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A novel topological centrality measure capturing 

biologically important proteins  

Muhammed Erkan Karabekmeza and Betul Kirdara  

Topological centrality in protein interaction networks and its biological implications has  widely been 

investigated in the past. In the present study, a novel centrality metric – weighted sum of loads 

eigenvector centrality (WSL-EC) - based on graph spectra was defined and its performance in 

identifying topologically and biologically important nodes was comparatively investigated with 

common centrality metrics in human protein-protein interaction network. The metric can capture 

nodes from peripherals of the network differently from conventional eigenvector centrality. 

Different metrics were found to selectively identify hub sets significantly associated with 

different biological processes. Widely accepted metrics; degree centrality, betweenness 

centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-

hubs while WSL-EC was not affected by the presence of super-hubs. WSL-EC outperforms other 

centrality metrics in detecting biologically central nodes such as pathogen interacting, cancer, 

ageing, HIV-1 or disease related proteins and proteins involved in immune system process and 

autoimmune diseases in human interactome. 

 

Introduction  

The understanding of life at molecular level impressively increased in 

the last half century due to the technological advances such as 

microarrays, mass spectroscopy and next-generation sequencing. In 

addition to these technologies which helped to the identification and 

quantification of biological molecules at the whole genome level, high 

through-put technologies were also developed to measure physical 

protein-protein, protein-DNA or RNA, and enzyme- metabolite 

interactions  All these interactions can be projected as networks or 

graphs which can provide a good scaffold to model molecular 

interactions, integrate several omics data and interpret overall 

physical and functional landscape of cellular function. These 

developments have provided the scientific basis of a new field known 

as network biology which combines systems biology, graph theory, 

statistical and computational analysis1. 

Protein-protein interactions (ppi) networks at the whole genome 

level (interactome) are considered as an important source to be 

explored to get further information about the cellular function. These 

networks are hierarchically organized and consist of tightly clustered 

groups of proteins working together as part of a biological process or 

a complex to achieve a specific function in the cell. Protein-protein 

interactions were identified using yeast two-hybrid (Y2H), tandem 

affinity purification coupled to mass spectrometry (TAP/MS) and 

affinity capture mass spectrometry (AC/MS) in several model 

organisms including humans and are deposited in publically available 

databases such as Database of Interacting Proteins (DIP)2, Human 

Protein Reference Database (HPRD)3, Biological General Repository 

for Interaction Datasets (BioGRID)4 and STRING database5. 

Graph-theoretical analysis of these networks has revealed a strong 

correlation between topological characteristics of cellular networks 

and the cellular function. Early studies indicated the scale-free 

topology of protein-protein interaction networks consisting of small 

number of hubs with many interactions. Today, molecular interaction 

networks are considered not scale free, but they are generally heavy 

tailed consisting of few hubs and many low degree nodes6,7. 

Furthermore the topological analysis of protein-protein interaction 

networks provided a deeper understanding about the biological 

systems leading to functional annotation of unknown genes or 

identification of drug targets or disease related proteins and 

pathways8,9. It has been reported that biologically important proteins 

in aging, cardio-vascular disorders, metabolic disorders, cancer and 

infectious diseases have some topological centrality in human 

interactome10-14. 

A number of different topological centrality metrics were 

described to define the centrality of the nodes such as degree centrality 

(DC) which is the number of edges, betweenness centrality (BC) 

which is the fraction of shortest paths passing through a node and 

eigenvector centrality (EC). Although DC is the most commonly used 

centrality measure, it can only give information about local topology 

of a node. BC was used to determine the bottleneck-nodes with low 

degree, but detrimental for organism when removed15. EC as a global 

centrality metric can explain latent topology by not only local 

connectivity but also connectivity of the neighbouring nodes as 

well8,16. Although EC is not a local centrality metric like DC it is 

limited to the first principal of the graph spectra and therefore it is not 

a descriptive metric about the peripheral modules in a network17.  

Other centrality measures such as sub-graphs centrality18 (SC) which 

accounts for all graph spectra instead of only the first principal was 

also proposed to represent number of short walks starting and ending 

at the node of interest. The drawback of the SC is that it converges to 

EC when the largest eigenvalue breaks away from the second19. 

Other centrality measures such as coreness centrality20, 

bipartivity21, Graphlet Degree Centrality9, node hierarchy22 and linear 

combination of different metrics6 were also proposed to improve the 

predictability of the cellular function or biologically central nodes in 

health or disease. Different centrality measures were extensively used 

and compared for the topological analysis of biological networks23,24. 

It has been observed that different centrality metrics can be important 

in different instances. Therefore the development and application of 
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different metrics is considered to be important in the topological 

analysis and modelling of networks in systems biology in order to 

improve the predictability of the cellular function or biologically 

central nodes in health or disease. 

The aim of the present study is to develop a new centrality 

measure, weighted sum of loads eigenvector centrality (WSL-EC) 

counting all eigenvectors with a different and more simple weighting 

strategy in order to capture topologically important nodes not only 

from the densely populated but from the less densely populated and 

peripheral parts of the human network. The performance of WSL-EC 

in the identification of topologically important nodes that contribute 

to the integrity of network and to capture biologically central nodes 

were tested in a human global protein-protein interaction network. 

The performance of this newly introduced centrality measure was 

compared with the ability of degree centrality (DC), betweenness 

centrality (BC), eigenvector centrality (EC) and subgraph centrality 

(SC). 

Results and Discussion 

We have defined a novel centrality metric called Weighted Sum of 

Loads Eigenvector Centrality (WSL-EC). WSL-EC is designed as 

weighted sum of loads of each node to each eigenvector. Absolute 

values of the loads were used as signs indicates only direction not 

significance of the load. Instead of exponentials of eigenvalues, 𝑒𝜆𝑖, 
eigenvalues themselves, λi, were used as weight to prevent dominance 

of the first principal. We have analyzed then its efficiency or power to 

identify central proteins and compared with other commonly and 

extensively used metrics such as Degree Centrality (DC), 

Betweenness Centrality (BC), Subgraph Centrality (SC) and 

Eigenvector Centrality (EC). Physical protein-protein interaction 

network of human (H) consisting of 15,192 nodes and 126,572 binary 

interactions without self-loops were constructed as described in 

Materials and Methods. Topological characteristics of the network, 

the contribution of the nodes scored by this novel and commonly used 

centrality metrics to network integrity and the ability of the hubs to 

capture biological function were analyzed and compared.     

Topological Analysis of the Network 

The power law distribution, hierarchical modularity and degree 

correlations on connected nodes are commonly used parameters to 

characterize the biological network organization25. Topological 

characteristics of the biological protein-protein interaction network 

(H) were calculated to reveal the organization of the network (Table 

1). The network was found to have a degree distribution that fit to 

power law (R2=0.844) (Fig. S.1). 

Table 1. Topological characteristics of the H network 

Number of Nodes 15192 
Number of Edges 126,572 

Density (ρ) 0.001 

Diameter (D) 8 
Average Clustering Coefficient (CC) 0.256 

Characteristic Path Length (cpl) 2.670 

Network Centralization 0.630 
Network Heterogeneity 5.488 

 

Topological characteristics of the network indicated that although 

nodes are loosely connected (ρ=0.001) and diameter is higher than that 

of random networks with the same size and density (p-value<0.01), 

average shortest path lengths (cpl) is lower and both network 

centralization and network heterogeneity are higher than 

characteristics of a randomly wired network with the same number of 

node and edges (all p-values are lower than 0.01). Together with 

findings that revealed by shortest path length (spl) distribution, more 

than 99% of the spl’s are 2, 3 or 4 steps long (Fig. S.1), these numbers 

point out presence of super-hubs, nodes with off-the-chart high 

connectivity. In addition to that, observed non-randomly high 

clustering coefficient (p-value<0.01) is a sign of modular organization 

of the network.  

The variation of clustering coefficient is considered to be one of 

the most commonly used parameter to identify the hierarchical 

modular structure of biological networks and it has been shown that 

existence of super-hubs and degree correlation also affect clustering 

coefficient variation with degree26. In order to unveil the hierarchical 

architectural structure of the network used in the present study, 

assortativity metrics and variation of the clustering coefficients with 

degree were investigated (Fig.1). The probability of having a link 

between two nodes with degrees k(i) and k(j) was compared with the  

probability within 100 randomly rewired networks by a z-score. Z-

scores greater than zero indicate positive correlation whereas negative 

z-scores indicate negative correlation between connectivities with 

respect to random networks. Assortativity coefficient27 of H network 

was found to be significantly negative (r=-0.0717 with a p-

value<0.01) implying dissortativity of the network. The variation of 

average clustering coefficient with respect to degree and heat-map of 

z-scores in H network suggests that nodes with low degree are more 

likely to be linked with highly connected nodes and nodes with high 

connections are less likely to be connected to each other, which also 

reflects scale-free nature of the network. There is a strong repulsion 

between super-hubs whereas moderately linked nodes with a degree 

of 100 to 200 have an apparent affinity to each other pointing out the 

densely connected modules (Fig. 1). 

 
Fig. 1. Correlation profiles of protein-protein interactions (A) and clustering 

coefficient variations with degree (B) in H network. Color-bars display z-

scores for probability of a node with a degree of k(i) to be linked with a node 
with a degree of k(j) with respect to 100 randomly rewired networks. 

Corresponding average clustering coefficient variations were fitted to power 

law line on a logarithmic scale. 

A 

 

 

 

 

B 

Page 2 of 8Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Molecular BioSystems ARTICLE 

This journal is © The Royal Society of Chemistry 2015 Mol.BioSyst. , 2015, 00, 1-3 | 3  

Clustering coefficient variation in H network obeys power-law 

distribution in parallel with the disassortative nature of the network 

(Fig. 1) and existence of super-hubs. 

Correlation between degree and average nearest neighbor degree 

is another metric which can identify assortativity of a network26. 

When we plot average nearest neighbor degree as a function of degree 

the distribution almost perfectly fits to power law with a negative 

exponent verifying negative assortativity of the Human interactome 

(Fig. 2). 

 
Fig. 2. Average nearest neighbor degree as a function of degree. Distribution 

fits to power law with R2=0.934 (slope of the line is -0.597). 
 

Network Integrity 

Robustness is an important property of the protein-protein interaction 

networks which is assumed to emerge from natural selection and 

refers to the ability of networks to maintain function under 

perturbation28. Efficiency and diameter are the two important 

topological characteristics to quantify the robustness of the 

networks29.  

We have scored all the nodes using the newly described 

topological centrality measure, WSL-EC, in H network and nodes 

were then removed one by one either by starting with the highest 

scoring nodes or randomly. Diameter and efficiency recalculated after 

the removal of each node in each of these three biological networks. 

The results were compared to the removal of the nodes scored by DC, 

BC, EC and SC.  

The drawback of the SC revealed itself at the beginning that SC 

based ranking was found to be identical to the ranking found based on 

EC. The difference between the largest and the second largest 

eigenvalue is more than 53 which means the weight of the first 

eigenvector is more than e53 times weight of the second eigenvector. 

Hence the results for SC will not be presented hereafter as it is 

identical to EC. 

Removal of the highest scoring nodes one after the other was 

found to have more impact to decrease the efficiency when compared 

to the random removal of the nodes in all networks. Diameter of the 

networks were observed to become larger followed by a drastic 

decrease indicating collapse of the network by the targeted removal of 

the nodes. Whereas diameter of the networks remain unchanged by 

random removal until the collapse (Fig. S.2). 

Percent of nodes that has to be removed in the network to decrease 

the efficiency or diameter to the half of its original value was 

calculated and presented in Table 2. A 50% decrease in efficiency 

occurred after the removal of 12.2 percent of the highest nodes by 

WSL-EC in H network. This result indicated that the targeted removal 

of the WSL-EC nodes causes a less severe collapse in this network 

than the DC, BC or EC targeted attacks (Table 2).  

Diameter based criteria on the other hand indicated that WSL-EC 

targeted attack causes the fastest disintegration in H network, just the 

opposite of the efficiency based criteria (Table 2).  

Drastic difference between these two criteria might possibly be 

due to the presence of super-hubs in the networks and efficiency might 

strongly be affected by super-hubs. The most dominant super-hub is 

UBC in H network which is connected to more than 63% of all nodes 

in the network and it has by far the highest scores with respect to DC, 

BC, and EC. However WSL-EC rank of UBC is only 1861 

corresponding to top 12.2% which is exactly the percent of the nodes 

need to be removed in order to collapse H network in WSL-EC 

targeted attack (Table 2). Other than UBC all top five DC genes and 

four out of top five BC or EC nodes are not even in the top 10% of the 

WSL-EC based rank. 

WSL-EC seems to be outperforming the other centrality metrics 

in identifying nodes affecting network diameter without being 

affected by the presence of super-hubs in H network. 

Presence of super-hubs also explains the dominance of the first 

principal and convergence of SC to EC consequently. 

Table 2. Percent of nodes removed to attain defined collapse 

Collapse 

criteria 

Random 

Removal 
(Avg.) 

WSL-EC  

targeted 
removal 

DC 

targeted 
removal 

BC 

targeted 
removal 

EC 

targeted 
removal 

50%  

drop in 

Efficiency  

17.1 12.2 0.1 0.1 0.1 

50%  

drop in 
Diameter  

97.9 43.6 45.4 46.2 83.6 

Hubs 

Four sets consisting of top 10 percent highest scoring nodes with DC, 

BC, EC, and WSL-EC were identified in each network as hub sets. 

The networks were visualized by Cytoscape in order to investigate 

and compare the topological distribution of the hubs.  Localization of 

hub sets identified using different metrics in H network was not 

clearly distinguishable due to their crowded nature of the network 

(Fig. S.3). In order to visualize the localization of the hub sets a 

smaller context specific yeast interaction network Y2 was used. The 

visualization indicated that WSL-EC seizes the peripheral modules 

together with the core of the network while EC highlights only the 

core of the network. Hubs that were identified by DC were also found 

to be localized at densely connected parts of the network. Hubs 

identified by BC and WSL-EC were distributed in all over the network 

(Fig. 3). 

Since the visualization of large networks may not give satisfactory 

results, visually detected differences between hubs dispersions were 

quantified by the topological analysis of hub-networks constructed 

using known interactions between the hubs of H network. Four hub-

networks constructed using the hubs identified by different centrality 

metrics were named as degree central hub network (DC-HN), 

betweenness central hub network (BC-HN), eigenvector central hub 

network (EC-HN) and WSL eigenvector central hub network (WSL-

EC-HN) for H network. The network density of these networks were 

calculated and compared to quantify dispersion of the hubs (Table 3). 

Table 3. Network properties of Hub-Networks in H network 

Hub Network 
Type 

Number 
of Edges 

Network 
Density 

DC-HN 43655 0.038 

EC-HN 43376 0.038 

BC-HN 26106 0.023 
WSL-EC-HN 39625 0.034 
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Fig. 3. Distribution of  the hubs (red nodes) defined by (A) DC, (B) EC, (C) BC, (D) WSL-EC in Y2 network. 

 

The observation that WSL-EC-HN has lower network density 

than EC-HN and DC-HN indicated that the WSL-EC hubs are more 

dispersed than EC and DC hubs confirming the visual observation 

of the hubs in Y2 network. BC-HN has a lower network density than 

WSL-EC-HN, again verifying the visual observation that BC hubs 

in Y2 are more dispersed. 

Biological investigation of hubs 

Biological role of a node is reported to be strongly related to its 

topological location within an interaction network; i.e. functions of 

interacting neighbors or processes they involve etc.30. We have also 

investigated GO biological process terms significantly associated 

with the four hub sets consisting of top ten percent highest scoring 

nodes with the highest centralities with respect to degree (DC), 

betweenness (BC), eigenvector centrality (EC) and WSL 

eigenvector centrality (WSL-EC).  

In H network almost half of the any hub set is common to all 

other sets (Fig. 4). These 747 human genes have significant 

ontological associations to a wide variety of GO biological process 

terms related to communication, response, metabolism, catabolism, 

localization, development, transcription, cell cycle etc. and 

regulation of all these processes (p-value ≤ 9.88E-4).  

In H network, 53 hubs were uniquely identified by WSL-EC and 

found to be significantly enriched (p-value ≤ 8.03E-4) with 

establishment of organelle localization and regulation of 

biosynthetic. 285 hubs specifically described by EC were enriched 

with biological process terms (p-value ≤ 1.94E-6) such as gene 

expression, cellular component organization or biogenesis, 

organelle organization and mRNA transport. 26 hubs which were 

selectively identified by DC alone were found to be significantly 

enriched (p-value ≤ 5.49E-5) with regulation of ligase activity, 

regulation of protein ubiquitination, protein catabolic process and 

cell cycle. When BC was used as a centrality measure 570 hubs were  
  

Page 4 of 8Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Molecular BioSystems ARTICLE 

This journal is © The Royal Society of Chemistry 2015 Mol.BioSyst. , 2015, 00, 1-3 | 5  

 
Fig. 4. Venn diagram of Degree Central (DC), Eigenvector Central (EC) and  

WSL-Eigenvector Central (WSL-EC) Hub Sets and Top 10 Hubs in H 

Network. 

specifically described and these proteins were found to be 

significantly associated (p-value ≤ 6.07E-9) with response to 

stimulus, biological regulation, multicellular organismal process, 

signaling, immune system process, developmental process and 

establishment of localization (Fig. 4). 

The top 10 highest scoring hub sets identified by different 

centrality metrics were compared in order to reveal individual genes 

favored by specific centrality metrics. RIOK2, a kinase related to 

ribosome biogenesis process is the top central node detected by 

WSL-EC. Following 4 nodes VCAM1, ITGA4, HSPA8 and HSPA5 

are related to stress response and/or immune system (Table S.1). 

Top 10 hub sets identified by DC, BC and EC were found to be 

highly overlapping whereas the top 10 hub set of WSL-EC is 

completely exclusive. Super hubs UBC and NRF1 present at top two 

for all DC, BC and EC rankings and APP, ELAVL1, SUMO2 and 

CUL3 are also present in the all three top 10 hub sets. All these nodes 

are related to ubiquitination processes and/or interact with RNA. 

Top 10 hub sets and pathways related to the hubs were tabulated in 

the supplementary tables (Table S.1. to Table S.4). Focus of the 

novel metric seems to be more on immune system process compare 

to the other centrality metrics. 

Biological and Topological Centrality in Human 

Interactome 

It has been reported that the genes involved in cancer, aging and 

infectious disorders are also topologically central9. Disease related 

genes, genes involved in immune system process and genes related 

to autoimmune diseases also have biological importance. The 

topologically central hub sets identified by the four centrality 

measures in H network were investigated by the enrichments in 

HIV-1 interacting proteins, ageing related genes, cancer related 

genes, pathogen interacting (PI) proteins, disease related genes, 

genes involved in immune system process and genes related to 

autoimmune diseases in order to shed light to biological differences 

of the centrality metrics. 

The correlation between biological and topological centralities 

was investigated by a jackknifing method31 based on jackknife 

resampling technique32 without limitations of thresholds (Fig. 5). 

The relative areas under the curve (R-AUC) were calculated for 

the curves in Figure 5. R-AUC was defined as the ratio of the area 

under the curve (AUC) to the area under an ideal curve ranking all 

biologically significant nodes on top (I-AUC) (Fig. 5). As higher R-

AUC implies higher correlation with biological significance, R-

AUC analyses indicated that WSL-EC based ranks outperform DC, 

BC, EC or SC based ranks in identifying all biologically central 

node sets. Statistical significance of the differences was assessed by 

permutation tests (p-value<0.001 for all curves). 

GO biological process term enrichments were also used to 

discriminate subsets of the biologically central nodes with higher 

ranks with respect to each centrality metric. All subsets of 

biologically central node sets defined by 7 criteria (pathogen 

interacting, HIV-1 interacting, cancer related, ageing related, 

disease related nodes and genes involved in immune system process 

or related to autoimmune diseases) having the highest ranks in 

WSL-EC order were found to be enriched in stress response related 

terms, immune system related terms, transcriptional terms and/or 

kinase activity related terms. The smallest subsets for all criteria 

were found to be consisting of nodes favored by DC. The subsets 

are either not significantly associated with any GO term or enriched 

in transcriptional, apoptotic and cell cycle processes. The widest 

range of GO terms were determined for the subsets of high 

betweenness nodes for all four biological centrality criteria. External 

processes like exocytosis, endocytosis, cell motility, cell adhesion, 

cell migration, cell-cell communication, or processes related to   

differentiation like regulation of neurogenesis and embryonic 

morphogenesis or immune system related GO terms are some of 

them. The nodes with the highest order in EC rank have the 

narrowest range of GO enrichments as they found to be associated 

with only translational and carbon central metabolism related terms. 

Conclusion 

In the present study we proposed a novel global centrality metric, 
weighted sum of loads eigenvector centrality (WSL-EC) counting 

all eigenvectors. The performance of WSL-EC in the identification 

of topologically more important nodes that contribute to the integrity 

of network and to capture essential or biologically central nodes 

were tested in a biological network and compared with the 

performance of other four commonly used centrality metrics, DC, 

BC, EC and SC.  

Topological analysis of the network indicated the dissortative 

and modular architecture for human global protein-protein 

interaction network (H). WSL-EC outperformed DC, BC, EC and 

SC in identifying nodes affecting network robustness in human 

interactome. The topological distributions of hubs in the networks 

were found to be different for hub-sets identified with different 

centrality metrics. Hubs identified by BC and WSL-EC were 

distributed in all over the network whereas EC and DC identified 

hubs were localized at densely connected parts of the networks.  

We have noted that different centrality measures could 

specifically capture a set of hubs involved in different biological 

processes.  

WSL-EC was found to be outperforming in capturing 

biologically central nodes like pathogen interacting, HIV-1, cancer, 

ageing, disease related genes and genes involved in immune system 

process and related to autoimmune diseases in human interactome 

compared to DC, BC, EC or SC. The choice of centrality metric is 

crucial as different metrics focus on different topologies and these 

topological differences correspond to different biological roles.  

Hubs with out-of-the-chart connectivity (super-hubs) create a 

strong bias in topological centrality for DC, BC, EC or SC while 

WSL-EC does not seem to be affected from the presence of super-

hubs.     

WSL-EC is an easy to implement metric which doesn’t require 

a special code or complicated computations. It is promising by this 

aspect that it can be utilized by diverse researchers. 
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Fig. 5. Change in number of biologically significant genes detected by centrality ranks and random ranks in H network and R-AUC values of biologically 

central node detection performances of DC, BC, WSL-EC and EC 
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The novel centrality metric, WSL-EC, displays substantial 

biological relevance and further studies will be required to test the 

performance of this novel centrality metrics in complex biological 

networks to reveal the correlation between topology and biological 

importance. Furthermore integration of other data sets with protein-

protein interaction networks should be investigated to improve its 

performance across different network architectures. 

Methods 

Human interactome, H, was downloaded from BIOGRID database 

(version 3.2.108). H is composed of 15,192 nodes and 126,572 

physical binary interactions without self-loops4. 

The functional ppi network, Y2, which consists of 1792 proteins 

related to glucose processes and 6919 bidirectional edges was 

constructed33 from STRING database5 v8.3 with confidence score 

≥0.999 using selective permeability algorithm34 starting with 108 

proteins which are associated with glucose metabolic process. 

Centrality metrics used for comparison and network parameters 

were calculated as shown in the Supplementary Methods. 

The novel spectral centrality measure (WCL-EC) was defined as 

the weighted sum of loads of the all principles of the graph spectra. 

Corresponding eigenvalues were used as weight and absolute values 

of all loads and weights were considered (Eqn. 1). 

𝑊𝑆𝐿 − 𝐸𝐶𝑖 = ∑ |𝜆𝑗|. |𝑣𝑖𝑗|
𝑁
𝑗=1       (1) 

Where, N is the number of nodes in the network, λj is the jth 

eigenvalue of the adjacency matrix and vij is the load of ith node to 

the jth principal of the graph spectra. 

2417 HIV-1 interacting proteins35, 292 ageing related genes 

from Ageing Gene Database (GenAge)36, 407 cancer related genes 

collected from The Catalogue of Somatic Mutations in Cancer 

(COSMIC)37, 506 pathogen interacting proteins14, 1485 disease 

related genes38, 1811 genes involved in immune system process39 

and 143 genes related to autoimmune diseases40 were used as 

biologically important proteins.  

Significantly associated Gene Ontology biological process 

terms (p value<0.001) were determined by GOrilla41. 

Pathways related to the hubs were identified by KEGG release 

76.042. 
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