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Structural requirements for potential HIV-integrase inhibitors 

identified using pharmacophore-based virtual screening and 

molecular dynamics studies† 

Md Ataul Islama, Tahir S. Pillay*a,b 

 

Acquired immunodeficiency syndrome (AIDS) is a life-threatening disease which is a collection of symptoms and infections 

caused by a retrovirus, human immunodeficiency virus (HIV). There is currently no curative treatment and therapy is 

reliant on the use of existing anti-retroviral drugs. Pharmacoinformatics approaches have already proven their pivotal role 

in the pharmaceutical industry for lead identification and optimization. In the current study, we analysed the binding 

preferences and inhibitory activity of HIV-integrase inhibitors using pharmacoinformatics. A set of 30 compounds were 

selected as the training set of a total 540 molecules for pharmacophore model generation. The final model was validated 

by statistical parameters and further used for virtual screening. The best mapped model (R = 0.940, rmsd = 2.847, Q2 = 

0.912, se = 0.498, R2
pred = 0.847 and r2

m (test) = 0.636) explained that two hydrogen bond acceptor and one aromatic ring 

features were crucial for the inhibition of HIV-integrase. From virtual screening, initial hits were sorted using a number of 

parameters and finally two compounds were proposed as promising HIV-integrase inhibitors. Drug-likeness properties of 

the final screened compounds were compared to FDA approved HIV-integrase inhibitors. HIV-integrase structure in 

complex with the most active and final screened compounds were subjected to 50ns molecular dynamics (MD) simulation 

studies to check comparative stability of the complexes. The study suggested that the screened compounds might be 

promising HIV-integrase inhibitors. The new chemical entities obtained from the NCI database will be subjected to 

experimental studies to confirm potential inhibition of HIV integrase. 

Introduction  

Human immunodeficiency virus (HIV) is the aetiological agent of 

acquired immunodeficiency syndrome (AIDS) which destroys the 

immune system of the body leaving the victim vulnerable to 

infections, malignancies and neurological disorder. Owing to its 

rapid spread it has become a serious global threat and there is no 

curative treatment for this fatal disease. According to statistics by 

World Health Organization (WHO), a total of 37.20 million people 

are living with AIDS and 1.70 million people died in 2013 alone. 

Currently, there are 3 categories of therapeutic anti-HIV drugs 

based on their inhibitory mechanisms1  and these include 

nucleoside reverse transcriptase inhibitors (NRTIs)2, non-nucleoside 

reverse transcriptase inhibitors (NNRTIs)3, and protease inhibitors 

(PIs)4, 5. To date the highly active antiretroviral therapy (HAART)6 

which is combined therapy using the above classes of inhibitors is 

widely used for patients with advance infection but has failed to 

eradicate the virus. HAART is intended to slow down viral 

replication and lower the patient’s total burden of HIV infection, 

but this treatment is not entirely cost effective and is often out of 

reach of people worldwide. The genome of the HIV encodes for 

three enzymes viz. the protease, reverse transcriptase and 

integrase. The integrase is a 32 kDa enzyme made of three 

functional domains included an N-terminal domain, catalytic core 

domain and a less conserved C-terminal domain7, 8. The HIV 
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integrase has no equivalent counterpart or sequence homologue in 

the human host cell and consequently it can be considered as an 

attractive drug target9. After the approval of Raltegravir10 as anti-

HIV drug several integrase inhibitors emerged as promising class of 

therapeutics for the treatment of AIDS. Raltegravir and several 

other inhibitors have been identified to possess anti-HIV integrase 

activity but these have adverse effects on prolonged use and the 

development of drug resistance drives the need to explore new 

novel and potential chemical scaffolds for the treatment of AIDS.  

The computational methods in drug discovery collectively termed 

pharmacoinformatics, includes structure activity relationship (SAR), 

pharmacophore, virtual screening and molecular docking and these 

have proven their pivotal role in the pharmaceutical industry for 

lead identification and optimization. Several research groups 

worldwide identified integrase inhibitors11-17 using 

pharmacoinformatics approaches for potential application for HIV 

therapy. Consistent with the objective of developing new potent 

and less toxic integrase inhibitors the current research explores the 

binding preferences of the inhibitory molecules of HIV integrase in 

terms of space modelling study and virtual screening along with 

molecular docking and molecular dynamics.  

A pharmacophore model is an collection of steric and electronic 

features and provides an intuitive way of depicting  and 

understanding the  binding properties of small molecules along with 

an explanation of optimum supra-molecular interactions with a 

precise biological target ,  to activate (or block) its biological 

response18, 19. It can also be defined that the pharmacophore idea is 

based on the kinds of interaction observed in molecular 

appreciation, i.e., hydrophobic, hydrogen bonding, and charge 

interaction. For the HIV integrase inhibitors the hydrogen bond 

acceptor (HBA) and donor (HBD), hydrophobic (H) and aromatic ring 

(RA) pharmacophore features were found to be the important 

functional features associated with the selectivity and potency. The 

pharmacophore models are widely used in the field of drug 

discovery by providing valuable information to study SAR and 

reveals the mechanism of ligand-target relationship by deducing the 

nature of functional groups and non-covalent bonding patterns20. It 

can also be used in virtual screening to identify potential molecules, 

predict the activity of the newly synthesized compound before 

animal experiment; or understand the possible mechanism of 

action21, 22. In the current study, an attempt was made to identify 

the pharmacophore hypothesis using the HypoGen module23 based 

on key chemical features of HIV-integrase inhibitors with inhibition 

constant covering a satisfactory wide range of magnitude. The 

model was validated using several statistical approaches including 

Fischer’s randomization and test set prediction. The validated 

model was utilized for the virtual screening to select the virtual hits 

from structural database. The molecular docking study was also 

performed to elucidate the binding interactions and preferred 

orientation of proposed potential molecules. The potential of the 

work is displayed by the identification of two potential lead 

molecules as integrase inhibitors. Finally, the molecular dynamics 

study was performed to analyse stability and precise binding 

interactions of the screened molecules inside the receptor cavity of 

HIV integrase.  

Materials and methods 

At present, several popular commercial and freeware packages are 

used for ligand-based method to derive 3D pharmacophore models 

and also help in estimation of biological activities. Here we used 

Discovery Studio 4.0 (DS)24 for the 3D QSAR pharmacophore, virtual 

screening and molecular docking studies. This is commercially 

available software containing several module packages and widely 

used in pharmacoinformatics drug discovery25-28. The 3D QSAR 

Pharmacophore Generation module takes input of structure and 

activity data for a set of potential HIV-integrase ligand to create 

hypotheses. Two modules, HypoGen and HipHop are used for 

ligand-based pharmacophore modelling. The HypoGen allows 

identification of hypotheses that are common to the ‘active’ 

molecules of training set but absent in the ‘inactive’ molecules, 

whilst HipHop identifies hypotheses present both in ‘active’ and 

‘inactive’ compounds. In the present work the HypoGen module 

was used to generate the hypotheses. 

 

Dataset 

1437 compounds belong to a collection of HIV-1 integrase inhibitors 

were downloaded from BindingDB (http://www.bindingdb.org/) 

with data on inhibitory activity (IC50). Duplicate and compounds 

without definite activity values were deleted and finally 540 

compounds considered as whole dataset for the study. Training and 

test set compounds were separated from whole dataset for 

pharmacophore model generation and validation of generated 

model respectively. The molecules of the dataset have a wide range 
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of IC50, from 2.000 to 1000000.000 nM. For simplicity the whole 

dataset was divided into three sets on the basis of inhibitory 

activities values; highly active (IC50 < 100.000 nM, +++), moderately 

active (100.000 ≤ IC50 < 1000.000 nM, ++) and least active (IC50 ≥ 

1000.000 nM, +). For selection of the training set for 

pharmacophore model generation in DS basic guidelines laid down 

by Li et al.29 were followed. The guidelines reported as a) molecules 

should be selected to provide clear and brief information with 

structure features and range of activity, b) at least 16 diverse 

molecules for training set should be considered to ensure the 

statistical significance and avoid chance correlation, c) the training 

set must include the most and the least active molecules and d) the 

biological activity data of the molecules should have spanned at 

least 4 orders of magnitude. Following the above guidelines four 

training sets were (Set 1, Set 2, Set 3 and Set 4) generated 

containing 30 compounds each. It was also kept in mind that no 

compounds were common in any two training sets except for the  

most active and least active molecules. The remaining 410 

molecules were considered as test set molecules for each set and 

used for assessing the performance of pharmacophore model. The 

2D/3D visualizer24 of DS was used to generate three-dimensional 

coordinates of the compounds. For each compound, the 

coordinates were corrected, atoms were typed and energy was 

minimized using the modified CHARMm force field30, 31. The several 

packages of DS were used for pharmacophore, virtual screening and 

molecular docking studies. 

 

Pharmacophore model generation 

In order to generate the pharmacophore space model the 3D QSAR 

Pharmacophore Model Generation module of DS was used. 

Conformations of the training set molecules were generated by Cat-

Conf program of the DS software package. Out of BEST/FAST, the 

BEST method was considered to obtain multiple acceptable 

conformations which provides complete and enhanced coverage of 

conformational space with help of rigorous energy minimization 

and optimizing the conformations by the poling algorithm32. In the  

BEST algorithm, the chemical features are arranged in space instead 

of simply the arrangement of atoms33. For prediction of the 

favourable features for the highly active compounds of the dataset 

the Feature mapping was considered. Mapped features were given 

as input features for pharmacophore model generation. Using the 

conformer along with chemical features the modules operates in 

two modes such as HipHop and HypoGen. The  HipHop approach 

generates the pharmacophore models by using active compounds 

only, while the HypoGen approach considered both active and 

inactive compounds in order to find out a hypothesis which is 

common in the active molecules and absent in  the inactive 

compounds33. Top ten hypotheses are generated by the HypoGen 

with consideration of the training set, conformational models and 

chemical features through three steps: constructive, subtractive 

and optimization34. In the first step, hypotheses are generated that 

are common in the most active compounds; in subtractive phase, 

inactive compounds are removed from those that fit the 

hypotheses. In final step, the remaining hypotheses improve the 

score with help of small perturbations33, 35. The best hypothesis was 

selected based on the best correlation coefficient (R), low root 

mean square deviation (rmsd), cost function analysis and good 

predictive ability.  

All four sets were used to develop the pharmacophore models and 

statistical parameters were calculated based on training  & test sets 

molecules. Statistical results are depicted in Table S2 in 

Supplementary file. It was observed that Set 1 gives the better 

statistical results compared to Sets 2 – 4. Hence the Set 1 (ntr = 30, 

Fig. 1) was considered as the training set in the current study. In the 

remaining section “training set”  is explained as Set 1 compounds 

and “test set” as test compounds of Set 1. Training set molecules in 

SMILES format with observed and estimated activity along with fit 

values of Set 2, Set3 and Set 4 are depicted in Tables S2, S3 and S4 

respectively in Supplementary data. The information concerning the 

structure and the biological activity of test set compounds of Set 1 

is provided in Table S5 in the supplementary information, while all 

the data regarding the training set (Set 1) molecules are reported in 

Fig. 1. The activity value distribution of the training set molecules of 

Set 1 is given in Figure S1 (Supplementary file). 
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Fig. 1 2D chemical structures of the training set compounds and the 

activity values (IC50) are given in the parentheses. 

 

Validation of pharmacophore model 

In order to check the predictivity and applicability as well as 

robustness of the pharmacoinformatics model, the pharmacophore 

hypotheses developed were validated by five different methods, (1) 

internal validation, (2) cost function analysis, (3) Fischer’s 

randomization test, (4) test set prediction and (5) decoy set. 

 

Internal validation 

Leave-one out (LOO) cross-validation is one of the important 

internally validation protocol of the selected model, in which one 

compound was randomly deleted from training set in each cycle 

and model redeveloped using the rest of the compounds with the 

same parameters used in original model. The activity of the deleted 

compounds was calculated based on the newly developed model. 

The above procedure applied for all molecules of the training set 

and predicted activity recorded. Two important statistical 

parameters, the LOO cross-validated correlation coefficient (Q2) and 

error of estimation (se) were calculated based upon predicted 

activity of training compounds. It is reported that high Q2 (>0.5) and 

low se  explained better predictive ability 36.  

Another parameter, the modified r
2 (r2

m(LOO)) developed by Roy et 

al.
37, 38 was calculated to confirm the good predictive ability of the 

training set molecules. This parameter measure the degree of 

deviation of the predicted activity from the observed ones. It was 

stated that model may be considered with r2
m(LOO)>0.5. 

 
Cost function analysis 

To select the final pharmacophore model several statistical 

parameters were employed at the time of hypothesis generation, 

these included spacing, uncertainty, and weight variation. The 

spacing represents the minimum inter-features distance which may 

be permissible in the final hypothesis, while the weight variation 

reflects the level of magnitude explored by the hypothesis in which 

every feature implies some degree of magnitude of the biological 

activity of the compound. The default values of spacing and weight 

variation are 300 and 0.3 respectively but some cases it varies from 

400 to 100 and 1 to 2 respectively. The uncertainty returns the 

error of prediction which signifies the standard deviation of the 

error cost. The default value of uncertainty parameter is 3 but it 

may vary from 1.5 to 4.0 depending upon the nature of work. The 

cost-function analysis is an important aspect for selection of final 

model which minimized three terms, viz., weight cost, error cost, 

and configuration cost. The weight cost is directly proportional to 

the deviation of weight variation from its input value. The error cost 

is the deviation between the predicted activity and experimentally 

determined activity of the molecule in the training set. A fixed cost 

is determined by the complexity of the hypothesis space. The 

configuration cost implies entropy of hypothesis space and it is 

reported that value should have <17 for a good pharmacophore 

model. HypoGen module also calculates the null hypothesis which is 

the assumption that there is no relationship in the data, and the 

experimental activities are distributed about their mean. It is 
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illustrated that the higher (>60) cost difference (∆cost = null cost - 

total cost) indicted that the hypothesis does not reflect a chance 

correlation. 

 

Fischer’s randomization test   

In order to check the strong relationship between the chemical 

compound and the biological activity of the training set molecules 

the Fischer’s randomization test was performed. In this method, the 

biological activity was scrambled and assigned new values. After 

that the pharmacophore hypotheses were generated with new 

values of activity using the original pharmacophoric features and 

constraints used to generate the original pharmacophore 

hypotheses. If the randomization run generates improved 

correlation coefficient and/or better statistical parameters than the 

original hypothesis may be considered to be developed by chance. 

Different number of spreadsheets are generated based on the 

statistical significance randomization run. The statistical significance 

is given by following equation. 

[1 (1 ) / ]Significance a b= − +
      (1)

 

Where, a denotes the number of hypotheses with a total cost less 

than the best hypothesis, whereas b implies a collection of 

HypoGen runs and random runs. For example, at 95% confidence 

level total number of random spreadsheet are generated as 19 (b = 

20) and each generated spreadsheet is submitted to HypoGen using 

the same parameters as the initial run. In the present study, the 

developed pharmacophore model was tested at 95% confidence 

level which produced 19 spreadsheets. 

 

Test set prediction 

The ability to judge the external predictivity of the model beyond 

the training set molecules is an important step which verifies ability 

of prediction of test compounds. Accordingly, in the present work 

410 test compounds were predicted using the developed 

pharmacophore model by Ligand Pharmacophore Mapping 

protocol in DS, given in Table S1 (Supplementary file). Quality of 

prediction of the pharmacophore model was adjudged best on 

statistical parameters, R2
pred (correlation coefficient) and sp (error of 

prediction)39, 40. 

The R2
pred value depends on the average experimental activity of the 

training set molecules. Since these parameters depend on average 

value,   it might be achieved for compounds with a wider range of 

activity value, but this may not be guaranteed that the estimated 

activity values are very close to those experimental activity. As a 

result, instead of a good overall correlation being maintained, there 

is chance of a significant numerical difference between the two 

values. In order to better indicate the predictivity of the 

pharmacoinformatics model, modified r
2 [r2

m(test)]
41, 42 values were 

calculated (threshold value=0.5). 

 

Decoy set 

In order to check the efficiency of the screening capacity of the 

selected pharmacophore model, it was validated using the decoy 

set approach. Decoy set method checks how the model can select 

active molecules over inactive molecules on screening with 

amalgamated active and inactive molecules. In this purpose a set 

decoy was generated by DecoyFinder1.143. Decoys physically 

resemble  active inhibitors but differ chemically to avoid bias in the 

enrichment factor calculation. Based on five parameters decoys 

were selected and these included molecular weight, number of 

rotational bonds, hydrogen-bond donor count, hydrogen-bond 

acceptor count, and the octanol–water partition coefficient of the 

active inhibitors. In order to discriminate decoys and active 

inhibitors chemically,  the MACCS fingerprints were calculated 

according to the maximum Tanimoto coefficient values. The 

screening dataset consisting of 80 active HIV-integrase inhibitors 

and 900 decoys obtained from DecoyFinder was used for queries of 

the selected hypothesis. Different statistical parameters including 

the accuracy and enrichment factor (EF) were calculated to validate 

the pharmacophore model. Screened molecules based on 

pharmacophore model were ranked on basis of fit value. For the 

assessment of effectiveness of screening the enrichment calculation 

of the dataset was performed. The EF implies total known active 

inhibitors retrieved from the part of screened database. In the 

current study, EF (1%) was calculated from the top 1% hits. Another 

parameter Boltzmann-enhanced discrimination of receiver 

operating characteristic (BEDROC) which gives the significance of 

the dataset screening was also calculated. The BEDROC is a 

comprehensive form of receiver operating characteristic (ROC), 

which recognises problems in the screening method. Calculation of 

the enrichment factor and BEDROC are described by Bhayye et. al44.  

 

Virtual screening 
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Virtual screening is a crucial technique to discover novel potent 

compounds that can bind to a particular receptor site to block or 

trigger the activity. In the current research, the NCI (National 

Cancer Institute) database was used to search to obtain novel 

chemical entities for HIV integrase inhibitors. The NCI database 

contains 265,242 compounds. Both best pharmacophore and 

hyporefined models were submitted separately to the NCI database 

with set ‘Limit Hits’ as ‘Best N’ and ‘Maximum Hits’ as 600. The 

initial hit molecules were filtered with a number of criteria to get 

final potential molecules for the HIV integrase. Furthermore, 

molecular docking study was carried out to analyse binding 

interactions between the potential HIV-integrase compounds and 

catalytic residues of the active site.  

Molecular docking 

Molecular docking is one of the finest filtering techniques and an 

important method in the drug design process. The LigandFit 

protocol of DS was used in order to understand how the screened 

drug-like virtual hits bind to the receptor through molecular 

docking. The protocol of this module first detects the cavity to 

identify and select the region of the protein as the active site 

followed by docking the ligands to the selected site. In order to 

detect the site the 3D regular grids of points were employed. The 

protein receptor of the HIV integrase was retrieved from RCSB 

Protein Data Bank (RCSB-PDB) for the molecular docking study. It is 

reported that a protein structure may be suitable for molecular 

docking study with the low resolution (<2.5Å) and R-factor 

(<0.28)45. In the present study PDB ID: 1QS446 was selected among 

several HIV integrase keep in mind the above criteria along with 

receptor size and date of deposit. The Prepare Protein and Prepare 

Ligand tools of DS were used to prepare receptor and ligands 

respectively. Both protein and ligand were minimized using 

CHARMm force field47. For protein preparation using Prepare 

Protein module of DS the ‘Build Loop’ and ‘Protonate’ parameters 

were fixed to ‘True’ while, dielectric constant, pH, ionic strengths 

and energy cut-off were considered as default value. In Prepare 

Ligand module, preparation ‘Change ionization’, ‘Generate 

Tautomers’ and ‘Generate isomers’ were fixed to ‘False’, and 

‘Generate Coordinates’ was set to ‘3D’. Followed by protein 

preparation, the binding site was identified on the basis of volume 

occupied by the ligand at the active site the binding site was 

identified. In order to avoid false positive results of molecular 

docking the validation of docking protocol is an essential step and 

for which the co-crystal small molecule in the PDB complex file was 

initially redrawn and the same docked into the active site of HIV 

integrase (PDB ID: 1QS4). The best docked pose of co-crystalized 

ligand was checked for the binding interactions at the active site 

followed by superimposing the docked pose and the co-crystal.. The 

RMSD value was calculated in order to verify docking parameters 

that were capable to regenerate a comparable conformation to that 

of the co-crystal at the active site of HIV integrase. Further 

molecular docking studies of potential molecules were carried out 

with the same settings as in the co-crystalized docking. For the 

analysis of binding interactions and dock score values, top ten 

conformations for each ligand were considered.  

 

Molecular Dynamics 

In order to perform MD simulation and part of the analysis of the 

trajectories the AMBER 1248 was used for the selected docked 

poses. The generalized amber force field was used for preparation 

of both ligand and receptor. A rectangular box of TIP3P water was 

created with boundary of 10Å around the each system. Each system 

was minimized for 500 steps of each conjugate gradient and 

steepest descent method. The system was heated at constant 

volume and temperature of 10 to 150K with the Langevin 

thermostat over the course of 100ps with 25kcal mol-1 Å-2.  

 

Drug-likeness analysis of screened compounds 

In order to compare the drug-likeness of the screened compounds 

with existing Food and Drug Administration (FDA) approved HIV 

integrase inhibitors different parameters including dockscore, 

estimated activity, fit value, molecular weight, logP, violation of 

Lipinski’s rule of five, molecular volume, molecular refractivity, 

number of H-bonds and number of bump interactions were 

analysed. For this purpose DS24 and online program Molinspiration 

(www.molinspiration.com) were used.  Dockscore is defined as the 

collection of internal energy of ligand-receptor complex and ligand 

only. The estimated activity and fit value were calculated after 

fitting with best pharmacophore model. logP measures the 

hydrophobicity of the molecules. Lipinski’s rule of five states that 

for a drug-like molecule logP value should be less than 5, hydrogen 

bond acceptor and donor should be less than 10 and 5 respectively, 
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and molecular weight should be less than 500. Molecular volume 

explains transport characteristics of molecules, such as intestinal 

absorption or blood-brain barrier penetration.  

 

Results and Discussion 

The HypoGen module was used to develop the 

pharmacophore model based on training set (ntr = 30) 

compounds selected from the whole dataset. The training set 

molecules are depicted in the Fig. 1 (H1 – H30) and the 

inhibitory activity values (IC50) are given within the 

parentheses. The Feature mapping protocol of DS was used to 

select the pharmacophoric features, ‘HBA’, ‘HBD’, ’H’ and  ‘R’ 

as required for chemical features and were given as input to 

the 3D QSAR pharmacophore generation along  with keeping 

minimum and maximum feature value ‘0’ and ‘5’ respectively. 

On successful completion of pharmacophore generation the 

top ten hypotheses were output with excellent statistical 

parameters. The statistical parameters of the selected model 

derived based upon the biological activity of the training 

molecules are given in the Table 1. For selection of best 

pharmacophore model Debnath’s21, 49 analysis states that 

model should have the less rmsd, high correlation coefficient, 

lowest cost value and highest cost difference. In the current 

study, the predictivity of first hypothesis (Hypo 1) was 

confirmed by Debnath’s method21, 49. A valid hypothesis should 

have the overall cost of the hypothesis different from the null 

cost and near to the fixed cost, and it is reported that the cost 

difference (∆cost = null cost – total cost) in the range of 40–60 

bits explains the probability of the predictive correlation of 75–

90%, while the ∆cost more than 60 bits means the hypothesis 

has a correlation probability of greater than 90%50. In the 

selected pharmacophore in the present study, the cost 

difference for Hypo1 (Table 1) was found to be 914.671, i.e. 

much more than 60 bits, explaining that selected model has a 

>90% chance of being able to select HIV integrase inhibitors. 

 

Table 1: Statistical results and predictive power (presented as cost, measured in bits) of the top ten hypotheses of training set molecules of 

HIV integrase inhibitors 

Hypo 

No. 

Spacing 
1
Unc.

 2
Wt. 

Var. 

3
R 

4
Rmsd Costs Output 

features Total Null Fixed 
5
∆ 

6
Config. 

1 250 1.5 0.5 0.940 2.847 223.699 1138.370 89.046 914.671 16.664 2xa, r 

2 250 1.5 0.5 0.929 3.087 251.522 1138.370 89.046 886.848 16.664 2xa, r 

3 250 1.5 0.5 0.895 3.730 299.662 1138.370 89.046 838.708 16.664 3xa, p 

4 250 1.5 0.5 0.897 3.688 304.535 1138.370 89.046 833.835 16.664 2xa, r 

5 250 1.5 0.5 0.882 3.943 323.382 1138.370 89.046 814.988 16.664 3xa, p 

6 250 1.5 0.5 0.868 4.150 357.335 1138.370 89.046 781.035 16.664 3xa, p 

7 250 1.5 0.5 0.862 4.241 362.352 1138.370 89.046 776.018 16.664 2xa, r 

8 250 1.5 0.5 0.857 4.310 368.198 1138.370 89.046 770.172 16.664 2xa, d, p 

9 250 1.5 0.5 0.841 4.520 417.176 1138.370 89.046 721.194 16.664 2xa, r 

10 250 1.5 0.5 0.829 4.678 425.714 1138.370 89.046 712.656 16.664 2xa, r 
1Uncertainty; 2Weight variation; 3Correlation coefficient; 4Root mean square deviation; 5(Null cost- Total cost); 6Configiration cost, a = HBA; 

d = HBD; p = H; r = RA 

For all ten hypotheses the correlation coefficient (R) values were 

recorded (Table 1) and it was observed that all selected hypotheses 

had correlation value of >0.820, but the best hypothesis revealed 

with the highest R value (0.940), which explained good predictive 

ability of the selected hypothesis. In case of Hypo1 the fixed and 

total cost values were obtained as 89.046 and 223.699, 

respectively, while the difference between total and null cost was 

found to be 914.671. From Table 1 it is delineated that the high 

correlation coefficient, less rmsd, highest cost difference and 

minimum error values were observed for Hypo1 in comparison to 

other hypotheses. Hence, Hypo1 was considered as the best model 

for further analyses. 

The best model (Hypo1, Fig. 2a) obtained with critical features of 

two ‘HBA’ (HBA1 and HBA2) and one ‘RA’ and portrayed in Fig. 2a 

after mapping with most active compound of the dataset. In order 

to nullify over-prediction of the bioactivity for inactive molecules 
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using Hypo1 the HypoRefine was performed. In this purpose the 

Steric refinement with Excluded Volumes module of DS was used. 

The algorithm identifies areas of space that are occupied by inactive 

ligands and strategically places excluded volumes (ev) in these 

regions to reduce the number of inactives that can map the 

pharmacophore. It was observed that ten ev factors were critical for 

the inhibitory activity of HIV integrase. The model with ev is 

delineated in Fig. 2b. Quality of the selected hypothesis was 

justified by its ability to predict the activity of individual compounds 

within the training set. It was observed that all the training set 

molecules were accurately predicted with low error values between 

the actual and estimated IC50. The predicted activity of the training 

set molecules explained that one active compound was 

overestimated as moderately active and two moderately active 

molecules were underestimated as active compounds. The 

remaining compounds were classified correctly within their region. 

Based on the discussion above it can be concluded that the Hypo1 

predicted biological activity of the dataset correctly which is 

reflected by the high correlation between observed and estimated 

biological activities of training and test sets. The error values 

explain the consistency between the experimental and estimated 

biological activity and defined as ratio between them. It was 

observed that except three (H5, H23 and H29) all compounds of the 

training set have error values within reasonable range. The 

observed and estimated activities on the based on Hypo1 for the 

training set compounds are given in Table 2 and Fig. 3. It was 

observed that best hypothesis gives Q
2 of 0.912 and se of 0.498. 

The high Q2 and low se of the selected model suggested that model 

is robust in nature. 

 

Fig. 2 a) Mapped pharmacophore features (Hypo 1) with most 

active compound; b) Hypo 1 with excluded volume; c) Inter-feature 

distances of Hypo 1. 

The most active compound of the dataset was mapped in the best 

model (Hypo 1 in Table 2) and depicted in Fig. 2a. Mapped features 

suggested that amine and hydroxyl group present in the six 

membered non-aromatic ring as HBA1 and HBA2. The aromatic ring 

presence in the molecular system of most active compounds was 

found to be important as ring aromatics factor. Gupta et al.16, 51 

developed QSAR, pharmacophore and comparative molecular field 

analysis (CoMFA) studies on curumine derivatives as HIV-1 integrase 

inhibitors. Both studies found that hydrophobicity and ring aromatic 

along with hydrogen bond acceptor and donor were crucial for 

inhibitory activity. These findings are comparable with the 

outcomes of current research. Therefore it can be postulated that 

to design or synthesize new chemical entities of HIV integrase 

inhibitors HBA and R factors with critical inter-feature distances 

(Fig. 2c) will be crucial factors. 

Test set prediction 

Any robust pharmacoinformatics model should have the capability 

to predict the activities of the compounds other than training set. 

Out of whole dataset, 510 compounds were considered as test set 

and the activity (IC50) converted into logarithm value (pIC50) and 

given in Table S5 in supplementary file and Fig. 3. The entire test set 

of molecules were divided into three groups based on their 

inhibitory activity (pIC50) values: highly active (pIC50 < 2.000 nM, 

+++), moderately active (2.000 nM ≤ pIC50 < 3.000 nM, ++) and least 

active/inactive (pIC50 > 3.000 nM, +). The Ligand Pharmacophore 

Mapping of DS activity was used to estimate the inhibitory activity 

of test set compounds. It was observed that six compounds 

estimated far from the observed activity hence were considered as 

outliers and not used in further analysis. Analysis of observed and 

estimated activity of test compounds revealed that out of sixteen 

active compounds from the highly active category, seven and nine 

compounds were overestimated as moderately active and least 

active respectively. In case of moderately active compounds, 17 and 

6 compounds were underestimated as highly active and 

overestimated as least active respectively. Seven and six 

compounds belong to the least active category and were 

underestimated as moderately and highly active respectively. The 

remaining 450 compounds were classified in their observed and 

predicted activity correctly (Table S5 in supplementary file) which 

suggests that the selected model was able to provide accurate 

estimation for the biological activities of external compounds. The 

correlation (R) between observed and estimated activity of test 
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compounds was found to be 0.915 and the R
2

pred value of 0.847 

with error of prediction (sp) of 0.697. 

Furthermore, to check the power of predictive capability of the 

selected model, the values of r
2

m(test) were also calculated. The 

r
2

m(test) explains how the estimated activities are close to the 

corresponding experimental values as a good correlation coefficient 

value (R2
pred) may not always suggest a low residual between the 

observed and estimated activity data. The r2
m(test) and Δr

2
m(test) were 

found to be 0.636 and 0.130 respectively, explaining that selected 

model has adequate predictive potential. Hence, the above results 

suggested that the selected model can reasonably predict the 

biological activities of new chemical compounds. 

 

 
 

Fig. 3 Observed and predicted inhibitory activity of HIV integrase 

inhibitors based on Hypo 1. 

Table 2: Observed, predicted activities and fit values of the training set molecules, obtained using the pharmacophore model Hypo1 

Comp. 
Activity (IC50  nM) 

Error 
Activity scale 

Fit value 1
Obs. 

2
Pred. 

1
Obs. 

2
Pred. 

H1 60.000 20.198 -2.971 +++ +++ 12.877 
H2 62.000 16.214 -3.824 +++ +++ 12.973 
H3 5.000 17.129 +0.292 +++ +++ 12.949 
H4 30.000 9.523 -3.150 +++ +++ 13.204 
H5 52.000 10.359 -5.020 +++ +++ 13.167 
H6 28.000 13.877 -2.018 +++ +++ 13.040 
H7 4.000 10.800 +0.370 +++ +++ 13.149 
H8 11.000 11.548 +0.953 +++ +++ 13.120 
H9 5.000 6.418 +0.779 +++ +++ 13.375 

H10 3.000 17.153 -0.175 +++ +++ 12.948 
H11 44.000 20.032 -2.197 +++ +++ 12.881 
H12 10.000 6.031 -1.658 +++ +++ 13.402 
H13 2.000 7.453 +0.268 +++ +++ 13.310 
H14 12.000 23.149 +0.518 +++ +++ 12.818 
H15 3.000 12.650 +0.237 +++ +++ 13.080 
H16 6.000 9.553 +0.628 +++ +++ 13.202 
H17 12.000 60.462 +0.198 +++ +++ 12.401 
H18 20.000 34.581 +0.578 +++ +++ 12.644 
H19 8.000 11.500 +0.696 +++ +++ 13.122 
H20 2400.000 4786.360 +0.501 + + 10.503 
H21 250.000 156.173 -1.601 ++ ++ 11.989 
H22 140.000 157.416 +0.889 ++ ++ 11.986 
H23 1900.000 174.085 -10.914 ++ ++ 11.942 
H24 97000.000 176422.000 +0.550 + + 8.936 
H25 12.800 17.849 +0.717 +++ +++ 12.931 
H26 28000.000 57400.900 +0.488 + + 9.424 
H27 25.000 7.106 -3.518 +++ +++ 13.331 
H28 10000.000 5908.690 -1.692 + + 10.411 
H29 1000000.000 60599.000 -16.502 + + 9.400 
H30 15600.000 40312.200 +0.387 + + 9.577 

1Observed; 2Predicted 
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Fischer randomization test 

The hypo 1 was select for the Fischer randomization test to adjudge 

the statistical significance of the model of interest by allocating a 

particular confidence level. Selected hypotheses were considered 

for the Fischer randomization test at confidence level of 95%.  In 

this confidence level, observed activities of training set molecules 

are reshuffled and generated into 19 random spreadsheets, and 

each spreadsheet creates a hypothesis. The implication of the 

hypothesis was calculated as per equation (1). The correlation 

values of all 19 spreadsheets obtained and depicted in the Table 3 

indicated  that not a single value obtained after randomization-

produced hypotheses that exhibited predictive powers similar to or 

better than that of hypo 1 (Table 1).  

 

 

Table 3: Correlation and total cost of the 19 random spreadsheets 

Validation Correlation Total cost 

Hypo1 0.940 223.699 

random1 0.592 770.212 

random2 0.509 862.437 

random3 0.743 572.127 

random4 0.622 732.664 

random5 0.570 799.428 

random6 0.686 646.582 

random7 0.553 818.048 

random8 0.593 767.586 

random9 0.461 912.705 

random10 0.716 605.744 

random11 0.778 511.697 

random12 0.756 551.685 

random13 0.749 572.692 

random14 0.527 849.479 

random15 0.573 794.599 

random16 0.752 568.053 

random17 0.725 608.415 

random18 0.756 553.663 

random19 0.541 832.001 

From Table 3, the average of correlation coefficient for all 19 trials 

was found to be 0.642. It was also observed that the total costs of 

randomized runs were much higher than the total cost of Hypo 1. 

The total cost of Hypo 1 and all other 19 random hypotheses is 

depicted in the Fig. 4 and Table 3. The above discussion 

undoubtedly demonstrated that the selected pharmacophore 

model was not produced by chance. 

 

 
 

Fig. 4 Comparison of the total costs of Hypo 1 and 19 random 

hypotheses generated in the Fischer’s randomization test. 

Decoy set 

Decoy set validation of pharmacophore model is one of the 

important approaches to evaluate the screening capability of the 

model. In this regard,  the hypo1 was screened by a set of 900 HIV-

integrase decoys obtained by DecoyFinder1.1 amalgamated with 80 

active HIV-integrase inhibitors. The accuracy and enrichment 

analyses of decoy set were calculated based on the screened 

results. The model was successful used to identify and differentiate 

actives and decoys with good accuracy of 0.93. The true positive 

(TP), false positive (FP), true negative (TN) and false negative (FN) 

percentage values were found to  57, 42, 85 and 23 respectively. 

The ROC plot was derived for the model and given in Fig. 5 which 

indicated that actives and decoys are well-classified. The area under 

curve (AUC) was also calculated and the value was found to be 0.69 
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that clearly indicated more true positives have been verified. The 

enrichment factor (EF 1%) and Boltzmann-enhanced discrimination 

of ROC were calculated. Average EF 1 % value for pharmacophore 

model was found to be 9.80 which indicated that model has 

identified active compounds very well and the top 1% hit is 

enriched with active compounds. The average BEDROC was 

obtained as 0.85 which signifies that the top hits is not only 

enriched with active compounds but also ranked higher than decoy. 

The abovementioned results of decoy validation strongly suggest  

that the developed pharmacophore features in the selected model 

are perfectly acceptable for the mapping of HIV-integrase inhibitors 

 

Fig. 5 ROC curve for pharmacophore model, derive from  true 
positive rate of actives vs. false positive rate of inactive compounds. 
 

Virtual screening 

In order to find potential molecules that are HIV integrase 

inhibitors virtual screening is a powerful technique and also 

effective as an alternative to high-throughput screening 

methodologies. For this purpose the validated 

pharmacoinformatics models including QSAR, pharmacophore 

or molecular docking can be used to search the molecular 

database for lead identification. The Hypo 1 and hyporefined 

of Hypo 1(Fig. 2a and 2b) were used to explore the NCI 

database (comprising of 265,242 compounds) separately to 

find potential HIV integrase inhibitors. The ‘Search Database’ 

under ‘Pharmacophore’ module of DS was used for screening 

of the database, where the protocol ‘Search Method’ and 

‘Limit Hits’ were set to ‘Best’ and ‘Best N’ respectively. 

‘Maximum Hits’ was set to 600 for each screening method. As 

per the given criteria each hypothesis retrieved 600 best 

compounds. Compounds from both models were merged and 

found there were 79 redundant molecules in the merged file. 

After deletion of redundant molecules, the remaining 1121 

compounds were fitted to the pharmacophore model by the 

Ligand Pharmacophore Mapping protocol of DS with maximum 

omitted feature set to ‘0’. It was observed that except for one 

compound all were fitted successfully to pharmacophore 

model. Estimated biological activity and fit score value of all 

1120 molecules was recorded. The estimated inhibitory 

activity and fitscore values of all 1120 compared with 

estimated inhibitory activity (7.453nM) and fitscore value 

(13.210) of most active (H13 in Fig. 1) compound of the 

dataset were obtained. Compounds with less estimated 

activity (IC50) than H13 and greater fit value than H13 were 

considered for further screening. Out of 1120 only 13 

compounds satisfied the above criteria and were considered 

for further screening. Furthermore  the Lipinski’s rule of five52 

and Veber’s53 rule were checked for 13 compounds. It was 

observed that 8 compounds failed to pass both rules. The 

remaining 5 compounds further were taken into consideration 

for molecular docking study in the active site of HIV integrase 

(PDB ID: 1QS4). The dock score of these 5 compounds were 

compared with dock score of H13. Three compounds 

(NSC91705, NSC651812 and NSC666331) were found to have 

higher dock scores compared to H13. Finally, the above 3 

compounds were considered for ADMET and synthetic 

accessibility check. It was observed that blood brain barrier 

(BBB) level and synthetic accessibility of NSC666331 were 4 

and 6.51 respectively which indicated that this molecule is 

difficult to synthesize and penetration may be problematic, 

hence NSC666331 was deleted and finally NSC91705 and 

NSC651812 (Fig. 6) were considered as promising compounds 

and further subjected to assess the critical interactions with 

the catalytic amino acid residues present in the active site 

cavity of the HIV integrase. 

 

O

HO

O

OO

OH

N

O

HO

OH

NSC651812
NSC91705

 
Fig. 6 Screened promising HIV-integrase inhibitors from NCI 

database  
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Molecular docking 

The molecular docking study gives the accurate and preferred 

orientations of the molecule at the receptor site of the 

macromolecule. Best docked poses of the promising HIV-integrase 

ligands obtained from NCI database (Fig. 6) and most active 

compound of the dataset (H13 in Fig. 1) were considered to 

evaluate the optimal orientation and binding abilities. The crystal 

structure of HIV integrase (PDB ID: 1QS4) was collected from RCSB-

Protein Data Bank. In order to validate the docking protocol,  self-

docking54 is one of the important techniques in which bound ligand 

is docked at the catalytic site of protein molecule and the 

conformer of the original bound ligand is superimposed to the 

docked poses to calculate root mean square deviation (RMSD) 

values. It is illustrated that low RMSD (<2 Å) value of original bound 

ligand validates the docking procedure54. The RMSD values was 

found 1.406Å, which indicated that the protocol was selected in the 

docking method was validated. 

 

 
Fig. 7 Binding modes of a) most active compound of the training set 

and NCI database screened potential HIV-integrase molecules b) 

NSC91705 and c) NSC651812. 

The molecular docking study (Fig. 7) of between most active 

compound (H13) of the training set and HIV protease revealed that 

Asp116 and Glu152 were important catalytic amino residues. One 

of each hydrogen bond and bump interactions were observed 

between the ligand with Asp116 and Glu152 respectively. Both 

screened compounds NSC91705 and NSC651812 were found to 

interact with Asp64 and Asp116. The NSC91705 formed two and 1 

hydrogen bonding with Asp64 and Asp116 respectively, while 3 and 

2 bump interactions with Asp64 and Asp116 respectively. Four 

hydrogen bond and three bump interactions were observed 

between NSC651812 and Asp64 inside the HIV integrase receptor 

site. Asp116 was also found to be important to form one of each 

hydrogen bond and bump interactions with NSC651812. The dock 

score of H13, NSC91705 and NSC651812 were found to be 185.253, 

194.48 and 217.798 respectively. The above observation indicated 

that both screened compounds formed more number of binding 

interactions than H13 which suggested that NSC91705 and 

NSC651812 show more promising than H13.  

Molecular dynamics 

In order to analyse stability of molecular docked complexes of HIV-

integrase with H13, NSC91705 and NSC651812 molecular dynamics 

studies were performed. In this purpose AMBER12 was used for a 

time span of 50,000ps. Backbone RMSD and RMSF were recorded 

to observe the complex constancy during simulation time and 

depicted in Fig. 8.  

 
 

Fig. 8 Plot of a) RMSD vs simulation time and b) RMSF vs residue 
number. 

In visual inspection of the simulation trajectories (Fig. 8a) it can be 

observed that complex with most active compound (H13) showed 

high RMSD values compared to the complexes with screened 

compounds (NSC91705 and NSC651812) until 15ns of time span. 

Further it was noticed that RMSD of NSC91705 increased and finally 

both NSC91705 and H13 achieved stability with new conformations 

in between RMSD of 4 and 5nm. RMSD curve for NSC651812 

indicated that initially it   achieved high RMSD conformers but after 

20ns of time span it   formed stable conformation at about 2.5nm. 

Average and maximum RMSD values were observed as 3.457nm 

and 4.838nm, 3.577nm and 5.726nm, and 3.060nm and 4.640nm 

respectively for complexes with H13, NSC91705 and NSC651812 

correspondingly. Minimum RMSD value of all complexes were 

found to be 0nm. In order to check fluctuation of residues of 

docked complexes the RMSF parameter were collected and 

analysed (Fig. 8b). Average RMSF of complexes with H13, NSC91705 

and NSC651812 were found to be 20.372nm, 22.491nm and 

23.043nm respectively, while differences between maximum and 

minimum RMSF were perceived as 12.333nm, 15.864nm and 

18.253nm correspondingly. The results above indicated that the 

complex with NSC651812 achieved stable conformation at low 

RMSD while complex with NSC91705 reached stability at higher 
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RMSD value. The MD simulation study contradicts the docking 

results in the case of NSC91705 but correlates with complexes with 

H13 and NSC651812. The potential and total energies of the system 

were recorded during molecular dynamics simulation and plotted in 

Fig. 9. 

 

Fig. 9 Time vs energies (potential/total) in Kcal/mol 
 

Lowest energy complexes with screened compounds and most 

active compound of the dataset were collected after MD simulation 

study.  The binding mode of all three complexes is given in the Fig. 

10. Both molecular docking and lowest energy complexes of MD 

simulation of screened compounds explain the importance Asp64 

and Asp116 amino residues at the active site cavity. In case of 

binding mode of H13 shows importance of Asp116 where molecular 

docking of this compounds revealed with importance of Glu52 and 

Asp116. Moreover polar amino residues Pro90, Tyr99, Lys103, 

Pro142, Tyr143, Asn144, pro145, Gln146, Ser147, Gln148, Glu152, 

Lys156 and Lys173, and non-polar Val88, Ile141, Gly149 and Val150 

were found in the active site cavity and might be crucial for binding 

interactions. Importance of two HB acceptor and one ring aromatic 

sites in the pharmacophore can be correlated with binding mode of 

the most active and screened compounds. Presence of catalytic 

amino residues at the receptor site explained the possibility of 

formation of binding interactions with ligands that substantiated 

the finding of pharmacophore model. 

 
Fig. 10 Binding mode of a) H13, b) NSC91705 and c) NSC651812 in 
lowest energy conformation in MD simulation. 
 
Comparison of drug-likeness with FDA approved HIV integrase 

inhibitors 

Dolutegravir
55, Elvitegravir

56, Raltegravir
57 are FDA approved HIV-

integrase inhibitors available in the market for the treatment of 

AIDS. In order to compare the drug-likeness of screened 

compounds with FDA approved HIV-integrase inhibitors different 

parameters of H13, Dolutegravir, Elvitegravir, Raltegravir, 

NSC91705 and NSC651812 were calculated and reported in Table 4. 

Parameters are included as dockscore, estimated activity, fit value, 

hydrophobicity, molecular weight, violation of Lipinski’s rule of five, 

molecular volume, molecular refractivity, number of H-bonds and 

number of bump interactions. 

Table 4: Comparative analysis of standard HIV-integrase inhibitors and screened compounds. 

Molecules 
1
DS 

2
EA 

3
FV logP 

4
MW 

5
vROF 

6
MV 

7
MR 

8
HBond 

9
Bump 

H13 185.25 7.45 13.31 -1.11 404.44 0 287.70 103.70 1 1 

Dolutegravir 143.41 12.79 13.08 -1.07 419.39 0 280.60 100.75 0 1 

Elvitegravir 190.89 33.32 12.89 4.57 447.90 0 316.00 119.88 2 0 

Raltegravir 222.09 19.73 12.89 -0.86 444.43 0 300.80 101.80 1 2 

NSC91705 194.48 3.46 13.64 1.67 340.38 0 260.30 92.59 3 5 

NSC651812 217.80 4.12 13.57 0.69 265.31 0 208.40 71.02 5 4 

1Dockscore; 2Estimated activity; 3Fit value; 4Molecular weight; 5Violation of Lipinski’s rule of five; 6Molecular volume; 7Molecular 

refractivity; 8Number of H-bonds; 9Number of bump interactions 

It was observed that dockscore of both screened compounds is 

greater than H13, Dolutegravir and Elvitegravir but less than that of 

Raltegravir. The estimated activity and fit value were also predicted 

after mapping with pharmacophore model and both parameters 

showed that NSC91705 and NSC651812 have more promising than 

Dolutegravir, Elvitegravir and Raltegravir. The number of hydrogen 
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bond and bump interactions were also found to be much higher for 

NSC91705 and NSC651812 compared to Dolutegravir, Elvitegravir 

and Raltegravir when docked inside the receptor cavity of HIV-

integrase. Moreover molecular weight, molecular volume and 

molecular refractivity were also found to be lower in the case of 

NSC91705 and NSC651812 compare to H13, Dolutegravir, 

Elvitegravir and Raltegravir. These findings show that the final 

screened molecules may be potential HIV-integrase inhibitors for 

the treatment for the wider community of HIV/AIDS.  

 

Conclusion 

Pharmacophore-based virtual screening studies were carried out to 

identify potential molecules for therapeutic application in HIV/AIDS. 

Several pharmacophore models were generated using 30 molecules 

out of 540 compounds in the whole dataset. After analysis of 

statistical parameters finally 10 hypotheses were considered for 

further validation. Hypotheses were validated using R
2

pred, sp, 

R
2

m(test), Δr
2

m(test), Fischer’s randomization and decoy set, and finally 

Hypo1 was selected as the best model. The model indicated that HB 

acceptor and ring aromatic features were critical factors for the 

inhibitory activity. In order to find out excluded volumes, Hypo1 

was used for “hyporefine” and it found several excluded volumes 

that were important for HIV-integrase activity. Furthermore Hypo1 

and Hypo1 with excluded volumes were used for virtual screening 

of NCI database. From the initial hits,  finally two compounds 

(NSC91705 and NSC651812) were found to be promising HIV-

integrase inhibitors after screening with a number of criteria 

including mapping with omitted feature = 0, comparison of fitscore 

and estimated activity with most active compound of data set 

(H13), passing through Lipinski’s rule of five and Veber’s rule53, 

comparison of dockscore with H13, ADMET and synthetic 

accessibility analysis. In the molecular docking study, a number of 

binding interactions were observed between final screened 

compounds and catalytic amino acid residues of HIV-integrase. The 

final potential compounds were subjected to 50,000ps molecular 

dynamics simulation to analyse binding stability in the receptor 

cavity of HIV-integrase. RMSD, RMSF, potential energy and total 

energy were recorded of the most active compound and final 

screened molecules. MD simulation study suggested that complex 

of NSC651812 achieved stable conformation at lower RMSD of H13 

while NSC91705 obtained at higher RMSD value of H13. 

Comparison of different parameters of screened compounds with 

FDA approved HIV integrase inhibitors confirmed that NSC91705 

and NSC651812 were more promising than Dolutegravir, 

Elvitegravir, Raltegravir. Finally, from the discussion above, it can 

be postulated that the final screened compounds may be might be 

promising candidates for the treatment of HIV/AIDS but need 

further experimental validation for better confirmation. 
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