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Genome-scale DNA microarray and computational biology facilitate new understanding of viral infections at system level. 

Recent years have witnessed a major shift from microorganism-centric toward host-oriented characterization and 

categorization of viral infections and infection related diseases. We established host transcriptional response (HTR) 

relationships among 23 different types of human viral pathogens based on calculating HTR similarities using 

computationally integrated 587 public available gene expression profiles. We further identified five virus clusters that 

show consensus internal HTRs and defined cluster signatures using common differentially regulated genes. Individual 

cluster signature genes distinguish from each other, and functional analysis revealed common and specific host cellular 

bioprocesses and signaling pathways involved in confrontation to viral infections. Through literature investigation and 

support from epidemiological studies, they were confirmed to be important gene factors associating viral infections with 

cluster-common and -specific non-infectious human disease(s). Our analyses were the first to feature differential HTRs to 

viral infections as clusters, and suggest new perspective of understanding infection-disease associations and the 

underlying pathogenesis.  

Introduction 

Viruses are etiology of many diseases, associating with leading 

morbidity and mortality worldwide
1
. It is well acknowledged 

that the complex and dynamic interaction between virus and 

host determines the progress and prognosis of related 

diseases. Importantly, infected hosts recognize the presence of 

viruses and mobilize specific defense mechanisms, while 

viruses in turn can actively modulate host-signaling pathways 

to enhance their persistence and survival. Thus, understanding 

viral infections from the perspective of host response provides 

insights into the molecular pathogenesis of infectious 

diseases
2,3

, and may finally contribute to identification of novel 

biomarkers
4
, invention of new antiviral therapies

5
, discovery of 

potential drug targets
6
, and improvement in diagnostic 

accuracy
7
. 

As a powerful high-throughput tool, genome-wide DNA 

microarray technology permits simultaneous interrogation of 

the transcriptional status of thousands of genes, which can 

provide a holistic picture of host transcriptional events 

underlying viral infections
8,9

. Along with statistical tools and 

gene functional annotation, comprehensive analysis based on 

transcriptional profiling of infection model systems (e.g., cells, 

tissues, and in vivo) have facilitated identifying new gene 

factors and deciphering exquisite host defense mechanisms
10–

12
. With the publication that document gene expression 

changes of different host cell types upon infections of different 

viral pathogens increasing in recent years, researchers have 

begun to explore the molecular mechanism of infection in a 

systematic manner
13

, on the basis that a set of consistently 

dysregulated genes (i.e., signature) may tailor cellular host 

response to individual pathogen
14

. However, most analysis 

that systematically compare host transcriptional responses 

(HTRs) to different pathogens from heterogeneous 

experiments focus on defining a common HTR gene set
6,15

, 

whereas landscape relationships of HTRs to diverse pathogens 

indicating specific infection patterns have not been 

established. 

An obstruction to such large-scale comparison of HTR results 

has been the wide-distribution nature of data generated by 

independent and sporadic transcriptional profiling 

experiments that utilize diverse cell types as infection models. 

Gene Set Enrichment Analysis (GSEA) algorithm based on the 

relative expression changes is a successful strategy to excavate 

transcriptional data applied in dozens of drug reposition 

studies
16–19

 and thus allows comparison of expression profiles 
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from different infection models. Here, by computational 

integrating 587 standard-format host cellular expression 

profiles upon virus inections from Gene Expression Omnibus 

(GEO) based on GSEA, we provide a virus-virus HTR network 

that presents the HTR similarities among 23 human viral 

pathogens. Through further dissection and comprehensive 

analysis, we classify and characterize HTR network of 23 viral 

pathogens by five clusters that show significantly consensus 

internal similarity, and their common dysregulated genes form 

differential infection patterns. Notably, we address the 

biological importance of cluster signature genes with respect 

to uncovering the associations between viral infection and 

human diseases and understanding the underlying 

pathogenesis. 

Results 

Virus-virus HTR network and clusters 

To globally quantify the degree of HTR similarities to different 

viral pathogens, We exploited a repository of 50 datasets of 

587 expression profiles representing in vitro and/or in vivo 

infected host (cell or tissue) transcriptional responses to 23 

different types of viruses (Each type of virus contain multiple 

strains or subtypes, Table S1 for detailed information). For 

each virus type, we considered all the transcriptional 

responses following infections across different cell or tissue 

types as control and infected sample, thereafter we obtained a 

total of 587 paired samples (Methods). We ranked the 22160 

validated probes of each paired sample to generate Probe 

Rank Lists (PRLs) based on expression changes, which 

represented HTRs to individual viral infection across different 

cell types. We combined the PRLs for the same virus by a 

hierarchical majority-voting scheme to a single merged PRL 

(mPRL)
20

, representing HTR to a specific virus type. We 

represented the HTR similarity between two virus types as a 

“distance” between their mPRLs and computed it with GSEA
21–

23
. P values and FDR values of the distances were estimated 

according to the distance distribution generated from one 

million paired random permutated lists of the same size. The 

distances between HTRs to different viral infections were 

shown as a heat map (Fig. 1).  

Further, we tried to evaluate if certain viruses present more 

consensus internal HTRs. To assure rational dissection, we 

identified HTR clusters on basis of the calculated virus distance 

via an automatic and parameter-independent clustering 

algorithm, the affinity propagation cluster method
24

(Methods). 

An “HTR cluster” is defined as a group of viruses densely 

interconnected with each other indicating more significant 

HTR similarities. As shown in Fig. 2a, we identified five HTR 

clusters for 23 viral pathogens with sizes ranging from 4 to 7. 

Of note, despite that the expression data were collected 

from various infection models, viruses classified in an HTR 

cluster share certain infection attributes. For example, small 

RNA viruses EV71 and HAV are both classified in HTR cluster 2, 

and Flavivirus HCV and DENV are both classified in HTR cluster 

4. These are demonstrations of close phylogenetic relationship 

among viruses within specific HTR cluster. Meanwhile, we 

found that viruses of the same genus may be classified into 

different HTR clusters, e.g. Herpesviruses clustered into HTR 

cluster 3 and 5. This highly indicates that infection attributes 

other than close phylogenetic relationship are correlated with 

significant HTR similarities within an HTR cluster. For example, 

respiratory viruses DHOV, RSV and SARS-CoV are classified in 

HTR cluster 1, which is a demonstration of same infection 

implicated organisms; Digestive tract viruses EV71, HAV and 

NV are classified in HTR cluster 2, which is a demonstration of 

same transmission route; HHV-1, HRV, and VV that cause 

latent infections are classified in HTR cluster 3, which is a 

demonstration of common infection manifestations; Tumor 

Virus HHV4，HHV5 and HPV are classified in HTR cluster 5, 

which is a demonstration of shared infection mechanisms 

underlying carcinogenesis. l These findings indicated that HTR-

based clustering is of certain rationality, the mechanisms 

behind which rely on the annotation of common dysregulated 

host cellular genes and elucidation of infection patterns within 

clusters.  

To characterize the general HTR features within HTR clusters, 

we merged the PRLs of pathogens within a cluster using Borda 

Merging Method to get a “cluster PRL” (Methods). The probes 

with the highest or lowest 250 rankings, representing a total of 

 

Fig. 1 Heat map presentation of virus-virus host transcriptional 

response (HTR) similarity. The squares in the heat map were 

colored according to the distances between HTRs to different 

virus infections estimated based on Gene Set Enrichment 

Analysis (Methods). The distance value between each two 

viruses varied from 0 to 2. And distances below 1 (orange 

squares) indicated similar HTRs, while those above 1 (blue 

squares) indicated opposite HTRs. The darkness of colored 

squares indicates the distances’ offset to 1. All distances and 

their significance information were provided in Table S2. 
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500 most consistently dysregulated genes for each cluster PRL, 

were selected to be cluster signature, i.e., a common set of 

genes that was most consistently up- (or down-) regulated 

(Table S3). A heat map representation of the rankings of 500 

dysregulated signature genes of each cluster as compared to 

those of component HTR to individual virus infection was 

depicted (Fig. 2b).  

Obviously, cluster signatures genes could in general 

represent the consistent expression level of the same gene 

sets in the HTR to individual component viral infections, while 

distinguish from those to external viral infections. Through 

further statistical analysis, we found that the signature genes 

across five HTR clusters showed limited overlap (Fig. 2c and 

Table S4). Notably, there was no signature gene identified as 

being universal to all HTR clusters. These results highlighted 

the importance of HTR cluster signature genes in revealing the 

differentiating characters of individual HTR cluster. 

HTR cluster based infection patterns 

 
Fig. 2 HTR network and clusters. (a) Clusters are identified based on the calculated virus distance (Methods), and numerically 

labelled according to the alphabetical precedence of the exemplar (i.e., the virus whose HTR best represents the HTRs of the other 

viruses within a cluster). Each node shows a viral species, and thick edge connecting two viruses represents significant HTR 

similarity between two viruses (virus distance < 0.01), while thin edge shows HTR similarity between two viruses (distance < 1). 

Nodes and edges within a cluster are differentially coloured, whereas edges connecting the “exemplar” viruses in different clusters 

are colored grey. (b) Cluster signatures (CSs). Synthetic heat map of specific 500 signature genes of each cluster (whose probes 

with the highest or lowest 250 rankings in cluster PRL). The up- and down- regulated signature genes for each cluster (highlighted 

in solid-line frame) are depicted on the left. To allow better visualization of the representative characteristics of CS, 500 signature 

genes for each component virus within a cluster were separately listed and integrated into an amount of 2500 genes (vertically 

listed as squares). Orange squares indicate the top ranking genes and blue squares indicate the bottom ranking genes. Ranking 

values for 2500 genes are reproduced in Table S3. (c) Gene counts in the up and down-regulated signature genes with respect to 

the number of clusters (see Table S4 for detailed information). 
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The distinct nature of cluster signature genes is highly possible 

to unravel differential expression patterns that host cells 

utilize to confront infections of component viruses within an 

HTR cluster. To this end, we mapped signature genes to Gene 

Ontology (GO) Biological Processes (BP) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) for functional 

annotations, which were further hierarchically clustered 

according to enrichment scores (-log10 of p). The most 

enriched GO BP terms (MEGTs, p < 0.001) and KEGG pathway 

terms (MEKTs, p < 0. 1) clustered from up- and down-regulated 

signature genes were shown in a heat map representation of 

Fig. 3 (see Table S5 and S6 for detailed information). Most 

MEGTs and MEKTs were HTR cluster specific, while BPs or 

pathways closely related to virus replication and host defense 

tended to be common among different HTR clusters. For 

example, the defense and immune responses were enriched in 

the up-signatures in HTR cluster V1, V2, V3 and V4. The cell 

cycle and nucleic acid metabolic processes were also enriched 

in multiple HTR cluster signatures, but differed in regulation 

orientation. 

   Cluster-specific BPs or pathways further explicit the distinct 

infection mechanisms for individual HTR cluster. HTR Cluster 

V1 contains three viruses that usually cause respiratory tract 

infections and acute inflammations
25–27

. Accordingly, BPs and 

pathways specifically dysregulated in HTR cluster V1 were 

closely related to epithelial cell responses to stimulus such as 

responses to extracellular stimulus, epithelial cell signaling in 

Helicobacter pylori infection, and Wnt Signaling pathway. HTR 

Cluster V2 that includes two small RNA viruses, HAV and EV71, 

showed specific down regulation in the inhibition of protein 

import and localization. Four viruses that cause subclinical or 

latent infections were classified in HTR cluster V3, which 

showed specifically significant down regulation in protein 

catabolic and cell cycle processes. Moreover, 

neurodegenerative diseases related pathways were also 

specifically dysregulated in HTR cluster V3, in spite of the fact 

that none of the source cells used to generate expression 

profiles upon infections of V3 component viruses was 

neurocytes. Intriguingly, HHV-1 is one of the leading infectious 

agents strongly proposed as potential cause of Alzheimer’s 

disease for its neurotropic feature and lifelong latency
28

. 

Viruses in HTR cluster V4, including HIV, HBV, HCV and LCMV 

that usually lead to chronic infections causing long-term 

inflammation and immune-response mediated cell injury in the 

host, as well as DENV and IAV that usually causes acute 

inflammation and high fever, showed strongest internal HTR 

similarities. As shown in Fig. 3a, activation of antigen 

processing and presentation was a specifically up regulated 

signaling pathway for HTR cluster V4. This feature helps 

component viruses distinguish from viruses in other clusters 

 
Fig. 3 Functional annotation and clustering of cluster signature (CS) genes. Heat map presentation of (a) most enriched GO biological 

processes (BP) terms (MEGTs, p < 0.001) and (b) the most enriched KEGG pathways (MEKTs, p < 0.01) according to their enrichment p 

values. The color scale indicates the significance of the enrichment, with red representing that in up-regulated signature genes and 

blue representing that in down-regulated signature genes. The order of gene families is determined by hierarchical clustering 

(Methods). Annotation is given according to GO BP and KEGG nomenclatures. (c) MEGTs and  MEKTs count with respect to the number 

of clusters (see Table S5 and S6 for detailed information). Note: As no up- and down-regulated signature genes are both enriched in 

certain terms in this figure, the up- and down MEGTs or MEKTs are presented in the same heat map. 
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that also induce immune response, e.g., viruses in HTR cluster 

V1 prominently activate signaling pathways of cell responses. 

HTR cluster V5 including three DNA tumor viruses showed that 

cell cycle related processes, mitosis, and nuclear division were 

specifically activated, while transcription and several signaling 

pathways were specifically inhibited. These were consistent 

with the fact that infections of the three DNA tumor viruses 

increase cell proliferation.  

To better characterize the infection patterns in individual 

cluster, we extracted the representative feature of functionally 

annotated cluster-enriched BPs and pathways through further 

clustering. To this end, we built each cluster an exemplar-

centric “functional annotation clustering network” (FACN), in 

which a total of 277 MEGTs (p < 0.001) and 83 MEKTs (p < 0.1) 

were further clustered using the shared signature gene 

numbers between enriched terms as clustering weight
24

 (see 

Methods and Table S7). The functional term cluster was 

composed of genes involved in functional categories of similar 

gene composition, and the algorithm automatically elected a 

functional term as the cluster exemplar, defined as the best 

representative term within the group. For better annotation, 

we manually classified all exemplars into a three-level category 

(see Methods). As illustrated in Fig. 4, the gene expression 

pattern of each HTR cluster signature can be differentially 

characterized by several exemplar-named enriched functional 

annotation clusters (EFACs) of varied quantitative 

preponderance. The same orientation of host cellular gene 

regulation upon cluster virus infections could also be reflected. 

In this way, the number of signature genes involved in each 

cluster-enriched BP or signaling pathway and their mutual 

correspondences can be depicted, especially those genes 

involved in different BPs or signaling pathways. 

In general, HTR cluster signatures were characterized by 

limited EFACs in which specific functional gene clusters (BPs 

and/or signaling pathways) were preferentially elicited or 

subverted by cluster viruses (Fig. 4). HTR Cluster V1 was of 

predominant EFAC genes up-regulated in cellular antiviral 

response (61.29%) and molecular metabolism such as mRNA 

 
Fig. 4. Functional annotation clustering network (FACN) of HTR cluster signature genes. Network represents “signature gene-function 

exemplar” associations visualized by network edges that are colored according to the manually categorized first-level classification 

term. Exemplar is the best representative of the grouped functional terms, i.e., most enriched GO biological processes (BPs) terms 

(MEGTs, p < 0.001) or enriched KEGG pathway terms (MEKTs, p < 0.1) elected automatically by the affinity propagation cluster algorithm 

(see Table S7 for detailed information). The size of exemplar indicates the average enrichment score of all clustered MEGTs and/or 

MEKTs. The percentage of clustered gene count in total gene count of a functional term cluster is denoted under each exemplar. Red 

and green nodes indicate up- and down- regulated signature genes, respectively. The color scale indicates the number of FACs that 

individual signature gene participated. 

 

Page 5 of 13 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | Mol. BioSyst., 2015, 00, 1-11 This journal is © The Royal Society of Chemistry 2015 

Please do not adjust margins 

Please do not adjust margins 

metabolic process and amino acid activation (a total of 

26.88%), whereas a few genes down-regulated in extracellular 

signal transduction pathways (8.6%) and spliceosome (5.38%). 

Notably, MAPKAPK2 and AARS are the two significantly 

activated signature genes associating three major EFACs. 

Cluster V2 was of EFAC genes down-regulated in translation 

and protein localization related BPs (a total of 57.69%), as well 

as up-regulated in immune response related BPs and pathways 

(45.38%). PPP3CA, PPP3CB, YWHAZ, and NACA are the highly 

inhibited signature genes associating three minor EFACs. 

Consistently, HTR cluster V3 was of predominant EFAC genes 

down-regulated in cellular processes such as cell cycle (44.93%) 

and neurodegenerative disease related pathways (31.88%), 

while the up-regulated EFAC genes were involved in nervous 

and endocrine systems regulation pathways of long-term 

depression and adipocytokine signaling pathway (a total of 

14.5%). Notably, TP53 and CDK5 are functionally activated 

associating two major EFACs. HTR cluster V4 was of EFAC 

genes overwhelmingly up-regulated in innate immune 

response related BPs and pathways (a total of 104.71%), in 

which CXCL10, CXCL11, CCL5, RAC1, TREX1, IRF7, and STAT1 

coordinately associate with EFAC representing Toll-like 

receptor signaling pathway. However, down-regulated EFAC 

genes of HTR cluster V4 were only 4.71%, involved in 

propanoate metabolism pathway. Approximately 60% of EFAC 

genes of HTR cluster V5 were up-regulated in cellular 

processes such as cell cycle and RNA localization (a total of 

46.62%) plus molecular metabolism such as RNA processing 

(20.3%) and adaptive immune response (5.26%). And the three 

major up-regulated EFACs use UPF3B, SMG5, SMC1A, NUP43, 

NUP37, and TPR to be functionally associated. The left 40% 

signature genes in V5 were down-regulated in nucleic acid 

metabolic process (19.55%), environmental signal transduction 

and inflammatory response activation, with NPR1, PPAP2B and 

TCF7L2 associating each other.  

Taken together, these results facilitated the demonstration 

of distinguished feature of HTRs to viral infections as cluster 

components, and highlighted that viral infections are indeed of 

differential patterns, in which several genes play important 

roles in functional associating diverse gene clusters (BPs 

and/or signaling pathways). 

Cluster signatures associate viral infection with disease 

The above results highlighted a bunch of signature genes as 

key modulators for each cluster, the dysregulation of which 

upon infection may perturb multiple host cellular functions of 

biological essentiality and thereby affect the consequences 

where infection may lead to. In addition, certain cluster 

signatures showed several disease-related signaling pathways 

specifically induced or inhibited, highly indicating the 

etiological role that cluster viruses may play in infection-

associated human diseases. For example, signaling pathways 

of colorectal cancer and acute myeloid leukemia were 

significantly up regulated in viral infections of HTR cluster V1 

and V5, respectively; several signaling pathways in 

neurodegenerative diseases, including Parkinson’s disease, 

Huntington’s disease, and Alzheimer’s disease, were down 

regulated for viral infections in HTR cluster V3.  

Of the many databases storing human diseases related 

genes, Genome-Wide Association Studies (GWAS) catalog 

(http://www.genome.gov/gwastudies, accessed July 15, 2013) 

was advantageous in way of large-population based 

experiment design and rigorous statistics with less research 

bias. Therefore, we used data in GWAS as reference disease-

related genes and the plain guilt by association strategy to 

build infection-disease relations. In specific, we assessed the 

relevance of cluster signatures to human disease(s) by 

mapping them to candidate genes adjacent to single 

nucleotide polymorphisms (SNPs) that have been annotated as 

being associated with various diseases or disease-related 

intermediate phenotypes in GWAS catalog. 

To explore the possible associations between viral infections 

and human diseases, we built a viral infection-disease network 

(Fig. 5a), in which HTR cluster was connected by an edge to a 

well-defined human disease if the mapped genes of 3 different 

disease-associated SNPs were shared in viral cluster signature 

(Methods and Table S9). In general, 57 virus cluster infection-

disease associations were identified to designate a total of 25 

human diseases to all HTR clusters, and 9 diseases were 

specific for individual HTR cluster. Notably, 12 out of 25 

diseases were found to be of well-acknowledged relationships 

with chronic inflammation and/or immune dysfunction 

(highlighted as hexagons with black circle in Fig. 5a). And 4 of 

them were among the top ranking of the 5 most common 

diseases (with connection to at least four virus clusters) 

identified to associate with cluster viruses. This highlighted a 

shared inflammation and/or immune related background for 

viral infection-associated diseases. Overall, virus clusters are 

mainly associated with mental and behavior disorders (25%), 

diseases of the digestive system (25%) and of the 

musculoskeletal system and connective tissue (12%), as well as 

malignant neoplasms (10%) (Fig. 5b). 

To further validate the reliability of associations established 

for cluster viral infections and human diseases, we searched 

literature support in PubMed for a total of 256 viral infection-

disease associations with respect to individual cluster virus. 

Generally, the keywords for searching literatures related 

specific viral infection-disease associations are in the form of 

“xxx virus AND xxx (i.e., GWAS disease name). We have 

virologist perform the expert interpretation of Abstracts and 

full articles when necessary to identify the association types 

and designate publications that support the identified 

association.  

To be noted, most reports of infection-disease associations 

have been epidemiological studies. Therefore, statements of 

significant correlations between viral infection and non-

infectious disease concluded from large sample studies as well 

as those from small-sample studies suggesting viral infection 

as risk factors for certain disease, have both been adopted.  
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With regard to the 57 cluster infection-disease associations, 

52 can be correctly inferred from literatures for at least one 

component virus. Although literature support is 

overwhelmingly epidemiological studies on human subjects, it 

demonstrated a potentially causal nature of viral infection-

disease association with bidirectional possibility, i.e., the “viral 

 
Fig. 5. Viral infection-disease associations. (a) Viral infection-disease network based on comparison of cluster-specific signature genes 

with Genome-Wide Association Studies (GWAS) diseases catalogue (see Methods and Table S9). Cluster infection-disease 

association(s) without current literature support for all composing viruses are highlighted by edges as dashed line(s). Diseases are 

classified into 10 categories according to the International Classification of Diseases (ICD) and are differentially colored. The size of the 

hexagon indicates the number of associated clusters. Diseases of well-acknowledged relationship with chronic inflammation and/or 

immune dysfunction are highlighted as hexagons with black circle. (b) Distribution pattern of associated disease(s) for virus clusters 

according to ICD classification. (c) Annotation of identified cluster infection-disease association based on literature investigation of 

individual virus and confirmation rate. Infection-disease association is shown as a matrix with rows representing human diseases 

(listed in a descending order according to the number of shared clusters) and columns representing composing viruses of individual 

cluster. The infection-disease association is generally represented by colored squares. Specific infection-disease association for 

individual cluster virus is represented by a combination of uppercase initial letters of key words (see Results). Subject types in studies 

supporting infection-disease association include Human (including mother to child transition), Animal model (mice, rats or rodents), 

Cell (in vitro), and Pig. Confirmation rate of literature support for cluster infection-disease associations with respect to individual 

component virus is illustrated under the heat map. The dashed red lines represent the average confirmation rates for cluster viruses. 
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infection to disease” association and “disease to viral infection” 

association. In general, infection-disease associations (Fig. 5c) 

can be further summarized as 1) infectious virus is a Causative 

agent of disease, 2) viral infection increases the Risk of 

disease, 3) disease is one of the clinical Manifestations of viral 

infection, 4) virus test shows Positive or abnormal Prevalence 

(usually higher) for subjects with disease, 5) viral infection 

Triggers disease though molecular mimicry mechanism, 6) viral 

infection Indirectly leads to disease. The “disease to infection” 

associations include 7) subjects with disease are Susceptible to 

viral infection (including the condition after 

immunosuppressed Drug therapy), 8) viral infection 

Exacerbates disease, and 9) viral infection Ameliorates disease 

(usually autoimmune diseases). Specifically, 26 viral infection-

disease associations showed bidirectional causal 

possibilities/potentials for 9 viruses from four viral clusters. 

And 108 showed one-way causal possibilities/potentials, of 

which 41 were “disease to viral infection” and 67 were “viral 

infection to disease”. This provides implications of shared 

genetic background with respect to host cellular gene 

dysfunction under either condition of specific viral infection or 

human disease(s).  

Besides, for the well-characterized viruses within a cluster, 

such as human immunodeficiency virus (HIV), hepatitis B virus 

(HBV), human herpesvirus 1, dengue virus (DENV), and 

Influenza A Virus (IAV), > 80% viral infection-disease 

associations were of literature support. Notably, viral 

infection-disease associations for measles virus, hepatitis C 

virus (HCV), and human herpesvirus 5 (also human 

cytomegalovirus, HCMV) were 100% supported by literature. 

Importantly, for viral infection-disease associations with solid 

footing, e.g., HIV associated with coronary heart disease
29–31

 

and Crohn’s disease
32

, HHV-4 (also Epstein Barr virus, EBV) 

associated with multiple sclerosis
33

, there also are pathological 

studies that show consistency of dysregulation of cluster-

specific signature genes as shared underlying mechanism for 

viral infections and human diseases (Note S1). These further 

confirmed the critical role of signature genes in mediating 

multiple disorders and their credibility in identifying complex 

infection-disease associations as well as interpreting the 

underlying pathogenesis. 

Discussion 

The specificity and representativeness of identified cluster 

signatures concords with cluster identification results with 

respect to discrimination excellence. Meanwhile, our results 

show that identification of specific functional gene clusters is 

crucial in understanding the differential expression patterns of 

cluster signatures, whereas further annotation clustering 

analysis is capable of characterizing the general and common 

features of cluster component HTRs. More importantly, our 

results demonstrate the biological importance of signature 

genes in way of uncovering associations between human 

diseases and cluster viral infections. The confirmation rate 

(~65%) for cluster disease-infection associations on basis of 

individual component pathogen is obtained unitarily by 

literature investigation largely composed of epidemiological 

studies, and is partly affected by the limiting contribution of 

poorly-studied component pathogen(s). 

Our findings are directly applicable to comparison of virus-

virus HTR similarity and HTR cluster identification at larger 

scale, the reliability of which is ensured by our mixture use of 

methodologies. GSEA is a nonparametric, cross-platform, rank-

based pattern-matching strategy capable of revealing hidden 

relations between perturbations of different characteristics on 

the same subject by comparing individual expression 

profile
16,18,34,35

. A hierarchical majority-voting scheme has been 

invented and implemented to integrate expression profiles 

from multiple heterogeneous experiments under the same 

perturbation factor(s)
16,36,37

. Thus, with consideration of 

asymmetric distribution of microarray data, we applied this 

scheme to generate PRL for individual virus, whereas equally-

weighted majority-voting scheme was applied to generate 

cluster PRL. This avoids poor representation of datasets with 

small replication number for the heterogeneous experimental 

settings of collected datasets. And the contribution of each 

component virus’s expression profile to cluster signature is 

equally weighed. Meanwhile, identification virus clusters and 

their signatures advance the classification and characterization 

of viruses from the perspective of HTRs. This also offers a 

general approach to understand the molecular mechanisms 

underlying infections of the less-known from the well-known 

pathogens within clusters.  

Moreover, our results are of significant interest to both 

biomedical researches exploring infection-related diseases and 

pharmaceutical industries developing broad-spectrum 

antimicrobials based on the host-targeting strategy. To this 

end, we provide a diagram of cluster infection-disease 

associations that accept support mostly from epidemiological 

studies disposing directionality potentials. With the increasing 

evidence from pathophysiological studies, the essential roles 

of specific signature genes and their therapeutic potential are 

being confirmed. Altogether, our analysis introduces new 

aspects in understanding the pathogenesis of infection-

associated diseases, and emphasizes a shared genetic 

background in etiology interpretation.  

The construction of our HTR network and identification of 

sub-network clusters largely relies on the availability of stand-

format expression profiles of different cell types uninfected or 

upon infection of diverse pathogens in an endpoint-

comparison mode, which limits their coverage. However, with 

the rapid growth of Library of Integrated Network-Based 

Cellular Signatures (LINCS) Program 

(http://www.lincsproject.org/), the power of expression data 

in building a network-based comprehensive view of disease 

states, drug actions and even infections is being well 

acknowledged. Thus, expression profile data of broader virus 

taxonomical diversity will become available and readily 

compatible to further improve the coverage of HTRN and sub-

network clusters. Also, this information is important for 

further annotating the HTR similarities according to virus 

taxonomy. Moreover, incorporating more data of cell-type 

diversity will especially increase the characterization integrity 
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of pathogen HTR individually or as a cluster component, and 

thereby uncover the common molecular mechanisms that 

different cell types coordinately initiate to maximize the 

likelihood of host detection of and confrontation to infection
3
.  

 Another limiting factor lies in the infection-disease 

associations established on basis of a high enrichment of 

GWAS disease candidate genes in cluster signatures. Although 

combined with literature support the proposed associations 

could to some extent be validated epidemiologically, a proven 

causal relationship with confirmed pathogenesis role of 

specific dysregulated gene(s) still needs experimental 

validation. Nonetheless, these results highlight the 

determinant influence of host transcriptional changes on the 

pathogenesis and progress of both infectious diseases and 

multiple non-infectious human diseases, which also assist the 

identification of disease biomarkers
38–41

 or prognostic 

indicators
42

. 

Although we have shown that the pathogen pairs in HTR 

network and pathogen clusters in sub-network of HTR network 

have significant HTR similarity in general, further comparison 

and analysis can be carried out by utilizing more in vivo 

expression profile data of tissue specificity, which better 

present the complex, multifactorial pathogen-host 

interactions
43,44

 and explain the dynamic consequence to 

infectious microorganisms of different pathogenic nature
45

. 

Moreover, the differential expression patterns identified by 

comprehensive systematic analysis of cluster-specific signature 

hint at further experimental studies, the combination of which 

makes a powerful tool accelerating the understanding of 

exquisite host cellular molecular mechanisms against 

pathogenic infections
10,46,47

. Most importantly, in addition to a 

shared genetic background, many other factors might also 

contribute to the prognosis of complications in patients with 

infectious disease(s) or susceptibility to specific pathogen 

infection in patients with non-infectious disease(s). Thus, 

integrating relating factors in the follow-up studies of the 

infection-disease associations generated by our analysis will 

likely expand the knowledge of disease associations (especially 

for those with infectious etiologies) and finally show diagnostic 

and therapeutic values in the near future. 

Methods 

GEO microarray data filtering 

To make screening of the NCBI Gene Expression Omnibus 

(GEO) datasets more feasible, we used the GEOmetadb: GEO 

Microarray Search Tool
48

. The SQLite database of GEO was 

downloaded from GEOmetadb website on April 27 2013, and 

the database was renewed to April 25 2013. It contains 37, 781 

projects including 958 projects containing expression profiles 

generated on HG-U133A cartridge arrays (Platform GPL96) and 

2, 979 projects containing expression profiles generated on 

HG-U133 Plus 2.0 (Platform GPL570). In order to make full use 

of the data, projects using HG-U133A cartridge arrays (GPL96) 

or HG-U133 Plus 2.0 (GPL570) were used in our research, 

because these two platforms were widely used and the probes 

of Platform GPL96 are almost covered by Platform GPL570. We 

manually checked the descriptions of these datasets to find 

out projects containing expression profiles of host cellular 

responses to pathogenic infections. The projects selected 

should comply with the following principles: (I) The project 

should contain at least one sample of untreated specific 

pathogen infection; (II) The project should contain at least one 

sample of control (It could be uninfected, mock-infected, 

health or other blank controls defined by submitters); (III) The 

project would be discarded if more than ten percent of probes 

miss data values in its series matrix file. Finally 82 datasets 

representing host transcriptional responses (HTRs) to 50 

pathogens were picked out for the following approach. 

Pairing samples 

We paired infect samples and control samples in accordance 

with the following principles:  

(I) Samples of pathogen infections were paired with samples 

uninfected with other same experiment conditions such as cell 

types and culture time.  

(II) Infection samples measured at the very beginning of 

infection (usually marked as time course 0) were not taken as 

infection samples.  

(III) Samples measured before infection or measured at 

infection time course 0 would be taken as controls to infection 

if there were no control samples measured after time course 

0.  

(IV) If the number of control samples exceeded corresponded 

infect samples, the excess control samples will be deserted. 

(V) If the number of infect samples exceeded corresponded 

control samples, the control samples will be recycled to pair 

excess infect samples which means some control samples will 

be paired to more than one infect samples. 

Generating probe rank lists (PRLs) for each pair of samples 

Each pair of samples contains one sample of infected and one 

of control. Probes with the deficiency of values in some 

datasets were excluded in our study. We generated the 

intersection of probes of each dataset to get the final probes 

shared by all datasets. And the 22,160 probes that have values 

in all datasets remained, covering more than 99% of HG-

U133A cartridge arrays. The values of sample data values in 

series matrix file were transferred to count if they had been 

log transferred. These probes were ranked according to the 

expression change got by comparing the corresponded infect 

sample and control sample. The most common ranking 

method for pairwise gene expression profiles is to simply rank 

the genes according the fold change as compared to vehicles. 

While using fold change may introduce some false differential 

genes with low expression levels. First, values of each pair of 

samples less than a threshold value were set to that value. The 

lower quartile of each pair of samples was selected as the 

corresponding threshold value. In this way, the probe sets 

whose infection/vehicle ratio equaled one are placed in the 

middle of the rank list. Then we sub-sort them using a smaller 

threshold (the former threshold divided by ten). We repeat 

this process to retain probes with fold change of one until all 

probes are properly sorted.  The sorted lists of probes named 
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Probe Rank Lists (PRLs) represented the regulation level 

considering both the expression change fold and expression 

values, and the probes representing most up (or down) 

regulated genes would get top (or bottom) ranks in PRL.  

Merging probe rank lists of same virus type 

The PRL of the same pathogen (representing HTRs to infection 

on different cell types, infection time and individuals) were 

combined to a single PRL to represent the HTRs to the 

pathogen with the R package GeneExpressionSignature
49

 

according a hierarchical majority-voting scheme previously 

described
20,50

. First, Spearman’s Foot rule
36

 were used to 

measure the distances between each two PRLs, and then we 

built a minimum spanning tree with the Kruskal Algorithm 

strategy
51

 based on the distances calculated. And finally we 

merged the PRLs representing infections of same pathogens 

according to the minimum spanning tree using the Borda 

Merging Method
37

. After merging, HTRs to each kind of 

pathogen were represented by corresponded merged PRLs. 

Pathogens within the same species were considered as same 

pathogens. To be noted, several kinds of oncogenic Human 

papillomavirus including HPV-16, HPV-18, HPV-31, HPV-33, 

HPV-35, HPV-58, HPV-66 were represented by HPV, because 

their expression profiles from centralized projects were similar 

to each other. 

Calculating distances to measure HTR similarities between virus 

pairs 

First, we extracted signatures for each virus. A signature is a 

group of genes that may serve as a synthetic descriptor of a 

particular biological action which may be key genes to some 

diseases, cellular response to a kind of drug or other 

bioprocesses. And in our study, the signatures are subsets of 

the most significantly regulated genes in the general cellular 

responses to virus infections, that is to say genes in signatures 

were those seemed to be consistently up- (or down-) 

regulated in host responses to the infection of corresponded 

viruses. We selected the top- and bottom-ranked 250 genes of 

each PRL as signatures of each virus. The size of signatures was 

determined according to the parameter as previously 

reported
16,49

. To evaluate how similar the HTRs of two 

different viruses are, we used Gene Set Enrichment Analysis 

(GSEA)
23

 to quantify whether genes in the signature of virus A 

were also tend to be placed at the top (or bottom) in the PRL 

of virus B. Use {upA, downA} to represent the signature of virus 

A, and the enrichment score of upA(or downA) in the PRL of 

virus B presented by  (or ) would be high if the 

corresponded genes tended to be placed at the top in the PRL 

of B. And the similarity between HTRs to virus A and B were 

finally expressed by distances between them drawing from the 

enrichment scores of their signatures in the opponent’s PRL. 

We defined the distance between HTRs to virus A and B in 

accordance with the Average Enrichment-Score Distance as 

previously defined
16

. 

Significance Test of virus-virus HTR Similarities 

To validate the significance of the distances between viruses, 

we used the same algorithm to calculate distances between 

random arranged PRLs of the same size as those used in our 

study (i.e. 22,160) to obtain a control. And we repeated this 

experiment for one million times. Then, we computed a P 

value for each virus-virus distance by comparing the actual 

distance value to the distribution of distances obtained on 

random data. The P value determines the probability that each 

distance between two viruses reach values lower than or equal 

to its actual value is due to chance. Finally, the original P 

values were then converted into FDR
52

. 

Identification of Virus Clusters based on HTR Similarity Clustering 

and Homology Analysis of Component Viruses 

The affinity propagation algorithm
24

 was used in the 

identification of virus clusters with significantly similar internal 

HTRs, i.e., clusters. And the distances between each virus were 

taken to generate clusters of viruses by this algorithm. And for 

each cluster, a virus was elected as exemplar considered as 

best representative of the features of all cluster members. 

Specifically, viral pathogens were partitioned to a quantity of 

clusters automatically calculated by the affinity propagation 

algorithm, and for a virus was designated as exemplar. Then, 

nodes corresponding to viruses were colored differently 

according to their clusters, and nodes with a < 1 distance (i.e., 

a positive correlation between them) were connected with 

edges. And we clustered the exemplars again to obtain 

second-level clusters, and add edges with a distance below 

one between the exemplars within same second-level clusters. 

This process was repeated over new level exemplars until 

convergence, and the edge width was negatively correlated to 

their correlated distances.  

Extracting Signature Genes for Non-viral and Viral Clusters and 

Statistical Analysis 

To explore the common characteristics of HTRs to viruses in a 

same cluster, we identified a set of host cellular genes 

consistently up- (or down-) regulated upon the infection of 

cluster viruses, named cluster signature (CS). To this end, we 

merged the PRLs of pathogens in the same cluster using the 

Borda Merging Method to get a cluster PRL in which probes 

consistently up- (or down-) regulated were top (or bottom) 

ranked. Probes with the highest or lowest 250 rank in cluster 

PRL were picked out to represent the most up- or down-

regulated probes for each cluster and genes corresponding to 

these probes were identified as signatures of each cluster 

(Table S3). Then we statistically analyzed the CS gene counts 

with respect to the shared number of clusters (Table S4). 

Gene Ontology (GO) Biological Processes (BP) and Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) Annotations of 

Cluster Signatures 

We submitted each cluster signature to the DAVID Functional 

Annotation online service (http://david.abcc.ncifcrf.gov/)
53,54

 

to identify the enriched bioprocesses and pathways in cluster 

signatures. In our study, the GOTERM_BP_FAT item and 

KEGG_PATHWAY item were used to annotate cluster 

signatures with default parameters. The analysis results 

downloaded from DAVID website can be found in Table S5 and 

S6. And the most enriched GO BP terms (MEGTs, p < 0.001) 

and KEGG pathway terms (MEKTs, p < 0.1) clustered from up- 

and down-regulated signature genes were shown in a heat 

Aup

BES Adown

BES
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map representation. And the p value threshold 0.1 for KEGG 

pathway terms was specifically chosen to ensure reliability of 

identified MEKTs, considering the fact that genes recorded in 

KEGG pathways are much less than those recorded in GO BPs 

Functional Annotation Clustering and Network Construction 

To build each cluster signature a functional annotation 

clustering network, the enriched annotation terms including 

GO terms (p < 0.001) and KEGG pathways (p < 0.1) of each 

cluster were clustered due to numbers of their shared genes 

by affinity propagation algorithm
24

 (Table S7). And for each 

cluster, an annotation term was elected by this algorithm as 

the exemplar. Each cluster was made up of several annotation 

terms with similar descriptions and sharing genes, therefore, 

the exemplar annotation term was able to represent 

corresponding cluster. We manually classified the 36 

exemplars into five first-level and 14 second-level categories, 

which were correspondingly numbered. And we colored each 

cluster based on their exemplar first-level classification and 

used the exemplar number to represent each cluster in 

annotation clustering map which showed the genes contained 

by each cluster. And gene count in each annotation cluster was 

divided by total enriched gene count of corresponding cluster 

to get the percentage of clustered gene count. 

Mapping of Disease/Trait genes to Cluster Signatures 

A Catalog of Published Genome-Wide Association Studies
55

 

(GWAS Catalog) available at: www.genome.gov/gwastudies, 

accessed in July 15, 2013 was used as a reference of 

disease/trait related genes. Genes reported adjacent to SNPs 

annotated to be associated with diseases/traits were mapped 

to cluster signatures. And we listed all the mapped records of 

each cluster signatures (Table S8).  

We used the plain guilt by association strategy to build 

infection-disease relations. To explore the possible 

associations between viral infections and human diseases, we 

built a viral infection-disease network, in which virus cluster 

was connected by an edge to a well-defined human disease if 

the mapped genes of 3 different disease-associated SNPs were 

shared in viral cluster signature. A uniform threshold value 3 

was set to ensure the reliability of identified viral infection-

disease associations, because using hypergeometric 

distribution test, the probability of > 3 gene overlap between 

500 signature genes and GWAS genes associated with 

individual disease is 0.0129, if 20 GWAS genes associated with 

single disease are covered by the 20,000 genome genes in DNA 

microarray. 

Validation of Virus-Disease Associations 

Generally, the keywords for searching literatures related 

specific viral infection-disease associations are in the form of 

“xxx virus AND xxx (i.e., GWAS disease name). We have 

virologist perform the expert interpretation of Abstracts and 

full articles when necessary to identify the association types 

and designate publications that support the identified 

association. 

Conclusions 

Through analysis of host expression profiles to various virus 

infections, we identified different virus infection modes and 

characterized them with signature genes. The functional 

annotation of signature genes revealed different virus-host 

interaction mechanisms. Moreover, association analysis of 

signature genes and GWAS genes predicted infection-disease 

relations at high confirmation rates for well-studied viruses, 

indicating their power in associating infections with diseases. 
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