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Increasing evidence has indicated that microRNAs (miRNAs) can functionally interact with environmental factors (EFs) to affect and 

determine human diseases. Uncovering the potential associations between diseases and miRNA-EF interactions could benefit the 

understanding of the underlying disease mechanism at miRNA and EF levels, miRNA signatures identification, and drug repurposing. In 

this study, based on the assumption that similar miRNAs (EFs) tend to interact with similar EFs (miRNAs) in the context of a given 

disease and the framework of Random Walk with Restart (RWR), I developed a novel method of miREFRWR to uncover the hidden 10 

disease-related miRNA-EF interactions by implementing random walks on miRNA similarity network and EF similarity network, 

respectively. miREFRWR was evaluated by leave-one-out cross validation and achieved an AUC of 0.9500. It has been demonstrated 

that miREFRWR can effectively identify potential interactions in all the test classes, even if those test samples only share either EFs or 

miRNAs with the training samples. Furthermore, plenty of predictive results for acute promyelocytic leukemia and breast cancer (67 and 

10 interactions out of the top 1% predictions, respectively) were verified by independent experimental studies. It is anticipated that 15 

miREFRWR could be a useful and important biological resources for the biomedical research. 

Introduction 

Phenotypes and diseases are often determined by the complex 

interactions between genetic factors (GFs) and environmental 

factors (EFs) 1-4. As one class of important and newly identified 20 

GFs and one of the most important components of the cell, 

microRNAs (miRNAs) play critical roles in many important 

biological processes, including cell growth, proliferation, 

differentiation, apoptosis, signal transduction, viral infection and 

so on 5-11. Accumulating evidences have indicated that miRNAs 25 

are associated with various diseases 5, 12-20. One typical example 

is insulin secretion can be regulated by mir-375 21, 22. Numerous 

miRNAs have been linked with the initiation and development of 

various cancers 23.  For example, Huang et al (2008) confirmed 

that the upregulation of miR-373 and miR-520c to be significant 30 

players in tumour invasion and metastasis 24. Therefore, the 

interactions between miRNAs and EFs may contribute to the 

development or treatment of many phenotypes and diseases.  

Recently, increasing studies have indicated that miRNAs can 

functionally interact with plenty of EFs to affect and determine 35 

the phenotypes and diseases. Related EFs include drugs 25, 

alcohol 26, cigarette 27, stress 28, diet 29, virus 30, air pollution 31, 

radiation 32 and so on. For example, cigarette smoke condensate 

(CSC) could lead to cancer by dramatically increasing the 

expression level of mir-31 and hence activating LOC554202 in 40 

normal respiratory epithelia and lung cancer cells 33. More 

importantly, the interactions between miRNA and EF also can 

benefit the disease treatment. For instance, during clinical 

treatment of ovarian cancer, Paclitaxel could significantly 

decrease the expression of mir-29c 34. In the breast cancer 45 

treatment, 3,3'-Diindolylmethane (DIM) could inhibit the 

proliferation of breast cancer cell by increasing miR-21 

expression and hence causing the downregulation of Cdc25A 35. 

Therefore, identifying potential disease-related miRNA-EF 

interactions based on computational methods has become an 50 

important problem in the biomedical research and played critical 

roles in disease pathogenesis understanding at the miRNA-EF 

interactions level, miRNA signatures identification for given EFs, 

and new indication inference of approved drugs. Computational 

prediction has been an important complementary method for 55 

disease-related interactions identification, which can select 

promising disease-related interactions for further experiment 

validation, hence decrease the time and cost of biological 

experiments36-42.  

Yang et al (2011) manually collected experimentally supported 60 

disease-related miRNA-EF interactions and further constructed 

miREnvironment database, which included more than 2500 

entries about ~800 miRNAs, ~260 EFs, ~180 phenotypes, and 17 

species 43. Qiu et al (2012) analyzed disease-related human 

miRNA-EF interactions in the miREnvironment database and 65 

obtained some important conclusions about the association 

patterns of miRNA-EF interactions 44. Those conclusions 

indicated that miRNA-EF interactions had a significant 

correlation with the characteristics such as miRNA expression 

level, tissue specificity, conservation, and disease spectrum 70 

width. They further developed several methods for EF 

relationship characterization, cancer treatment result prediction, 

and novel EF-disease interactions inference. Although these 

proposed methods cannot predict ternary relationships among 

miRNAs, EFs, and diseases together simultaneously, they laid a 75 

theoretical foundation for disease-related miRNA-EF interactions 

prediction research. In my previous work, I proposed the similar 

nature of disease-related miRNA-EF interactions, i.e. similar 

miRNAs (EFs) tend to interact with similar EFs (miRNAs) in the 

context of a given disease 45. Based on this assumption and the 80 

framework of semi-supervised classifier, I developed a semi-

supervised classifier based method (miREFScan) to predict 

potential disease-related interactions between miRNAs and EFs. 

Reliable performance has been obtained in both cross validation 

and case study about acute promyelocytic leukemia (APL) 45. To 85 

my knowledge, miREFScan is the first computational tool for 

simultaneous ternary relationships prediction among miRNAs, 

EFs, and diseases.  
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However，little efforts have been made to analyze and predict 

potential disease-related miRNA-EF interactions from a network 

perspective. Network medicine could effectively predict the 

potential interactions among biological molecules, investigate 

how cellular systems induce different biological phenotypes 5 

under different conditions, and provide a novel approach to 

understand the complicated mechanism of disease and drug 

treatment1. Especially, network-based computational models have 

been widely used to predict disease-related genes, miRNAs, long 

non-coding RNAs (lncRNAs) and drug-target interactions36, 46-50. 10 

Therefore, it is fundamental and important to understand the 

mechanisms of complex diseases and identify new indications of 

drugs in a network-centric perspective. In this study, I developed 

a novel method of miREFRWR (miRNA-EF interactions 

inference based on the Random Walk with Restart) to infer 15 

potential disease-related miRNA–EF interactions by making full 

use of the tool of the network for data integration to predict 

potential associations. It consists of four steps: firstly, three 

networks (miRNA–miRNA similarity network, EF-EF similarity 

network, and known miRNA–EF interaction network for a given 20 

disease) are constructed; secondly, random walks are  

implemented on the miRNA similarity network and EF similarity 

network, respectively; Then, predictive results based on random 

walk on miRNA similarity network and EF similarity network are 

combined to obtain the final predictive results; finally, the most 25 

probable miRNA-EF pairs are selected according to the stable 

probability of the random walk. In the framework of leave-one-

out cross validation (LOOCV), miREFRWR obtained the 

comparable performance (AUC=0.9500) with miREFScan in my 

previous work. It has also been demonstrated that miREFRWR 30 

had a reliable performance in all the test classes, even if the test 

samples only shared either EFs or miRNAs with the training 

samples. In the case studies about APL and breast cancer, 

miREFRWR further showed the advantages of making full use of 

network information to predict potential interactions. Especially 35 

in the APL-related miRNA-EF interactions prediction, sixty-

seven interactions out of the top 1% predictions based on 

miREFRWR have been confirmed by experimental literatures. I 

further applied miREFRWR to predict potential novel miRNA-

EF interactions for all the investigated diseases in the dataset. The 40 

top 100 interactions for each disease have been publicly released 

for further biological experiment validation. 

Methods 

Disease-related miRNA-EF interactions 

Firstly, the whole dataset of known disease-related miRNA-EF 45 

interactions was downloaded from miREnvironment database 

(http://cmbi.bjmu.edu.cn/miren, Version of September, 2011) 43, 

including more than 2500 entries and each entry was composed 

of a miRNA name, an EF name, and their related 

phenotype/disease. This database is a very important and useful 50 

biological resource for the research about the mutual relationship 

among miRNAs, EFs, and diseases and lays the data foundation 

for disease-related miRNA-EF interactions identification. 

Secondly, human disease-related miRNA-EF interactions were 

extracted from the above dataset and double-checked to get rid of 55 

the entries with phenotype named ”n/a”. Furthermore, the names 

of diseases, miRNAs, and EFs were normalized and 862 distinct 

human disease-related miRNA-EF interactions were obtained, 

which contained the information about 418 miRNAs, 138 EFs, 

and 97 diseases (see Supplementary Table 1). This dataset was 60 

regarded as golden standard dataset in the cross validation and 

case studies for performance evaluation. Finally, disease-related 

miRNA-EF interaction adjacency matrix A was constructed for 

each given disease, where the entity A(i,j) in row i and column j 

is 1 if EF j could interact with miRNA i and their interaction 65 

could contribute to the given disease, otherwise 0. 

 

Chemical structure similarity between EFs 

In the previous drug research 45, 46, 51-58, chemical structure was 

widely applied to effectively evaluate drug similarity. 70 

Considering the fact that plenty of EFs are drugs in the known 

disease-related miRNA-EF interactions dataset, chemical 

structure similarity matrix SCE was constructed (here, C denotes 

chemical structure and E denotes EF) for EFs based on the tool of 

SIMCOMP 59 and the drug chemical structure information 75 

derived from various databases, such as KEGG database 60, 

PubChem 61, and ChemicalBook 

(http://www.chemicalbook.com/). The similarity score computed 

in this way is a global ratio between the size of common 

structures and union structures of two drugs based on a graph 80 

alignment algorithm. The entity SCE(i,j) in the row i column j is 

the chemical structure similarity score between EF i and j if they 

are both drugs, otherwise 0.  

 

Functional similarity between miRNAs 85 

Based on the assumption that miRNAs with similar functions are 

more likely to be related with similar diseases 12, Wang et al 

(2010) represented the relationships among different diseases by 

directed acyclic graph (DAG) and further inferred miRNA 

functional similarity by calculating the similarity between their 90 

associated disease DAGs 62. Here, miRNA functional similarity 

scores were calculated by the tool of MISIM in May 2011 

(http://cmbi.bjmu.edu.cn/misim/) 62. Then, miRNA functional 

similarity matrix SFM was constructed (M denotes miRNA and F 

denotes functional similarity), where the entity SFM(i,j) in row i 95 

column j is the functional similarity score between miRNA i and 

j. Previous studies have shown that functional similarity scores 

calculated in this way coincided well with prior knowledge about 

miRNA function annotations 62. In addition, miRNA functional 

similarity network has played critical roles in disease-related 100 

miRNAs and miRNA-EF interactions identification 36, 37, 45. 

 

Network-based similarity for miRNAs and EFs 

Considering the fact that some EFs are not drugs and some 

miRNAs don’t have any known associated diseases, hence the 105 

similarity scores for these EFs and miRNAs can’t be obtained 

based on aforementioned chemical structure similarity and 

functional similarity. Here, network-based similarity for miRNAs 

and EFs is proposed to improve the traditional similarity measure 

(see Figure 1). Disease-miRNA, disease-EF, and EF-miRNA 110 

interactions network can be obtained from known disease-related 

miRNA-EF interactions, respectively. Based on the observation 

that EFs interacting with more common miRNAs or diseases tend 

to be more similar, network-based EF similarity matrix SME and 

SDE (here, E denotes EF, M (D) indicates network-based 115 

similarity is obtained from EF-miRNA (disease) interactions) are 

constructed by extracting the information from disease-EF and 

EF-miRNA interactions networks, respectively, where the entity 

SME(i.j) (SDE(i.j) in row i column j is the number of miRNAs 

(diseases) shared by EF i and j in EF-miRNA (disease) 120 

interactions network. Correspondingly, from disease-miRNA and 

miRNA-EF interactions network, network-based miRNA 

similarity matrix SDM and SEM (here, M denotes miRNA, D (E) 

indicates network-based similarity is obtained from disease (EF)-

miRNA interactions) can be obtained in the similar way, where 125 

the entity SDM (i,j) (SEM (i,j)) in row i column j is the number of 

diseases (EFs) shared by miRNA i and j. Network-based 
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similarity must be normalized. Taking SME as an example, 

corresponding normalized matrix is defined as follows: 

            
1/2 1/2( ) ( )SME DME SME DME− −=

   
where diagonal matrix DME is defined such that DME(i,i) is the 

sum of the ith  row of SME. Other three network-based similarity 5 

matrix are also normalized in the similar way. To avoid circular 

design and optimistic prediction performance report of LOOCV, 

network-based miRNA similarity and EF similarity was 

recalculated when each cross validation run was implemented, 

i.e. the information of tested disease-related miRNA-EF 10 

interactions was discarded from known disease-related miRNA-

EF interaction network and only current training dataset was used 

to calculate network-based similarity. 

 

 15 

 
Fig.1 Flowchart of miREFRWR. This flowchart provides a brief 
description of new method developed in this paper. Step 1: Calculating 

network-based miRNA similarity and EF similarity. Step 2: Calculating 

integrated miRNA similarity and EF similarity. Step 3: Constrcting 20 

heterogeneous network. Here, a simple example is provided. The upper 

network is the miRNA similarity network and the lower network is the EF 

similarity network. They are connected into a heterogeneous network by 

known miRNA-EF interactions. Step 4: Implementing random walks on 
miRNA similarity network and EF similarity network and introducing 25 

two parameters to restrict the iteration steps of random walks on these 

two networks, respectively. Step 5: Combining predictive results based on 
random walks on miRNA similarity network and EF similarity network to 

obtain final predictive results. Step 6: Ranking all the candidate miRNA-

EF interactions based on stable probability and selecting potential 30 

disease-related miRNA-EF interactions for experimental validation. 

 

Integrated similarity for miRNAs and EFs 

Based on aforementioned drug chemical structure similarity and 

network-based EF similarity, integrated similarity matrix SE for 35 

EFs can be constructed based on trivial combinatorial coefficients 

(see Figure 1), where the entity SE(i,j) in row i column j is 

defined as follows: 

       

( , ) ( , ) ( , )
,

3
( , )

( , ) ( , )

2

SCE i j SME i j SDE i j
i j IE

SE i j
SME i j SDE i j

otherwise

 + +
∈

=
+


40 

where IE is the set of drugs among all the EFs investigated in this 

paper. 

Also, integrated similarity matrix SM for miRNAs can be 

defined in the similar way (see Figure 1), where the entity SM(i,j) 

in row i column j is defined as follows: 45 

     

( , ) ( , ) ( , )
,

3
( , )

( , ) ( , )

2

SFM i j SEM i j SDM i j
i j IM

SM i j
SEM i j SDM i j

otherwise

 + +
∈

=
+

  
where IM is the set of miRNAs which have known functional 

similarity with other miRNAs investigated in this paper. The fact 

must be pointed out is that combinatorial coefficients could be 50 

better selected according to further cross validation. For 

simplicity, the trivial combinatorial coefficients have been 

adopted here according to previous studies, where similar 

operations of combining different similarity measures into an 

integrated similarity have been adopted 45, 46. In these previous 55 

studies, reliable predictive performance has been obtained and the 

robustness of predictive accuracy to combinatorial coefficients 

selection has been illustrated 45, 46.  

 

miREFRWR 60 

In this paper, based on the assumption that similar miRNAs (EFs)  

tend to interact with similar EFs (miRNAs) in the context of a 

given disease and the framework of Random Walk with Restart 

(RWR) 36, 46, 48, 50, I developed a novel method of miREFRWR to 

infer potential disease-related miRNA–EF interactions. As we all 65 

know, traditional RWR has been widely applied to plenty of 

biological problems, such as disease genes prioritization48, 50, 

drug-target interactions prediction46, disease-related miRNAs 

inference36, and so on. However, traditional RWR has some 

critical limitations. miREFRWR has significant differences from 70 

traditional RWR. miREFRWR could make full use of the tool of 

the network for data integration to predict potential associations. 

The information of known disease-related miRNA-EF 

interactions, drug chemical structure similarity and miRNA 

functional similarity would be integrated in the framework of 75 

miREFRWR.  
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Based on above basic ideas, miREFRWR was developed as 

follows (see Figure 1, motivated by literature 63). Firstly, some 

matrices are normalized before random walk is implemented on 

the network. Taking miRNA similarity matrix SM as an example, 

corresponding normalized matrix is defined as follows: 5 

                    
1/2 1/2( ) ( )SM DM SM DM− −=

  
where diagonal matrix DM is defined such that DM(i,i) is the sum 

of the ith row of SM. EF similarity matrix SE is also normalized 

in the similar way. For the disease-related miRNA-EF interaction 

adjacency matrix A, the entity A(i,j) in row i and column j is 10 

divided by the sum of elements in the matrix A. Hence, 

normalized miRNA similarity matrix SM , normalized EF 

similarity network SE , and normalized interaction adjacency 

matrix A  (for brief description in the following equation, I set 

(0)p A= ) have been constructed, respectively. Secondly, 15 

considering the fact that there are different topologies and 

network structures in the miRNA similarity network and EF 

similarity network and hence the optimal iteration steps might be 

different on the two networks,  two parameters were introduced 

to restrict the iteration steps of random walk on these two 20 

networks, respectively (motivated by literature 63). Here, the 

parameters α and β are denoted as the numbers of maximal 

iterations in the miRNA similarity network and EF similarity 

network, respectively. Furthermore, the restart of random walk in 

every time step at source nodes can be allowed with probability r 25 

(0<r<1). Thirdly, two random walks would be implemented on 

miRNA similarity network and EF similarity network, 

respectively. The random walks in these two networks will finally 

converge to a unique solution after some steps of iterations. The 

predictive results from these two random walks would be 30 

combined to give the final prediction. miREFRWR is defined as 

follows (motivated by literature 63): 

 

m ( ) * * ( 1) (1 )

( ) * ( 1) * (1 )

(t) t>  and  t

(t)

 1  ( , )

(t) t  and  t>

(t) pe(t)
t  an  

2

 

d t

 

for t to m ax

i

p t r SM p t r A

pe t r p t SE r A

pm

p pe

f

m

if

p

t

t

α β
α

β

β α
β α

β α

=

≤

= −

≤

+ −

= − + −


 ≤


= ≤
 +
 ≤ ≤


where p(t) is a matrix with the entity in row i and column j as the 35 

probability of arriving in the pair consisting of miRNA i and EF j 

at time step t. The value of matrix p could be updated based on 

this iteration equation and the current value of matrix p. Finally, 

when the number of iterations exceeds the maximum of α and β, 

the random walk would be terminated. Candidate miRNA-EF 40 

pairs are ranked according to corresponding values in final 

probability matrix p to select potential disease-related miRNA-EF 

interactions. The high-scored interactions can be expected to have 

a high probability to be associated with the given disease and will 

have priority to be tested in the biological experiments.  45 

Results  

Leave-one-out cross validation 

Parameterα=4, β=4 and r=0.8 was chosen according to previous 

studies 63. Actually, these parameters can be better selected based 

on further cross validation and the influence of parameters 50 

selection on the predictive results would be discussed in the 

following section.   

LOOCV was implemented to evaluate the performance of 

miREFRWR. Considering the fact that miREFRWR cannot rank 

candidate miRNA-EF interactions for all the diseases 55 

simultaneously, LOOCV was implemented for each disease, 

respectively. In the known disease-related miRNA-EF interaction 

dataset, only about 8.89 miRNA-EF interactions have been 

associated with each disease on average, which means little 

difference between LOOCV and 10-fold cross validation. 60 

Furthermore, 32, 17, 12, 9, 3 out of all the 97 diseases have 1, 2, 

3, 4, 5 known related interactions, respectively, which means 

multi-fold cross validation also cannot be implemented for most 

of the diseases. For these reasons, LOOCV was selected for 

performance validation.  65 

In the LOOCV schema, each known interaction associated 

with the given disease is taken in turn as test sample and other 

known interactions associated with this disease are taken as 

training samples. Therefore, if this disease has only one known 

miRNA-EF interaction, LOOCV cannot be implemented. 70 

Aforementioned, network-based miRNA similarity and EF 

similarity matrices were recalculated when each cross validation 

run was implemented to avoid circular design and optimistic 

prediction performance of LOOCV. The performance of 

miREFRWR is evaluated based on the rank of this test sample in 75 

the candidate samples, which are composed of known left-out 

interaction and miRNA-EF pairs without the known associations 

with the given disease. Furthermore, ROC curve (plotting true 

positive rate (TPR, sensitivity) versus false positive rate (FPR, 1-

specificity) at different cutoffs) was drawn and AUC was 80 

calculated (area under ROC curve). AUC= 1 shows perfect 

performance and 0.5 indicates random performance. 

miREFRWR was compared with miREFScan (see Figure 2), 

which is the first disease-related miRNA-EF interaction 

prediction method. As a result, miREFRWR achieved an AUC of 85 

0.9500, which showed the comparable performance with 

miREFScan. However, as a network-based method for miRNA-

EF interactions prediction, it would bring a novel network 

perspective for the current research and promote the progression 

of developing network-based methods for miRNA-EF 90 

interactions prediction in the future.  

 

 
 

Fig.2 Performance Comparison. Comparison between miREFRWR and 95 

the first disease-related miRNA-EF interaction prediction method 
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miREFScan in terms of ROC curve and AUC based on LOOCV. As a 

result, miREFRWR achieved an AUC of 0.9500, which showed the 

comparable performance with miREFScan. 

To evaluate whether the results of LOOCV by miREFRWR 

were likely to be obtained by chance, 100 random disease-related 5 

miRNA-EF interaction networks were generated. LOOCV 

procedure was implemented over these random networks and the 

mean FPR and mean TPR were obtained to plot the ROC curve 

and calculate AUC. As a result, AUC of 0.4983 demonstrated 

that observed excellent performance of miREFRWR cannot be 10 

achieved by chance, and hence prediction results by miREFRWR 

would be of biological significance and reflect some mechanisms 

of human complex diseases (see Figure 2). 

Furthermore, miREFRWR was compared with some similar 

versions of miREFRWR which either ignored the use of network-15 

based similarity or implemented miREFRWR only on the single 

network (see Supplementary Figure 1). As a result, miREFRWR 

significantly improved other methods, demonstrating the 

reasonability of introducing network-based similarity (AUC 

comparison between miREFRWR and miREFRWR without 20 

introducing network-based similarity in Supplementary Figure 1) 

and implementing miREFRWR on both miRNA similarity 

network and EF similarity network (AUC comparison between 

miREFRWR and miREFRWR implemented only on the single 

network in Supplementary Figure 1). 25 

Also, when LOOCV was implemented for each disease, the 

ROC curve and the corresponding AUC can be obtained to assess 

how well the known miRNA-EF interactions of this disease were 

ranked relative to the candidate pairs (see Supplementary Table 

2). The performance of the miREFRWR was evaluated by 30 

counting how many diseases had an AUC larger than different 

cutoffs (See Figure 3).  

 

 
Fig.3 Performance of miREFRWR based on AUC. The performance of 35 

miREFRWR was evaluated by counting how many diseases had an AUC 
larger than different cutoffs. 

 

Parameter effects on the performance of miREFRWR 

There are three parameters in miREFRWR, including the 40 

numbers of maximal iterations in the miRNA similarity network 

and EF similarity network, and restart probability. To investigate 

the parameter effects on the performance of miREFRWR, various 

values are assigned to three parameters (the numbers of maximal 

iteration were taken to be between 1 steps to 5 steps and the 45 

restart probability was chosen from 0.1 to 0.9) and corresponding 

AUC of miREFRWR was calculated in the framework of 

LOOCV (see Supplementary Table 3). The result demonstrated 

that miREFRWR can obtain excellent performance in almost all 

the parameters selection (See Figure 4 and Figure 5).  50 

 

 
Fig.4 Performance of miREFRWR based on different selections of 

the numbers of maximal iteration. To investigate the parameter effects 

on the performance of miREFRWR, various values were assigned toα55 

and β and corresponding AUC of miREFRWR was calculated in the 

framework of LOOCV. The result demonstrates that miREFRWR can 
obtain excellent performance in almost all the parameters selection. From 

this figure, it could be easily found that miREFRWR tends to show better 

performance when parameterαis greater than or equal to β and worse 60 

performance whenαis less than β. 

For the selection of parameterαand β, α=4 and β=4 were 

reported to produce the best performance in the previous research 

about disease genes prioritization 63. However, interesting 

conclusions can be obtained from the results in current disease-65 

related miRNA-EF interactions prediction. Box plot for the 

AUCs in the framework of LOOCV corresponding to different 

parameter values ofαand β was shown in Figure 4. From this 

figure, it could be easily found that miREFRWR tends to show 

better performance when parameterαis greater than or equal to β. 70 

Further confirmation can be obtained from the box plot for the 

AUCs in the framework of LOOCV whenαis greater than or 

equal to β andαis less than β (see Supplementary Figure 2). This 

observation may arise from the fact that most of EFs show little 

similarity to other EFs and only local network information can be 75 

obtained for the random walk on the EF similarity network. 

Instead, the edges in the miRNA similarity network are denser 

than edges in EF similarity network. Therefore, the number of 

random walk steps on the EF similarity network should be less 

than steps on the miRNA similarity network. 80 
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Fig.5 Performance of miREFRWR based on different selections of 

the restart probability. To investigate the performance of miREFRWR 
based on the different selection of restart probability, I set various value 

of r ranging from 0.1 to 0.9 and calculated AUC in the framework of 5 

LOOCV when different parameter values ofαand β were chosen. Box 

plot for the AUCs corresponding to different parameter values of r is 

shown. It could be observed that the performance of miREFRWR is 

stable based on any selection of parameter values. 

It has been demonstrated the predictive results of random walk 10 

are robust to the restart probability  in the previous research about 

disease-related genes identification and disease-miRNA 

association inference36, 48, 50. As mentioned before, to investigate 

the performance of miREFRWR based on the different selections 

of restart probability, various values of r ranging from 0.1 to 0.9 15 

were adopted and corresponding AUCs were calculated in the 

framework of LOOCV when different parameter values ofαand 

β were chosen. Box plot for the AUCs corresponding to different 

parameter values of r is shown in Figure 5. It could be observed 

that the performance of miREFRWR is stable based on any 20 

selection of parameter values. 

LOOCV in the new framework 

The flaw of evaluation procedure for the pair-input computational 

prediction problems based on the cross validation have been 

pointed out in the recent literature 64. The paired nature of inputs 25 

causes a natural partitioning of test samples. Normally, pair-input 

computational methods achieve different predictive performances 

for distinct test classes 64. Based on this new validation 

framework, the test pairs  of disease related miRNA-EF 

interactions are classified into four distinct classes: C1 is 30 

composed of the test samples sharing both EFs and miRNAs with 

the training samples; C2 is composed of the test samples sharing 

only miRNAs with the training samples; C3 is composed of the 

test samples sharing only EFs with the training samples; C4 is 

composed of the test samples sharing neither EFs nor miRNAs 35 

with the training samples. LOOCV is implemented for these four 

test classes and corresponding performance of miREFRWR has 

been shown in Figure 6 (AUC of 0.9931 in C1, 0.7929 in C2, 

0.9548 in C3, 0.6803 in C4). Results demonstrated that 

RLSMDA has a reliable performance in all the test classes, even 40 

if the test samples only share either EFs or miRNAs with the 

training samples.  

 
Fig.6 Performance evaluatin of miREFRWR based on the LOOCV in 

the new framework. To further investigate the performance of 45 

miREFRWR LOOCV is implemented for four test classes and 

corresponding performance of miREFRWR has been shown (AUC of 

0.9931 in C1, 0.7929 in C2, 0.9548 in C3, 0.6803 in C4). Results 
demonstrated that RLSMDA has a reliable performance in all the test 

classes, even if the test samples share neither EFs nor miRNAs with the 50 

training samples. 

 

Case studies 

APL, a subtype of acute myelogenous leukemia, is regarded as 

the most malignant form of acute leukemia with a severe bleeding 55 

tendency and a highly fatal course of only weeks 65, 66. Many 

studies have shown that the combined action of miRNAs and EFs 

would contribute to the development of effective therapy ways 

for APL. For example, four known APL related miRNA-EF 

interactions have been provided in the training dataset. All-trans 60 

retinoic acid (ATRA) can benefit the treatment of APL by 

suppressing the regulation of let-7a, mir-15a, and mir-16 67. The 

interaction between mir-21 and arsenic trioxide (ATO) may have 

a great curative effect on APL by regulating ATO-induced cell 

death 68. Therefore, identifying disease-related miRNA-EF 65 

interactions could play a great role during clinical treatment.  

Here, potential APL-related miRNA-EF interactions were 

predicted based on miREFRWR. As a result, 67 out of top 1% 

candidate interactions have been confirmed by latest experimental 

literatures 65, 69, 70 (see Supplementary Table 4). Previous method, 70 

miREFScan, only found 53 confirmed interactions. Fourteen 

confirmed interactions predicted by miREFRWR cannot be 

obtained by miREFScan, while all the confirmed interactions 

predicted by miREFScan can be obtained by miREFRWR. 

Moreover, all the confirmed interactions always obtain better 75 

ranking in the predictive list of miREFRWR than miREFScan 

(see Figure 7). For the top 0.5% and 0.1% of predictive list, 40 

and 5 interactions based on miREFRWR have been confirmed, 

respectively. However, miREFScan only found 12 and 2 

confirmed interactions. Above comparisons between 80 

miREFRWR and miREFScan fully demonstrated superior 
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performance of new proposed methods and its potential value for 

disease diagnosis and treatment. 

 
Fig.7 Case study of APL. For APL-related miRNA-EF interactions 

prediction, 67 out of top 1% candidate interactions have been confirmed 5 

by latest experimental literatures. Previous method, miREFScan, only 
found 53 confirmed interactions. Moreover, all the confirmed interactions 

always obtain better ranking in the predictive list of miREFRWR than 

miREFScan. 

In recent literature 70, authors found the upregulation of miR-10 

15a, miR-16, and let-7a in APL patients and cell lines treated by 

ATRA based on a miRNA microarrays platform and quantitative 

real time–polymerase chain reaction (qRT–PCR). The 

interactions between ATRA and these three miRNAs were ranked 

the 9th, 10th, and 12th in the predictive list based on 15 

miREFRWR, respectively. These interactions were ranked the 

1041st, 1042nd, and 1040th by miREFScan, respectively. In 

another experimental literature 65, authors demonstrated that mir-

16 and let-7a were significantly differentially expressed after 

ATO treatment in APL cell NB4. These two APL-related 20 

miRNA-EF interactions were ranked the 3rd and 4th in predictive 

list based on miREFRWR among more than 50, 000 candidate 

interactions. 

To further evaluate the performance of miREFRWR on 

independent dataset, case study about breast cancer was 25 

implemented. Breast cancer is one of the most commonly 

occurring female cancers and makes up about 22% of all cancers 

in women. Recent biological experiments confirmed that miRNA 

let-7g was affected by Trastuzumab treatment in BT474 human 

breast cancer cells based on miRNA microarray profiling 71. The 30 

interaction between let-7g and Trastuzumab was ranked 7th in the 

predictive list for breast cancer based on miREFRWR. By 

contrast, In the potential breast cancer-related miRNA-EF 

interactions list predicted by miREFScan, this interaction was 

only ranked 121st. Ichikawa et al. (2012) confirmed that miR-30b 35 

and miR-26a were upregulated in breast cancer cells after 

Trastuzumab treatment 72. In the predictive list based on 

miREFRWR, these two interactions were ranked 75th and 88th. 

They are ranked 143rd and 165th by previous method 

miREFScan. In the top 1% predictive list based on miREFRWR, 40 

10 interactions associated with breast cancer were confirmed 23, 

73-75 (see Supplementary Table 5), while only 8 interactions can 

be found in the predictive list produced by miREFScan. Similar 

to the results in the case study of APL, two confirmed 

interactions predicted by miREFRWR cannot be obtained by 45 

miREFScan, while all the confirmed interactions predicted by 

miREFScan can be obtained by miREFRWR. Moreover, all the 

confirmed interactions always obtain better ranking in the 

predictive list of miREFRWR than miREFScan. 

 50 

Predicting novel human disease-related miRNA-EF 

interactions 

After confirming reliable predictive accuracy of miREFRWR 

based on LOOCV and the case studies about APL and breast 

cancer, miREFRWR was further applied to predict novel disease-55 

related miRNA-EF interactions for all the 97 diseases 

investigated in this article. The top 100 potential miRNA-EF 

interactions associated with each disease were publicly released 

to facilitate further experimental validation from biologists (see 

Supplementary Table 6). Reliable performance demonstrated in 60 

previous LOOCV and case studies leads us to believe that these 

predicted novel relationships among miRNAs, EFs, and human 

diseases could benefit the diagnosis and treatment of diseases. 

 

Discussion  65 

The reliable performance of miREFRWR could be mainly 

attributed to the combination of two factors as follows. One is 

that I analyze and predict potential disease-related miRNA-EF 

interactions from a network perspective. Network-based methods 

could effectively identify biological properties at a network level 70 

and predict potential interactions among biological molecules. 

More importantly, global network information was adopted here, 

whose advantages over local network information methods have 

been demonstrated in many previous studies. The other is that 

known experimentally verified disease-related miRNA-EF 75 

interactions were used as the seed dataset to capture the potential 

associations between diseases and miRNA-EF interactions. 

Furthermore, drug chemical structure similarity, miRNA 

functional similarity, and networked-based similarity have also 

been integrated into miREFRWR. These two factors also 80 

constitute the novelties of miREFRWR. In conclusion, 

miREFRWR could be a novel, important and effective 

biomedical tool in the computational biology research. 

Although excellent performance has been obtained in the both 

cross validation and case studies, it should be noted that some 85 

limitations still exist in the current version of miREFRWR. 

Firstly, although miREFRWR can obtain excellent performance 

in almost all the parameters selections, how to decide the 

parameters values is not still solved well. Secondly, I plan to 

introduce more reliable similarity measures into this 90 

computational model, such as disease phenotypical similarity, 

drug side-effect similarity, and miRNA functional similarity 

based on miRNA-target interactions. Also, how to integrate 

different similarity measures is an interesting and important 

problem in the computational biology. Furthermore, the current 95 

version of miREFRWR cannot be applied to the diseases without 

any known related miRNA-EF interactions. The performance of 

miREFRWR could be further improved when more 

experimentally confirmed human disease-related miRNA-EF 

interactions have been obtained in the future. Finally, the 100 

relationship between miRNA-EF interactions and cancer 

hallmark would be a very important problem for the future 

reseach. Specially, cancer hallmark network could be constructed 

at the miRNA and EF levels to effectively evaluate cancer risks76. 

Conclusions  105 

Disease-related miRNA-EF interactions prediction is an 

important goal of biomedical research and plays a critical role in 

the understanding of disease pathogenesis at the miRNA and EF 
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levels and the design of specific molecular tools for the 

prognosis, diagnosis, treatment and prevention of human disease. 

In this paper, a novel method of miREFRWR was developed to 

predict potential disease-related miRNA-EF interactions. 

LOOCV and case studies about APL and breast cancer 5 

demonstrated that miREFRWR can effectively identify potential 

disease-related miRNA-EF interactions on a large scale by 

integrating the information of known disease-related miRNA-EF 

interactions, drug chemical structure, and miRNA functional 

similarity. Especially, miREFRWR has a reliable predictive 10 

accuracy in different test datasets according to the evaluation 

methods proposed in a recent article. Furthermore, the top 100 

interactions associated with each disease have been publicly 

released to guide future biological experiments. It is anticipated 

that miREFRWR could be an effective and important biological 15 

tool for the research of non-coding RNAs, complex diseases, and 

drug design in the future.  
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