 has been coined by V. Brusic 
8
 and aims at scrutinizing the mechanisms of immuno-

recognition by studying the interplay between loaded 

peptides, Major Histocompatibility Complex (MHC)-molecules 

and T-cell-receptors (TCRs) 
11-16

 in atomistic detail 
17;18

. 

Intricate statistical procedures, aiming at isolating patterns of 

motion underlying molecular functions 
19;20

, have to draw on 

some kind of reference within an overall moving, distorting 

and flexible biomolecule 
21-23

. 

To these ends, newly produced MD data are usually subjected 

to a so-called fitting procedure 
24

. One configuration 

(reference frame) is selected (usually the first frame) and each 

other frame of the remaining trajectory is transformed (shifted 

and rotated) so as to fit to the reference frame in a least-

squares sense 
25

. Such a fitting procedure removes absolute 

movements while retaining relative movements and 

deformations. Atom coordinates preprocessed in this way lend 

themselves for further sophisticated analyses 
26-28

, aiming at 

extracting patterns of motion actually relevant for the 

molecular mechanism in question. 

Obviously, these results critically rely on the fitting procedure, 

in particular on the choice of the reference structure. One 

question is which frame to select. A second question is an 

appropriate selection of the fitting domain, i.e. those parts of 

the molecule for which root mean squared displacement 

(RMSD)-deviations are computed and minimized. 

Each atom within the fitting domain clearly influences the 

results of fitting. Even small flexible domains easily create large 

RMSD-values, and thereby might dominate the fitting (‘the tail 

wags the dog’). Hence, one tries to exclude very flexible parts 

of the molecule from fitting and to resort to semi-rigid 

domains as reference structures. 

Finding such structures by spatial clustering has been 

described previously 
29

. 

In the present work we use the analysis of MD data as a 

specific example to prove the concept and performance of 

spatiotemporal clustering, while at the same time extending 

and generalizing its methodology towards multistep consensus 

clustering (MCC). 

Motivation for the new approach presented here 

Shortcomings of spatial clustering are 
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• the arbitrariness in selecting the number of clusters and 

• open questions regarding stability of the results: would 

another (or elongated) trajectory produce similar 

clusters? 

In this work we solve both issues by proposing the novel two-

stage procedure of spatiotemporal clustering: 

• Spatial clustering is performed on parts of a trajectory. 

• Resulting spatial clusters are further subjected to 

temporal clustering, which reduces them to semi-rigid 

domains stable over time (cluster consolidation). In this 

step, a criterion for stability guides the clustering process. 

The new procedure of spatiotemporal clustering mends two 

shortcomings (presetting the number of clusters, lacking 

information on stability of clusters) of our previous approach 

by introducing the new concept of ‘cluster consolidation’ to 

obtain ‘domains’. 

Material and Methods 

Molecules 

MD simulations were performed on two biomolecular 

complexes, one of these (TCR/peptide-MHC = TCR/pMHC: 

“molecule 1”) was a substructure of the other 

(TCR/pMHC/CD8-coreceptor = TCR/pMHC/CD8: “molecule 2”). 

This allows assessing essential features regarding the quality, 

stability and fidelity of clustering: 

1. Performance of spatiotemporal clustering for molecules of 

different size 

2. Check if the clustering within a substructure remains 

stable if the substructure becomes part of a larger 

complex 

In addition, molecule 1 was investigated in three alleles. 

Three alleles of TCR/pMHC complexes 

Spatiotemporal clustering was applied to MD-simulations of 

three molecular systems that have already been described in a 

previous paper 
29

. The molecular complex of HLA-B*4405, 

ABCD3 peptide and LC13 T-cell receptor 
30

 is labelled B4405 in 

this work. Two other complexes, HLA-B*44:02 and HLA-

B*44:03 each with ABCD3 peptide and LC13 TCR (B4402 and 

B4403, respectively) were obtained using B4405 as a homology 

model and introducing the following mutations:  

 → →B4405 B4402 B4403 Y116D D156L  (1) 

Elements of secondary structure are located within the 

complex as shown in Table 1, based on consecutive numbering 

of Cα atoms. 

Structural elements are given in terms of consecutive numbers 

of Cα atoms, renumbered throughout the whole modelled 

TCR/pMHC/CD8 complex, as if the complex as a whole were 

taken from one single PDB-file, see also the following section 

on modelling. The same data apply to all three complexes 

(B4405, B4402, B4403). 

 

Table 1: Molecules and their secondary structural elements 
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 Chain Type Length in Cα Cα index 

Chain A MHC 276 1-276 

Chain B MHC, 

ββββ2 -microglobulin 

99 277-375 

Chain C Peptide 9 376-384 

Chain D TCR, αααα chain 201 385-585 

Chain E TCR, ββββ chain 241 586-826 

 Chain F CD8 alpha1 114 827-940 

Chain G CD8 alpha2 114 941-1054 

 

Secondary structures Chain Length in Cαααα Cαααα index 

Alpha helix Gα1 A 25 59-83 

Alpha helix Gα2 A 31 141-170 

Domain α3 A 92 184-275 

Beta-sheet A 52 2-13, 21-29, 30-37, 93-103, 110-

118, 124-127 

 

Molecular modelling of TCR/pMHC/CD8 complex 

The molecular structures of many co-crystallized TCR/pMHC 

have been resolved so far (www.pdb.org). Molecular 

structures of CD8 co-receptors bound to MHC are also 

available (e.g. PDB ID 1AKJ). However, a TCR/pMHC/CD8 

complex has not been co-crystallized so far to our knowledge. 

To model such a structure on the computer we first localized 

the binding site of CD8 on MHC in the 1AKJ crystal structure. 

We defined all Cα atoms of the MHC within the range of 

0.8 nm to CD8 to belong to the MHC binding site. In the next 

step, structures of TCR/pMHC and MHC/CD8 were merged into 

one file and the MHC binding sites were superimposed so as to 

minimize RMSD in a least-squares sense. The MHC molecule 

from the MHC/CD8 complex was deleted and the resulting 

TCR/pMHC/CD8 used for MD simulation. This procedure was 
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repeatedly done for TCR/pMHC complexes B4402, B4403 and 

B4405. 

Target function for semi-rigidity 

As previously explained 
29

 we base spatial clustering on the 

STDDV-matrix ijS holding the standard deviations of distances 

dij between atom pairs (i,j) along a given trajectory: 

 

( )= −
−

2

1
ij ij ij

L
S d d

L
 (2) 

where L is the number of frames (configurations) considered 

and  denotes the average over a trajectory (or a part of it). 

As opposed to absolute atom-coordinates, pair-distances offer 

the advantage that they are defined relatively within the 

molecule, rendering fitting unnecessary. Bernhard and Noé 
31

 

have proposed a decomposition of N atoms (
im

c  is the 

membership of atom i  in cluster m ) into a given number of k  

clusters by minimizing the target function 

 

= = =

= = →∑∑∑ T

1 1 1

( ) ( ) min
k N N

im jm ij

m i j

q c c S trc c Sc  (3) 

We have previously shown that these class memberships have 

to be crisp { }0,1  
29

. Based on that we developed a 

corresponding algorithm offering maximum computational 

speed, see the section on benchmarks. 

Clustering algorithms 

The problem of minimizing = T
( ) ( )q trc c Sc  is NP-complete 

32
. 

Thus, under the assumption of ≠P NP , no algorithm can exist 

that would be capable of finding the minimum efficiently after 

a number of operations being bounded by a polynomial in N. 

To illustrate this, we first consider the case =2k of two 

(distinct) clusters 
1

C and 
2

C , and note that 

 

∈ ∈

= +∑ ∑
1 2, ,

( ) ij ij

i j C i j C

q S Sc  (4) 

Instead of minimizing ( )q c  one can alternatively maximize 

 

∈ ∈

= ∑
1 2,

( ) ij

i C j C

q Sc  (5) 

We introduce =1
i

x  for ∈
1

i C and = −1
i

x  for ∈
2

i C , =( 1,2,..... )i n  

and obtain after some calculations 

 

∈ ∈

= =∑
1 2, j

1
( )

2

T

ij

i C C

q Sc x Lx  (6) 

with the Laplacian matrix = −L D S  and D  being the diagonal 

matrix with entries 

 =∑jj iji
d S  (7) 

Finding 
{ }

( )
∈ −1,1

argmax
n

T

x

x Lx  is the well-known weighted max-cut 

problem 
32

. In our case the entries of matrix S are real 

numbers, ∈ijS R . In the literature, a much simpler and special 

case of finding the solution 
{ }∈ −

=
1,1

ˆ argmax ( )
n

x

x q x  for k = 2 and a 

binary matrix, { }∈ 0,1
ij

S , has been described and labelled the 

‘maximum cut’. Even for this simpler case, the decision 

problem whether there is a solution better than a given vector 

x̂  is a reduction from the nae3sat (Not–All–Equal–3-SAT) 

problem, already treated by Cook 
33

. Thus, we know that a 

solution exists - but this is only of theoretical value, since it 

could take exceedingly long computational time to determine 

it. Given these characteristics of the simplified, binary case of 

S, finding the solution will be even harder in our case of real-

valued target function, ∈
ij

S R  and k > 2. As a consequence, the 

number of Cα atoms within a protein is of a size that requires a 

highly optimized approach for clustering, as described earlier 
29

. 

Spatial clustering 

The easiest method of clustering would be agglomerative 

hierarchical clustering (AHC), for which numerous methods 

have been proposed 
34;35

. However, AHC only works 

satisfactorily if shifting one atom from its cluster into 

another cluster, worsens the target function significantly. 

However, this is not the case with our MD data (as pre-

evaluations revealed): A considerable number of atoms may 

change clusters without significantly worsening the target 

function. Hence, as an alternative to AHC we propose a 

greedy, nested, 3-step algorithm to cluster N atoms into k 

clusters according to the target function ( )q c , see (4), as 

follows: 

1. First we choose a preliminary number of clusters, k. In 

chapter ‘Optimizing the number of spatial clusters’ we 

describe how to choose the optimum k. 

2. Then we randomly assign each atom to one of the k 

clusters. 

3. Lap of single-atom moves: For each of the N atoms we try 

if a move to one of the other (k-1) clusters would be 

beneficial, i.e. decrease the target function (N(k-1) trials). 

If a move is beneficial, the new cluster assignment of the 

moved atom is accepted and retained throughout the 

trials of the remaining atoms. 

4. The lap of single atom moves (step 3) is repeated (N(k-1) 

trials in each repetition) until not a single beneficial move 

occurs within a whole lap (exhaustive search). 

5. Steps 2-4 are repeated until m-times in succession no 

better solution is found. Please see below on how to 

select m. 

6. Localization of ground state (optional). To obtain the 

ground state, a variant of the Metropolis algorithm 
36

 is 

applied. In the current implementation, a suitable set of 

atoms, approximately 4N , is selected, which have least 

influences on the target function (when changing clusters 

individually). This group of atoms is spotted during steps 3 

and 4. These atoms are then randomly redistributed 

among all clusters. Starting from this new cluster 

assignment, step 6 is repeated until no further 

improvement is observed over a preselected number of 

iterations (100 times proved sufficient by far). 

We have conducted pilot studies to estimate the success 

probability and overall performance of the algorithm and 

render human choice of parameters unnecessary: 

Page 3 of 18 Molecular BioSystems



ARTICLE Journal Name 

4 | Molecular Biosystems, 2016, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

a) Above steps 2-5 lead to the global optimum of ( )q c  in 

approximately 0.5% (p = 0.005) of the random 

assignments (for 826 atoms used in the pilot study). Thus, 

when performing the procedure m times, there is a 

probability of ε = (1-p)
m 

to miss the optimum. If we are 

satisfied with a failure probability of ε < 0.01, 918.7 is a 

sufficient number of repetitions, and thus choosing 

m = 1000 should be safe. 

b) In step 3 only single atom moves are performed and one 

might speculate if joint moves of several atoms (step 6) 

could further optimize ( )q c . We have evaluated this issue 

and found that moving groups of atoms (instead of single 

atoms) adds only little benefit and always pertains to 

atoms without distinct cluster membership (those which 

are weakly bound to clusters and do not worsen ( )q c  

significantly when changing clusters). Such atoms are, 

however, exactly those being eliminated from clusters by 

temporal clustering, see below. 

Thus, if we would perform nothing but spatial clustering, the 

additional step 6 is recommended. However, if spatial 

clustering is followed by temporal clustering, step 6 can well 

be omitted (what we actually did).  

Benchmarks for spatial clustering 

Table 2 gives benchmarks in seconds for two systems with 

N = 117 and N = 826 Cα atoms, respectively. We have deployed 

the clustering tool on the distance variation matrices obtained 

from MD-trajectories of the complexes B4402, B4403 and 

B4405. 

 

Table 2: Benchmarks for the spatial clustering algorithm. 

Number of clusters k N = 117 N = 826 

4 0.11 ± 0.03 5.2 ± 1.0 

5 0.13 ± 0.03 7.0 ± 1.7 

6 0.16 ± 0.05 9.0 ± 3.2 

7 0.25 ±0.07 10.7 ± 3.2 

8 0.25 ± 0.09 12.7 ± 4.5 

 

Execution times in seconds on an Intel Core i7-2600, 3.40 GHz, 

4 GB memory. The molecules consist of 8706 atoms (B4402 

and B4405) and 8715 atoms (B4403), out of which 826 are Cα–

atoms. 

 

Critical review of spatial clustering 

Fig. 1 shows the circular-plots (usually used for depicting e.g. 

genomic rearrangements) for the B4405 trajectory, 

preselecting two different numbers of clusters (8 and 16). 

 

Fig. 1: Spatial clustering for trajectory B4405. Different numbers of clusters have been preset (k = 8, 16). Each circular-plot (see the reference to software in the 

acknowledgements) shows the number of Cα counter-clockwise along the circumference (numbers in steps 1, 59, 118…826). The color of the circumference encodes if the 

respective Cα is part of the cluster (shown as colored dot) or if it is not part of the cluster (grey dot). Colors are assigned as explained later (section ‘Displaying clustering results for 

different conditions’). Each pair of Cα atoms belonging to the same cluster is connected via a curved line, colored according to the start Cα. Links between pairs of Cαs are shown 

in grey if both Cαs are members of a smaller cluster (note: only the largest clusters, in this case 6, are considered). Cαs which are shown in grey along the circumference without 

giving rise to a link to any other Cα do not belong to any cluster. The total number of connections declines with increasing number of clusters, k. 
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When inspecting Fig. 1 one observes: 

1. The magnitudes of pair-distance variations, Sij, are not 

reflected in the circular-plot: Weak connections between 

atoms (i.e. large distance variations) and strong 

connections appear similar for atoms within the same 

cluster. 

2. When presetting different numbers of clusters, k, spatial 

clustering yields different results. 

3. Even presetting a moderate number of clusters, the 

circular-plot appears crammed with connections, see Fig. 

1. The reason is that spatial clustering assigns each Cα-

atom to exactly one cluster – even if this Cα is not actually 

part of a rigid domain. Moreover, all atoms within each 

cluster are mutually connected, as reflected in the 

resulting membership matrix, { }∈ 0,1 .
ij

c  One may think 

that aiming at smaller clusters, e.g. by increasing the 

number of clusters, k, might avoid some of the above 

disadvantages. However, we have to bear in mind: 

4. The target function, Eq. (4), tends to yield clusters of 

similar size, thus introducing a possible bias regarding 

cluster size. 

5. If one selects k clusters and they result approximately 

equal in size, the number of atom-atom connections 

within all k clusters declines approximately as 1/k for the 

following reason: Each cluster will contain about N/k 

atoms, giving rise to ⋅ −/ ( / 1) / 2N k N k  connections within 

each cluster. All clusters together will then contain 

 ⋅ ⋅ − ⋅ −
= ≈

⋅ − ⋅ ⋅ −

/ ( / 1) 2 1

( 1) 2 ( 1)

k N k N k N k

N N k N k
 (8) 

connections, the approximation 1 k  being valid for �k N

. This entails a fairly large number of connections, e.g. 

≈ =1 8 0.125 12.5%  of all possible connections for k = 8 

clusters. 

6. We found that increasing k to an extent that would 

sufficiently reduce graph size, renders even the larger 

clusters so small that they no longer lend themselves as a 

basis for RMSD-fitting the frames of an MD-trajectory, see 

the introduction. 

Hence, increasing k cannot provide a remedy since it is in fact 

not a valid substitute for getting rid of exceedingly flexible 

atoms, being the major source of the above shortcomings. 

Instead, to mend shortcomings of spatial clustering, we drew 

from another, quite obvious fact: Different clusters are 

obtained for time-wise successive parts of a trajectory. How do 

they relate to the clusters obtained for the trajectory as a 

whole? Answering these questions provided the key for 

developing temporal (time-wise) clustering, see the following 

chapter. 

 

 

 

 

 

 

Temporal clustering 

Spatial clustering, as described above, yields solutions 

optimized for a given MD trajectory; in case of Fig. 1 it was the 

whole trajectory for B4405. However, if spatial clustering is 

applied to parts of a trajectory (in the following called 

segments), different clusters may result for each segment. This 

time-wise variability of clustering may be considered a 

drawback regarding the reliability of clustering, but it offers at 

the same time an opportunity to improve clustering quality. 

With this aim in mind we devised an algorithm capable of 

excluding the most flexible atoms, which otherwise might 

preclude any clustering stable over time. 

Given the trajectory of a molecule with N atoms we search for 

domains with maximum spatiotemporal stability. The 

trajectory (comprising, e.g., L = 4000 frames) is divided into F 

temporal segments of F’ frames each (typical numbers are 

F = 100 and F’ = L/F = 40). For each segment we compute the 

STDDV matrix, see (2), with i,j = 1,…, N, yielding STDDV-

matrices ( )fS  , with f = 1,…, F. 

Let { }1 2
, ,...,

N
A A AA =  be the set of atoms in the molecule 

considered for the stability analysis. Based on the STDDV 

matrix ( )f
S  of each segment, the spatial clustering algorithm 

(described above) generates k disjunct clusters. Thus 

{ }=( )

1 2
, ,...

f

k k k
C A A  with k = 1,…, K and ==U ( )

1

K f

k k
CA  resp.

∩ =∅( ) ( )f f

i j
C C  for ≠i j . 

We now compare the F results of clustering and focus on an 

arbitrary pair of atoms, i
A  and jA . We define the dissimilarity 

between these two atoms by 

 

=
∆ = ∆∑ ( )

1

1 F f

ij ijfF
 (9) 

with ∆ =( ) 0f

ij
 if 

i
A  and jA  belong to the same cluster ( )f

kC  in 

segment f and ∆ =( ) 1f

ij
 otherwise. The resulting dissimilarity 

matrix ( )= ∆
ij

Δ  therefore consists of integers between 0 and 

F. We define a threshold ∆th and construct an adjacency matrix 

'Δ  of the graph G(V, E) by setting ∆ =' 0ij  if ∆ ≥ ∆thij  and 

∆ =' 1ij  otherwise. By definition, ∆ =' 0
ii

. The set V of vertices 

of G(V, E) corresponds to the N atoms, and the set E of edges is 

represented by pairs of atoms with low dissimilarity. 

The threshold ∆th has to be chosen wisely. It should be large 

enough to retain sufficient information about correlations 

between atoms – but still small enough to distinguish between 

groups of atoms. The choice of ∆th can be guided by posing an 

upper limit on the size of the graph (number of edges) as 

compared to the complete graph ≤ ⋅ −( ) ( 1) 2E G p N N , with the 

percentage p being selected typically between 0.0 and 0.07. 

Fig. 2 shows how different thresholds ∆th change the shapes 

and relative sizes of graphs obtained for N = 826 atoms, k = 7 

clusters, L = 4000 MD-frames, F = 100 trajectory segments, 

F’ = 40 frames within each segment, with N(N-1)/2 = 340.725 

being the complete graph size. 

The dependence of graph size on p will play a central role in 

selecting the optimum number of clusters, k, for spatial 

clustering, see also Fig. 4. 
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Fig. 2: Time-wise consolidating spatial clusters for different thresholds ∆∆∆∆th. Spatial clustering was performed for k = 7 clusters. Despite different thresholds ∆th for temporal cluster 

consolidation, almost the same large domains result. Incidentally, using k = 8 spatial clusters yields almost identical results, since these are finally condensed to 7 domains. 

Parameters: N = 826 atoms, L = 4000 MD-frames, F = 100 trajectory segments, F’ = 40 frames within each segment. The size of the complete graph would be N(N-1)/2 = 340.725 

edges. 
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The essential step is now to cluster the graph G(V,E), which 

was done via two established clustering methods: 

• single-link clustering 

• complete-link clustering 

A detailed comparison was summarized by Jain 
37

. We note 

that single-link clustering is equivalent to finding sub-graphs of 

maximal order (i.e. maximum number of vertices) and is 

solvable in computing time of polynomial order of the size of 

the graph. As opposed to this, complete-link clustering means 

iteratively looking for cliques of maximal order (cliques are 

complete subgraphs, all vertices connected). It is well known, 

however, that the cliques problem is computationally 

exceedingly demanding (NP-complete 
32

) and may, for 

instance, be tackled with the Bron-Kerbosch algorithm 
38

.  

For this reason we performed single-link clustering first and 

inspected the results. To our surprise, the majority of atoms 

found in clusters was not only single linked but additionally 

fulfilled the much more stringent criterion of complete linkage, 

even if some dissimilarity (threshold ∆th > 0) was allowed. Even 

more, allowing for zero tolerance (∆th = 0), results for single-

link and complete-link proved to be identical. This renders (the 

computationally demanding) complete-link clustering 

unnecessary, and we end up with the methodological finding 

that single-link clustering suffices for our MD data if we go for 

really rigid clusters (zero tolerance) over time. 

For temporal clustering the total number of clusters results 

from clustering itself rather than being preset (as was 

necessary with spatial clustering). In fact, temporal clustering 

yields clusters of different sizes – a few large ones and more 

and more small ones. We consider only the larger clusters 

above a certain (case-dependent) size and call them ‘domains’ 

within the molecule. Each domain may be colored in a circular-

plot, to visualize areas of coherent motion, see the figures in 

the results-section.  

Those many smaller clusters (down to clusters of single atoms) 

are assigned to a joint pool of ‘mobile groups’ and shown in 

(the no-color) grey in the circular-plots. 

 

 

 

 

Displaying clustering results for different conditions 

Clusters resulting from unsupervised procedures (such as 

spatiotemporal clustering) are labelled automatically, e.g. 

according to decreasing size. This is fine for considering one 

single run of clustering. However, when comparing results 

from several runs of clustering, labelling needs special 

attention in order to arrive at results which are nicely 

comparable. For example, when displaying and coloring 

clusters within molecular 3D-plots or circular-plots (see 

below), we expect that clusters with equal labels appear (in 

each plots of a series) around the same ‘locations’, regarding 

3D coordinates or residue number, respectively. This is not 

guaranteed with labeling according to size (see histograms in 

Fig. 5, second row). Given two clusters almost equal in size, 

either one may result larger in a certain condition. As a 

consequence both may interchange labels (and colors) from 

condition to condition. 

We devised a procedure to keep labelling consistent. Given a 

set of clustering results, say all those shown in circular-plots 

within this work. First we choose the number of clusters to 

label and color (in our case l = 6) in each plot. Next, in each 

plot we label (color) the l largest clusters according to 

decreasing size, and assign the no-color (grey) to all other 

clusters. Then we let the researcher pick one plot of his like 

and take this as a reference (in our case k = 9, with permuted 

selection of frames). Then, in all other plots we re-label the l 

largest clusters as follows: We determine that cluster of the 

reference with maximum overlap (e.g. according to residue 

numbers within the circular-plot), and re-label it according to 

the reference. This makes labels (colors) appear at similar 

locations in all plots (including the reference), allowing for 

easy, intuitive comparisons. Re-labelling tidies circular-plots, 

bar charts as well as 3D-visualisations at the same time, see 

Fig. 5. 

Note the special case when one of the l largest clusters in one 

of the plots does not coincide with one of the l largest clusters 

in the reference. In this case additional labels (2.a, 2.b, etc. and 

respective colors) have to be introduced. In Fig. 3, this 

occurred in the plots for k = 6 (hist and perm), k = 9 (perm) and 

k = 10 (hist). 
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Fig. 3: Adjacency matrix depends on the number of spatial clusters but is insensitive to mode of sampling. Sampling from time-wise segments (upper row) and from random 

permutation of MD-frames (bottom row) shows almost equal results. Selecting 7 or 8 spatial clusters yields most consistent results for both, time-wise segments and random 

sampling of frame-segments. Threshold was set to 6%. Note that clusters have been colored according to section ‘Displaying clustering results for different conditions’. 

Results 

Dependence of TCR/pMHC on parameter settings 

The algorithm described above contains several free 

parameters. Below, we compare the results for various 

parameter choices and study the stability of this newly 

proposed spatiotemporal clustering procedure. 

 

Number of spatial clusters 

The first free parameter is the number of clusters, k, for spatial 

clustering. The columns in Fig. 3 show results for ≤ ≤6 10k  for 

the B4405 trajectory (consult Fig. 7 for secondary structure 

and its labelling). One cluster of atoms (labelled α3, shown in 

light green) is identically grouped, regardless of k. Moreover, it 

is completely self-contained (solid), i.e. all atoms within the 

cluster seem tightly connected, and not a single connection 

lurks outside. Six other clusters, nearly as stable and self-

contained as α3, emerge – almost identical – for k = 7 and 

k = 8. On the contrary, the remaining parts of ‘Chain A 

(including β-sheet)’ (see Table 1), including both alpha-helices 

Gα1 and Gα2, appear poorly self-contained regardless of k, 

indicating significant internal motion. In addition, distinct 

connections point towards the ‘peptide’, indicating joint 

motion. 

Random sampling of MD-frames 

As an alternative to blocking F’ = 40 successive frames into 

100 timewise consecutive segments, we drew groups of 

40 frames at random out of the whole trajectory and 

considered them as a random segment. We drew 1000 such 

random segments (much more than those 100 timewise 

consecutive ones) and clustered each of them (first spatially, 

then temporally). Selection of threshold, computation of 

adjacency matrix 'Δ  and clustering of the graph G(V, E) was 

performed following the same protocol applied for 

consecutive segments. Expectedly, due to the much higher 

number of segments (1000 instead of 100), many graphs of 

intermediate sizes are found, and the elements of the 

dissimilarity matrix ( )= ∆ijΔ  show many more different values 

(as compared to blocking into 40 successive segments). 

The results of random selection (bottom row in Fig. 3) and 100 

timewise segments are very similar. This suggests that our 

primary choice of 100 timewise segments fully suffices and can 

be adopted. We have also tested different numbers of 

permutations, which confirmed the results obtained for 

1000 samples. 

 

Different thresholds 

Selecting the threshold ∆th changes the adjacency matrix and 

the sizes of graphs in relation to that of the full graph, see  Fig. 

4. These results can be used to first select a relative size of the 

graph, say 6% (0.06) and then adapt the threshold ∆th 

accordingly (so as to induce a ratio p ≈ 6 %).  
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 Fig. 4: Relative size of graph depends on threshold ∆∆∆∆th for dissimilarity within groups. 

Increasing the threshold, ∆th, for absolute dissimilarity allows two atoms to belong 

more often to different spatial clusters in some of the trajectory segments while still 

counting for the very same domain consolidated by temporal clustering. Increasing ∆th 

means increasing relative dissimilarity of clusters (x-axis). As a consequence graph size 

(= number of edges, y-axis) also increases. Results refer to the following parameters: 

N = 826 atoms, k = 6,7..10 clusters,  L = 4000 MD-frames, F = 100 trajectory segments, 

F’ = 40 frames within each segment, N(N-1)/2 = 340.725 being the complete graph size. 

A separate analysis was performed for each of the preset number of spatial clusters, 

k = 6, 7,…10, see legend. Generally, the density of the adjacency matrix increases as the 

criterion for dissimilarity is relaxed (increasing trend of all curves). Increasing the 

number of clusters k the series of curves passes through a maximum (highest density) 

for k =7 or 8, marking the optimum choice for k. 

Optimizing the number of spatial clusters 

Spatial clustering on its own does not offer a criterion for the 

optimum choice for the number of clusters, k. Temporal 

clustering, however, provides a sound criterion as follows. 

Small k during spatial clustering induces larger clusters and 

increases the number of atoms belonging only vaguely to their 

assigned cluster: they easily swap clusters, see section ‘Critical 

review of spatial clustering’. With larger k (i.e. choosing more 

spatial clusters), the number of swapping atoms declines and 

the adjacency matrix becomes increasingly populated 

(becomes more dense), and curves in Fig. 4 are shifted 

upwards. For k ≥ 9, however, this trend is reversed: Many 

small clusters increasingly fluctuate between segments of the 

trajectory, thus diminishing the sets of atoms constantly within 

the same clusters (curves in Fig. 4 are shifted downwards). 

As a result, temporal clustering provides us with a sound 

estimate to select 7 or 8 spatial clusters as an optimum, see 

Fig. 4. 

Different alleles of TCR/pMHC 

Clustering as described above was carried out on MD 

trajectories for each of the three different TCR – peptide – 

MHC (TCR/pMHC) complexes B4405, B4402 and B4403, using 

the parameters k = 7 clusters, a threshold yielding p ≈ 6 % and 

100 time-wise segments of 40 frames each. Resulting circular-

plots look very similar, see Fig. 5, first row. In order to 

scrutinize clusters in more detail we also present bar-charts, 

for each atom giving the size of the cluster it belongs to, cf. Fig. 

5, second row. The spatial location of these clusters within the 

molecular complex are shown in Fig. 5 third row.
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Fig. 5: Spatiotemporal clustering for three MHC-alleles B4405 (left), B4402 (middle) and B4403 (right). Spatiotemporal clustering recognized the membrane-facing domain of the 

MHC, the β2-microglobulin and the whole TCR as semi-rigid. All semi-rigid domains comprise beta-sheets that are inherently stable protein secondary structures due to their 

geometry allowing nearly optimal hydrogen bonding. Interestingly, the MHC beta-floor and alpha-helices at the protein-protein interface as well as CDR3 are not found in the 

larger clusters and thus are more flexible. The six largest domains (1 to 6) are shown in color, all other (smaller) domains are shown in grey. Preceeding spatial clustering 

performed with k = 7. Row 1: Domains mapped on circular-plots. Row 2: Bar charts showing sizes of domains and their positions within the protein chain, according to Cα-index. 

Row 3: Domains mapped on a 3D display (VMD) of the molecule.  
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Domains considered representative for all three alleles of 

TCR/pMHC 

As a main result we observe that similar clusters result for all 

three alleles, see Fig. 5. In the following, these are described in 

more detail with reference to the circular-plot and 3D 

visualization in Fig. 7. 

MHC occurs as an α-chain that is composed of three domains, 

α1, α2, and α3. The α1-domain rests upon the β2-microglobulin 

(chain B) and, together with the α2-domain, forms the antigen-

presenting interface to the TCR. The α3-domain resides below 

α2 and anchors the MHC molecule to the cell membrane.  

Most interesting MHC α1 and α2 domains (Cα1 … Cα182) turn out 

to be highly flexible in our MD-simulations. Temporal 

clustering captured this feature by relegating these atoms into 

several small clusters, all of them shown in the same color 

(grey) in Fig. 5. Of note, this region contains anchor sites and is 

thus naturally linked to the peptide (Cα376 … Cα384). This 

functional feature is clearly captured by spatiotemporal 

clustering and evidently shown in the circular-plots. 

In contrast, the α3-domain of the MHC (Cα183 … Cα276) together 

with the β2-microglobulin (chain B, Cα277 … Cα375) turned out as 

the most rigid parts of the molecule. This holds for all three 

alleles. 

Atomic mobility: Within and external of domains 

In order to quantify the difference in atomic mobility between 

inside- and outside of domains, we computed the frequency 

distributions of the elements Sij of the STDDV-matrix, see Fig. 

6.  

 

  

Fig. 6: Frequency distribution of standard deviations of pair distances. The semi-rigid 

domains identified by clustering have been labelled d1 to d8, cf. Fig. 9 for their location 

within the protein. Atomic distance variation internal domains is significantly lower 

than overall in the protein (box ‘all’). Although Cα-atoms directly neighbouring in the 

protein backbone (Cα- Cα-atom-binding) have been excluded from the analysis, minima 

are very close to zero in each domain, indicating that other pairs of Cα-atoms also stay 

at very constant distances. Naturally, as larger domains harbour pairs with larger 

distances, which in turn also render larger variations (see the maxima). 

Discussion and conclusions 

Clustering to obtain semi-rigid domains within large bio-

molecules such as TCR/pMHC complexes, is identified as an 

important pre-requisite for the numerical analysis of antigen 

cognition and signal transduction at an atomic level 
39

. 

Survey of new methods introduced 

For spatial clustering, as described in the literature 
40

, we have 

developed and implemented very fast new algorithms, see 

sections ‘Spatial clustering’ and ‘Benchmarks for spatial 

clustering’. However, spatial clustering by the virtue of its basic 

principles suffers from drawbacks as outlined in section 

‘Critical review of spatial clustering’. Therefore we have 

extended spatial clustering by a subsequent step of ‘temporal 

clustering’, in general called ‘consolidation’, which – by its 

design – gets rid of highly flexible atoms: they end up in 

negligibly small clusters. The consolidation provided by 

temporal clustering not only resolves those shortcomings of 

spatial clustering but also yields additional information on 

interactions between different domains of the TCR/pMHC 

complex, which is highly valuable for understanding its 

function on a bio-molecular level. 

Our new methods were evaluated for optimum performance 

regarding the choice of parameters (sections ‘Number of 

spatial clusters’ and ‘Different thresholds’.) as well as 

statistical robustness (section Random sampling of MD-

frames). 

The convergence of spatial clustering was carefully evaluated 

in a pilot study as described above. The reliability of clustering 

is in fact secured by a two-layer procedure: 100 matrices, each 

one derived from a different time-interval, were spatially 

clustered and each clustering started from 1000 independent 

random assignments of atoms. In temporal clustering, above 

results are compared, and only compatible parts (threshold 

∆th) retained. If results of spatial clustering were in any respect 

random, clusters would by no means be compatible over time 

and by no means would they survive the temporal 

consolidation step. 

Temporal clustering not only consolidated spatial clustering 

but also provided additional information on it, by evaluating its 

stability over time. As a first by-product, we have obtained a 

mathematical estimate for the optimum number of spatial 

clusters (section ‘Optimizing the number of spatial clusters’), 

which could hitherto be selected by educated guess only. A 

second by-product of temporal clustering is the possibility to 

reduce artifacts due to time-wise autocorrelation otherwise 

affecting evaluations of MD trajectories: Selecting time frames 
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at random (from the whole trajectory) yielded similar results 

as compared to sets of time-wise successive frames. We 

conclude that clustering results obtained for more restricted 

subdomains conform to those pertaining over larger portions 

of configurational space. 

Two methods of temporal clustering, single-link and complete-

link, yielded very similar results, but different thresholds apply 

and have to be chosen with care. 

Lower atomic motility inside domains as compared to outside 

domains, has been verified via respective frequency 

distributions (box-plots, Fig. 6). 

The stability of spatiotemporal clustering, even in the presence 

of a majority of volatile atoms has been verified within the 

MHC complex, comprising two highly volatile alpha-helices and 

a beta-sheet. 

Finally, we have introduced circular-plots, generally used in 

genome-sequence analysis, to delineate domains of joint 

motion along the peptide chains of the TCR/pMHC complex. 

This visualization technique, in conjunction with 3D molecular 

displays (VMD) 
41

, proved extremely helpful for interpreting 

results, see section ‘Regions of joint motion’ and Fig. 7. 

 

 

Fig. 7: Joint Motion analysis of domains shown in circular-plot and VMD. Upper panel: 

Circular-plot of spatiotemporal clustering for B4405 (k = 7, ∆th = 8) with specific regions 

(CDR1, CDR2,…) and elements of secondary structure (peptide, β2-microglobulin, α3) 

annotated. 

Lower left: Domains of B4405 in 3D, colored according to circular-plot above. 

Lower right: Regions important for immunorecognition and domains with joint motion: 

TCR alpha chain (gray, left domain), TCR beta chain (gray, right domain), CDR1 alpha 

and beta chain (cyan), CDR2 alpha and beta chain (orange). Regions with joint motion 

in alpha chain are shown in magenta and partly coincide with CDR3 alpha. Regions with 

joint motion in beta chain are shown in purple and partly coincide with CDR3 beta. 

Semi-rigid domains within TCR/pMHC complexes 

Comparison of the results for the 3 alleles has identified 

several semi-rigid domains already discussed in section 

‘Different alleles’. 

It is remarkable that no information whatsoever about 

secondary structure was plugged into the clustering algorithm 

beforehand. Spatial clustering, as usually done up to now, 

yielded results rather hard to interpret and utilize, cf. Fig. 1. 

Condensing spatial clusters by temporal clustering, however, 

resulted in domains conforming in many respects to protein 

chains and elements of secondary structure. 

 

Each of the semi-rigid domains found – or all of them taken 

together – lend themselves as reference structures for fitting 

the trajectories in coming MD-studies of TCR/pMHC 

complexes. Generally, in choosing reference structures, the 

regions with internal motion should be avoided. However, at 

the same time the reference domain should be located as 

close as possible to the region whose motion is to be analyzed. 

 

Accordingly, the following conclusions/recommendations 

drawn from this work may serve as examples: 

1. To investigate the flexible region of chain A (Gα1, Gα2, and 

β-floor) one could restrain the fitting region to the stable 
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cluster α3 of chain A (green cluster in Fig. 7) together with 

chain B (red cluster). 

2. The clusters within the TCR chain D (violet, pink) and 

chain E (yellow, blue) exhibit small parts spared from 

clusters, see Fig. 7. To investigate details of motion of 

such a small domain, one might use the surrounding 

cluster (in which the small domain is embedded) as a 

reference providing optimum contrast. Of note, some of 

these spared parts are in fact the CDR-loops, supposed to 

play an important role in the immune-recognition process, 

see also ‘Regions of joint motion’. 

Regions of joint motion within TCR/pMHC complexes 

Temporal clustering not only consolidates spatial clusters to 

several larger semi-rigid domains. It also creates a 

considerable number of smaller clusters, which we originally 

considered an irrelevant by-product. However, some of them 

turned out to carry important information by reflecting 

immunological functionalities. Inspecting Fig. 5 and Fig. 7 for 

the small clusters (all shown in grey) running across the circle, 

one may read off: 

1. Clusters (shown in grey) connecting the peptide and the 

binding cleft are present in all alleles. This is trivial, since 

the peptide is by definition attached to the binding cleft 

and hence moving concordantly (little relative motion 

between cleft and peptide, hence same cluster). This is 

truely captured by spatiotemporal clustering. 

2. Parts of the α-helices and β-floor (Cα1 … Cα117, groups 7, 8, 

…) are linked to CDR3 of the TCR beta-chain in B4402, 

Cα680 … Cα684, see Fig. 5. CDR3s are supposed to be crucial 

players in immune-recognition 
42;43

, seem to be moved by 

parts of the α-helices for this allele. This could explain why 

B4402 is allo-reactive: The immunoreaction is triggered by 

a (non-matching) MHC rather than an immunogenic 

peptide. 

3. Also the peptide is linked to TCR-CDR3 in B4402. At this 

point we cannot decipher whether there is a separate role 

for the peptide regarding immunogenicity. Note that the 

LC13 TCR allo-reacts with HLA-B*44:02/ABCD3 complex. 

The ABCD3 peptide is a self-peptide, which is not 

immunogenic in other antigen-binding clefts (e.g. HLA-

B*44:03), but adopts a conformation similar to viral 

peptides and stimulates an allo-reaction when the LC13 

TCR is ligated to the HLA-B*44:05/ABCD3 or HLA-

B*44:02/ABCD3 complexes 
30

. Being presented within the 

cleft of a mutant allele might, however, transform the 

motility of the peptide so as to boost the allo-reaction. 

4. In B4403, parts of antigen binding cleft are linked to a 

highly flexible short section within chain D (Cα473 … Cα481), 

which is also part of the CDR3 region and has – similarly - 

been spared from the violet cluster, see Fig. 5. 

Interestingly, this joint motion does not give rise to an 

immune reaction. 

5. From the flexible region (Cα1 … Cα117, groups 7, 8, …) 

numerous links lurk out in each complex (B4402 and 

B4403) but not in B4405. 

All in all, even the mini-clusters emerging from spatiotemporal 

clustering seem to capture elements of immunological 

functionality. 

Clustering for a larger molecule: TCR/pMHC in complex with CD8 

As outlined in section ‘Molecules’ we have applied 

spatiotemporal clustering also to a second and even larger bio-

molecular complex. 

 

Fig. 8: Finding the optimum number of clusters from the relative size of graph as it 

depends on the threshold ∆th for dissimilarity within groups. A separate analysis was 

performed for each preset number of spatial clusters, k = 7, 8,…12. The optimum is 

obtained for k =9. Note that the intercepts of curves with the vertical axes correspond 

to relative graph sizes for zero tolerance of dissimilarity. 

Our previous complex, TCR/pMHC was enlarged by adding a 

CD8 coreceptor. Doing this, three important questions arise: (i) 

will spatiotemporal clustering automatically yield a larger 

number of clusters as the optimum choice? (ii) will the semi-

rigid domains found within TCR/pMHC (alone) remain 

unchanged with CD8 being attached? (iii) Which semi-rigid 

domains emerge within CD8? 

The first question is answered by Fig. 8: The optimum 

temporal stability of graphs is obtained for k = 9, i.e. adding 

CD8 yields two more clusters than optimum for TCR/pMHC 

alone (without CD8). 

The resulting domains including annotations are shown in Fig. 

9. Explicit results for domains in terms of Cα-indices are 

referenced in the ‘Supporting information’. 
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Fig. 9 Semirigid domains for TCR/pMHC/CD8. The circular-plot shows molecular parts 

of CD8 inserted after those of the TCR, see the annotation and also Table 1. Spatial 

Clustering was performed for k = 9 and termporal clustering with zero tolerance. The 

largest 8 clusters were considered semi-rigid domains (SRDs) and thus colored. The 

lower part shows a 3D representation (VMD), with domains colored with respect to the 

circular-plot above. 

The second question can be answered by comparing the Cα-

ranges of corresponding domains, see Fig. 10, left column 

(panels A, C). Also in the presence of CD8, MHC α1 and α2 

domains (Cα1 … Cα182) are most flexible and via their anchor 

sites linked to the peptide (Cα376 … Cα384), see the grey cluster. 

The α3-domain of the MHC (Cα183 … Cα276) together with the 

β2-microglobulin (chain B, Cα277 … Cα375) turned out as the 

most rigid parts of the molecule, also in the presence of CD8. 

The two chains forming the TCR, both located more remote 

from CD8, remain virtually unaffected by the presence of CD8. 

All in all, the TCR/pMHC complex accomodates identical semi-

rigid domains in the presence of CD8 and in the absence of 

CD8. We may conclude that the addition of CD8 (with a 

considerable number of 228 Cα atoms) to the whole system 

does not change clustering within TCR/pMHC. The two 

domains emerging in addition, exclusively reside within CD8.  

 

Fig. 10: Spatiotemporal clustering of TCR/pMHC alone and in complex with CD8. 

Upper Row (A, B): Spatial clustering of B4405 performed for k = 7 clusters. Clustering is 

displayed on a circular-plot providing space also for accomodating CD8. 

Lower Row (C, D): Spatial clustering of B4405+CD8 performed best for k = 9 clusters. 

CD8 clusters are displayed in circular-plots in their numeration corresponding to the 

upper row. 

Panel A: B4405 clustered with k = 7, ∆th = 7 (relative dissimilarity 0.07), leading to a 

relative graph-size of approximately 0.06. 

Panel B: B4405 clustered with k = 7 and ∆th = 0, (relative dissimilarity 0.00) leading to a 

relative graph-size of 0.0335. 

Panel C: B4405 + CD8 clustered with k = 9, ∆th = 14 (relative dissimilarity 0.14), leading 

to a relative graph-size of approximately 0.06. 

Panel D: B4405 + CD8 clustered with k = 9 and ∆th = 0, leading to a relative graph-size of 

0.0228. 

It is remarkable that spatiotemporal clustering, although 

unsupervised, perfectly separates additional domains (within 

CD8) from previously recognized ones (within TCR/pMHC). 

The answer to the third question (domains internal of CD8) can 

be directly read off from Fig. 10 , lower row (panels C, D). The 

two chains of secondary structure (within CD8) are separated 

into two corresponding semi-rigid domains extending from 

Cα827 - Cα940 and from Cα941 - Cα1054. Each of them houses 

groups of Cα (“exclaves”) which do not belong to the semi-rigid 

domain. For relaxed dissimilarity threshold (larger ∆th), 

exclaves are small (Fig. 10, Panels A, C). More stringent 

temporal clustering increases exclaves and renders semi-rigid 

domains more sparse (Fig. 10, Panels B, D). A detailed example 

is presented in Fig. 11, showing the membership of Cαs in one 

of the semi-rigid domains within CD8 for ∆th = 0. 
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Fig. 11: Details of semi-rigid domain within CD8 αααα1. 

Detail of semi rigid domains (SRD) shown in Fig. 10 panel D. A small part of the first SRD 

(shown in brown) within CD8 has been annotated regarding Cα being part of the SRD as 

opposed to Cα belonging to (mobile) exclaves. In the circular-plot, the color of the 

circumference encodes if the respective Cα is part of the SRD (shown as brown dot) or if 

it is not part of the SRD (grey dot). Links between pairs of Cαs are shown in brown if 

both Cαs are members of the SRD. Links between pairs of Cαs are shown in grey if both 

Cαs are members of a smaller cluster, which is not large enough to be considered an 

SRD (note: only the largest clusters, in this case 8, are considered to be SRDs). Cαs 

which are shown in grey along the circumference without giving rise to a link to any 

other Cα, do not belong to any cluster. 

Temporal clustering was first performed with ∆th = 14, yielding 

a relative dissimilarity of 0.06. For a large threshold (∆th = 14), 

see Fig. 10, panel (C), we observe: 

• Besides those large clusters within B4408, already well 

known from clustering B4405 alone, the addition of CD8 

shows numerous Cα within the β2-microglobulin being 

linked to one single Cα120 within the MHC (shown in red), 

see the S1 Table. 

• Moreover, numerous Cα cluster into a very dense domain 

within the TCR β chain (shown in blue).  

For zero tolerance ∆th = 0 (no dissimilarity tolerated in 

temporal clustering), see Fig. 10, lower row, right panel (D). 

Relative graph size shrinks to 0.027. As connections become 

more sparse, one observes:  

• Connections between β2-microglobulin to Cα120 vanish. 

• Only part of the peptide (anchor residue Cα376) is classified 

as being linked to the beta floor of the MHC. 

• Within CD8 a substructure emerges: some pairs of Cα are 

tightly coupled, while others in-between seem to be more 

flexible. 

Applicability and Scope 

Clustering for a molecule with large flexible parts 

In the above examples, the new method of spatiotemporal 

clustering has been applied to molecules with the majority of 

atoms belonging to rigid domains and only a minority to 

flexible parts. In order to verify the applicability of 

spatiotemporal clustering also in a molecule with large flexible 

parts we considered both chains (A and B) of the MHC (see 

Table 1 and Fig. 5) as the entire complex, within which 

domains were to be allocated. In this setting, we know that 

about half of the atoms, i.e. a significant proportion, belong to 

flexible regions (alpha-helices G1 und G2 and the beta-floor). 

The question was if they would again be recognized as flexible 

or if rigid domains would spuriously be identified? To check 

this, we first applied the optimality criterion for the number of 

spatial clusters by inspecting the relative graph size (in this 

case only for zero tolerance), yielding 

= ≤ ⋅ −0.087( ) ( 1) 2E G p N N  for k = 3 and lower values for k > 3. 

Given the fact that 2 is the lowest possible number of rigid 

domains we adopted k = 3 as smallest – and in this case 

optimum – number of spatial clusters. During temporal 

clustering, only two domains survive the consolidation 

process. The result is shown in Fig. 12: Of note that the sets of 

atoms are almost identical to those found previously, when 

clustering the huge molecular complex (including peptide, TCR 

and CD8), compare Fig. 12 with Fig. 7 and Fig. 9. 

 

Systems of different size 

We have tested spatiotemporal clustering on three systems of 

different size (MHC: 375 atoms, pMHC+TCR: 826 atoms, 

pMHC+TCT+CD8: 1054 atoms). Considering sub-parts of one 

and the same large complex allowed us to prove that our 

procedure retrieved rigid domains consistently, no matter if 

and how many other domains or even volatile regions were 

present. 

Conclusions for domain finding, fitting and analysis of molecular 

function 

Finding semi-rigid domains for trajectory fitting and the actual 

analysis of motion for regions of interest are two distinct steps 

in scrutinizing bio-molecular function numerically. They 

interdepend, however. Without appropriate fitting, nothing 

will be found regarding function or even signal transduction. 

On the other hand, given appropriate fitting, a plethora of 

statistical tools is available for the actual analysis, e.g., normal 

mode analysis (NMA) and principal component analysis (PCA). 

Appropriate fitting is hence a necessary precondition but by no 

means a guarantee to numerically distill functional elements 

out of bulk molecular motion. 

In the present work we have introduced a new, two step 

algorithm with significant capabilities:  

• Automatic detection of the optimum number of clusters.  

• Atoms not lending themselves as members of semi-rigid 

domains (“mobile groups”) can be excluded by setting an 

appropriate threshold for dissimilarity tolerance.  

Dissimilarity tolerance for temporal clustering can be selected 

as appropriate for the specific research goal: When aiming at 

larger clusters, which may at the same time be less rigid, a 

larger tolerance (threshold ∆th = 1,2,…) should be selected. 

Examples are soft links (Van der Waals) between parts of the 

molecule belonging to different domains of secondary 

structure, nevertheless inducing some concordant 

movements. However, if the goal is to arrive at very rigid, 

although smaller clusters, as desirable, e.g., for RMSD-fitting 

domains, zero tolerance is appropriate (threshold ∆th = 0). In 

this case we found that single-link clustering yields the same 

results as complete-link clustering for our MD-data. 

It is interesting that similar relative graph-sizes not necessarily 

lead to identical connections being displayed, when comparing 

molecules of different size (such as TCR/pMHC and 
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TCR/pMHD+CD8): While a relative graph-size of 0.06 

suppresses the links between domains of TCR for TCR/pMHC, 

these become apparent for TCR/pMHC/CD8. 

In developing spatiotemporal clustering we hope to contribute 

some advance to the pipeline of numerical immunology, by 

finding appropriate references for fitting. Although 

unsupervised, the method proved to be stable when applied to 

different molecules, yielding concordant results for 

corresponding parts. This provides a consistency check of the 

method. In addition, spatiotemporal clustering revealed 

features which are by no means obvious and eyeballing would 

not be able to tell: 

• A surprising result is that none of the helices (Gα1 and 

Gα2) did emerge as rigid domains. As a consequence 

they do not lend themselves as fitting domains but 

should rather themselves be targeted by advanced 

statistical analyses in future attempts to numerically 

decipher the molecular triggers of immunogenicity. 

• Some elements of secondary structure, such as parts 

of the TCR-beta chain (shown in blue in Fig. 9) as well 

as CD8 alpha1 (brown in Fig. 9) did not appear as solid 

clusters but rather contain considerable exclaves. This 

feature became apparent by applying zero tolerance 

in temporal clustering. Detailed results, such as given 

in the supplementary material, can serve as a 

definition of domains for RMSD-fitting. 

These perspectives indicate good chances for spatiotemporal 

clustering to provide a valuable basis for computational 

biologists in deciphering functionally relevant elements of 

macro-molecular motions.  

During the elaboration of spatiotemporal clustering on the 

specific example of MD trajectory data, it became apparent 

that it is in fact a special case of a far more general group of 

procedures that may be devised, multistep consensus 

clustering. Broader investigations will have to reveal their 

potentials and applicability. 
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Fig. 12: Spatiotemporal clustering of MHC protein. Even if a large portion of mobile 

atoms is present (183 mobile atoms out of 375 in total), spatiotemporal clustering does 

not create spurious rigid domains. It rather retrieves the very same rigid domains (β2-

microglobilin (red) and α3) as were found for the large complex (including the TCR and 

CD8), in which mobile atoms represent a much smaller fraction. 
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