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By implementing Label Propagation on drug/target similarity network with mutual 

interaction information derived from drug-target heterogeneous network, LPMIHN 

algorithm identifies potential drug-target interactions. 
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Abstract: Identification of potential drug-target interaction pairs is very important, 

which is not only for providing greater understanding of protein function, but also for 

enhancing drug research, especially for drug function repositioning. Recently, 

numerous machine learning-based algorithms (e.g. kernel-based, matrix 

factorization-based and network-based inference methods) have been developed for 

predicting drug-target interactions. All these methods implicitly utilize the assumption 

that similar drugs tend to target similar proteins, and yield better results for predicting 

interactions between drugs and target proteins. To further improve the accuracy of 

prediction, a new method of network-based label propagation with mutual interaction 

information derived from heterogeneous network, namely LPMIHN, is proposed to 

infer the potential drug-target interactions. LPMIHN separately performs label 

propagation on drug and target similarity networks, but the initial label information of 

target (or drug) network comes from drug (or target) label network and known 

drug-target interaction bipartite network. The independent label propagation on each 

similarity network explores the cluster structure in its network, and the label 

information from the other network is used to capture mutual interactions (bicluster 

structures) between the nodes in each pair of the similarity networks. Comparison with 

other recent state-of-the-art methods on the four popular benchmark datasets of binary 

drug-target interactions and two quantitative kinase bioactivity datasets, LPMIHN 

achieves the best results in terms of AUC and AUPR. In addition, many of the 

promising drug-target pairs predicted from LPMIHN are also confirmed on the latest 
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publicly available drug-target databases such as ChEMBL, KEGG, SuperTarget and 

Drugbank. These results demonstrate the effectiveness of our LPMIHN method, 

indicating that LPMIHN has the great potential for predicting drug-target interactions. 

 

1 Introduction 

Identification of drug-target interactions (DTIs) and compound-protein interactions 

(CPIs) is very important in drug research, which is helpful for discovering new drugs 

or identifying novel targets for existing drugs, and also may help understanding the 

causes of side effects of existing drugs. However, known drug-target interactions are 

very limited[1-3], e.g., one of the largest chemical compound database PubChem[4] 

contains around 35 million compounds, but only less than 7,000 compounds have 

target protein information, and existing databases such as ChEMBL[5], KEGG 

DRUG[6], SuperTarget[7] and DrugBank[8] include a small number of drug-target 

interaction pairs validated with experimental methods.  

Generally, there are two ways used to find the drug-target interactions, one is 

biochemical experimental (or in vitro) methods, another is computational (or in silico) 

methods. However, experimental methods to determine drug-target interactions are 

usually time-consuming, tedious and expensive, and sometimes lack reproducibility 

[9-11]. Thus, it is highly desired to develop computational methods for efficiently and 

effectively analyzing and detecting new drug-target interaction pairs, which lead to 

appearing a variety of theoretical and computational methods in recent few years 

[12-39]. Computational methods can also guide experimentalists designing the best 

experimental scheme, narrowing the scope of candidate targets to accelerate drug 

discovery, and provide supporting evidence for their experimental results.  

Molecular docking simulation and machine learning are the two major 

computational methods for predicting drug-target interactions. Docking simulation is 

widely accepted in biology, but it is not only heavily time-consuming, and also needs 

to know three-dimensional (3D) structures of targets[40], while many of them are still 

unavailable[14, 23], especially for membrane proteins. In contrast with docking 
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simulation, machine learning is much more efficient, which allows larger-scale 

predictions and tests a larger number of promising candidates of targets and drugs.  

Machine learning-based methods developed for predicting drug-target 

interactions so far can be roughly classified into two types: feature vector-based 

machine learning and similarity-based machine learning[23, 24]. Feature vector-based 

machine learning methods use a vector of descriptors to represent each drug-target 

pair/non-interaction pair, and adopt one classifier (e.g. SVM, KNN) to predict the 

drug-target interactions [21, 22, 25-27, 30]. However, the performance of these 

methods severely depends on the generation of negative samples (i.e. non-interacting 

drug-target pairs) [21, 23]. Randomly generated negative samples may include real 

positive samples not yet unknown[21].  

Similarity-based machine learning methods can be grouped into three categories 

such as kernel-based approaches [28, 29, 34, 41], matrix factorization-based 

approaches[31, 34]  and network-based inference[32, 42-44]. Kernel-based 

approaches, such as net Laplacian regularized least squares (NetLapRLS) [29], 

regularized least squares with Kronecker product kernel (RLS-Kron)[28], pair kernel 

method (PKM)[41], kernel-based data fusion[36] and kernelized Bayesian matrix 

factorization with twin kernels (KBMF2K)[34], use the drug similarity information 

and target similarity information to construct kernels for predicting the drug-target 

interactions. Matrix factorization-based approaches, such as KBMF2K[34], multiple 

similarity collaborative matrix factorization (MSCMF)[31], project the drugs and 

targets into a common low-rank feature space by matrix factorization method for 

predicting the drug-target interactions.  

Network-based inference methods, such as bipartite local model (BLM)[37], 

BLM with neighbor-based interaction profile inferring (BLM-NII)[32], domain 

tuned-hybrid (DT-Hybrid)[45], network-based inference(NBI)[35], weight 

network-based inference (WNBI)[46], network consistency-based prediction method 

(NetCBP)[43] and network-based random walk with restart on the heterogeneous 

network (NRWRH) [42], use graph and network theory to infer the drug-target 

interactions by constructing drug-target bipartite graph, drug similarity network and 
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target similarity network. BLM[37] transformed the edge-prediction problems into 

well-known binary classification problems, and combined the results from drug-based 

prediction and target-based prediction to obtain the final results. However, BLM is not 

able to provide a reasonable prediction results for drug/target candidates that are 

currently new, because a new drug (or target) has no edges to targets (or drugs). 

BLM-NII[32] is an improved version of BLM by integrating the procedure of 

neighbor-based interaction-profile inferring into the BLM method, which can find the 

targets for new drug candidates and identify the targeting drugs for new target 

candidates. However, too much emphasis on neighbor of BLM-NII tends to eliminate 

the local characteristics of each drug and target, maybe causing deterioration of 

prediction performance[32]. DT-Hybrid[33] is another improved version of BLM by 

adding domain-dependent biological knowledge through a similarity matrix. NBI[35] 

uses drug-target bipartite network topology similarity to infer new targets for known 

drugs. However, NBI cannot predict targets of a new drug (or drugs of a new target), 

because a new drug/target has no edges to targets/drugs, by which we cannot compute 

the connection scores. WNBI[46] is an improved version of NBI by considering the 

potency of binding affinity (or inhibitory activity) of the physical interactions between 

the chemical node and protein node to weight the edges among chemicals and proteins, 

or by using a new expression of initial resource distribution and taking into account the 

influence of resources associated with the receiver nodes to weight the nodes. WNBI is 

still cannot predict targets of a new drug (or drugs of a new target), but this bottleneck 

can be resolved by integrating the WNBI (or NBI) and DBSI (drug-based similarity 

inference) methods[35]. NetCBP[43] is a semi-supervised method, which uses the 

consistency in networks to measure whether the query drug and a target protein show 

coherent interaction with the known drug-target interactions. Although NetCBP 

shows the encouraging improvement, it depends heavily on the drug/ target similarity 

values. NRWRH[42] integrates three different networks (protein similarity network, 

drug similarity network and known drug-target interaction network) into a 

heterogeneous network to predict the drug-target associations by implementing the 

random walk on this heterogeneous network. This methodology shows excellent 
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performance in predicting new interactions. However, the drug-target interaction 

network is sparse because of the rare known drug-target interactions. Randomly 

walking on this sparse network, NRWRH maybe generates local solution.  

Taken together, the limitations of current methods for predicting drug-target 

interactions are mainly in the following four aspects: i) Some methods randomly 

select the unknown drug-target interactions as negative samples, while most of these 

unknown drug-target interactions have not verified by biological experiments. ii) The 

performance of combing several distinct classifiers to obtain the final results is not 

strong enough. iii) Some methods cannot predict the potential target proteins for new 

drugs without any known target interaction information. iv) Some methods just utilize 

the drug’s structural similarity and target protein sequence similarity.  

To further improve the prediction accuracy of drug-target interactions and avoid 

the local solution of NRWRH, in this present article, we propose a new method 

(called LPMIHN) to infer the potential drug-target interactions by performing label 

propagation with mutual interaction information derived from heterogeneous network. 

LPMIHN consists of the following four steps. Firstly, constructing two similarity 

matrices of drug and target by fusing the drug’s chemical similarity with drug 

topological similarity of drug-target interaction network, fusing the target protein 

sequence similarity with target topological similarity of drug-target interaction 

network, respectively; Secondly, establishing three networks (drug similarity network, 

target similarity network and known drug-target interaction bipartite network) to form 

a heterogeneous network; Thirdly, implementing label propagation on drug (or target) 

similarity sub-network to obtain the drug (or target) label network; Fourthly, 

implementing label propagation on the target (or drug) similarity sub-network, whose 

initial label information derived from the drug (or target) label network and the 

drug-target bipartite network; Finally, the most probable targets (or drugs) are 

selected according to the stable label scores of the walk.  

LPMIHN is mainly different from NRWRH in three aspects. One is that drug/ 

target similarity network integrates the topological information of known drug-target 

interaction network. Another is that the label propagation (or random walk) is 
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implemented on the drug and target similarity networks, respectively. Thirdly, the 

initial label information of target/drug network comes from drug/target label network 

and known drug-target bipartite network.  

Through extensive simulations on four benchmark datasets and two quantitative 

kinase bioactivity datasets, LPMIHN shows better performance than the existing 

state-of-the-art methods, such as BLM-NII, NetCBP and NRWRH. Furthermore, 

some new predicted drug-target interactions ranked in top were reported by publicly 

accessible datasets. It is anticipated that our LPMIHN algorithm can help us to find 

new or potential drug-target interactions, and provide useful information for drug 

design.  

2 Materials 

To facilitate benchmarking comparison with other state-of-art methods, we used the 

four drug-target interaction datasets from humans, namely enzymes (Es), ion channels 

(ICs), G-protein coupled receptors (GPCRs) and nuclear receptors (NRs), which were 

originally provided by Yamanishi et al.[40], and widely used as the benchmark binary 

interaction datasets of compounds targeting pharmaceutically useful target proteins 

[29, 31, 34, 35, 42-44, 47, 48]. These datasets are available at 

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. Es dataset includes 445 drugs, 

664 targets and 2926 known drug-target interactions. ICs dataset includes 210 drugs, 

204 targets and 1476 known drug-target interactions. GPCRs dataset includes 223 

drugs, 95 targets and 635 known drug-target interactions. NRs dataset includes 54 

drugs, 26 targets and 90 known drug-target interactions. 

Due to binary interaction datasets ignore many important characteristics of the 

drug-target interaction, such as dose-dependence and quantitative affinity, we use the 

same cutoff thresholds of Kd≤30.00 nM and Ki<28.18 nM as Ref.[18] to binarize   

two large-scale quantitative kinase bioactivity datasets, i.e., kinase disassociation 

constant (Kd) dataset and kinase inhibition constant (Ki) dataset[49, 50], forming two 

binary interaction datasets which include 68 drugs, 442 targets and 1527 drug-target 

interactions for Kd dataset, and  1421 drugs, 156 targets and 3200 drug-target 
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interactions for Ki dataset. These two datasets are applied to evaluate the performance 

of our LPMIHN algorithm. The smaller is the Kd/Ki bioactivity, the higher is the 

interaction affinity between the chemical compound and the protein kinase.  

Table 1 lists some statistics of each dataset including the total number of drugs 

(Nd), the total number of targets (Nt), the total number of interaction edges (Edt), the 

total number of drugs that have only one targeting protein (kd(1)), the total number of 

targets that have only one associated drug (kt(1)), the average number of targets for 

each drug (avg. Nd), the average number of drugs for each target (avg. Nt), and the 

sparsity defined as that the total number of connected edges in real network is divided 

by the total number of linked edges in the complete graph. 

Table 1  Statistical characteristics of six drug-target interaction datasets 

Dataset Nd Nt Edt kd(1) kt(1) avg. Nd  avg. Nt  Sparsity 

Es 445 664 2926 177 288 6.58 4.41 0.0099 

ICs 210 204 1476 81 23 7.03 7.24 0.0344 

GPCRs 223 95 635 106 34 2.85 6.68 0.0299 

NRs 54 26 90 39 8 1.67 3.46 0.0641 

Kd 68 442 1527 4 97 22.46 3.45 0.0508 

Ki 1421 156 3200 204 11 2.25 20.51 0.0144 

3 Methods  

Our LPMIHN method can be divided into two parts: constructing the heterogeneous 

network and separately implementing label propagation on the drug/target similarity 

networks.  

3.1 Heterogeneous network 

The heterogeneous network of drug-target interactions is composed of three typical 

networks of drug similarity network，target similarity network and known drug-target 

interaction bipartite graph network (see Fig. 1) 
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Figure 1 Drug-target interaction heterogeneous network model. Upper sub-network is the drug 

similarity network, underlying sub-network is the target protein similarity network and the 

intermediate layer is a drug-target interaction bipartite graph network. 

The matrix Sd corresponding to the drug similarity network is composed of the 

chemical structure similarity matrix c

d
S  and drug-target interaction profile-based drug 

similarity matrix IP

d
S . The matrix Sg corresponding to the target protein similarity 

network is composed of the protein sequence similarity matrix 
s

gS  and drug-target 

interaction profile-based target similarity matrix
IP

g
S . The drug-target interaction 

adjacent matrix A corresponding to the drug-target interaction network is derived 

from the KEGG BRITE[2], BRENDA[51], SuperTarget [52] and DrugBank [53] 

databases. Here, c

dS  represents the chemical space, which was constructed by inferring 

the chemical structure similarity between drugs with SIMCOMP tool [54] based on 

the information obtained from the KEGG DRUG and KEGG LIGAND databases[2], 

and 
s

gS  represents the genomic space, which was created by calculating the 

normalized Smith-Waterman score [55] between any two amino acid sequences of 

target proteins. According to the study of literature [48] and [32], we can use the 

following formulas to calculate matrices IP

d
S  and 

IP

g
S . 

2

( , ) exp( )IP

d i j d i jS d d x xγ= − −
                           (1) 

2

( , ) exp( )IP

g i j g i jS g g y yγ= − −
                           (2)  

where, xi is the interaction profile of drug di, yi is the interaction profile of target gi. 

The parameters 
dγ

and 
gγ

 control the kernel bandwidth, which are set same as 

literature [48] and [32] in this paper. That is,  
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21

1

1 ( | | )
n

d in
i

xγ
=

= ∑
                                (3) 

21

1

1 ( | | )
m

g im
i

yγ
=

= ∑
                               (4) 

here, n and m are the total number of drugs and targets, respectively.  

   By integrating the interaction profile (i.e., drug-target interaction) information 

with the drug chemical and target genomic information, Sd and Sg are respectively 

defined as: 

           (1 )c IP

d d dS S Sλ λ= + −                                  (5) 

(1 )
s IP

g g gS S Sλ λ= + −                                   (6) 

where parameterλ is the combination weight. Although Kronecker product is often 

used to combine two kinds of kernel matrices or similarity matrices, which is more 

sophisticated, the linear combination of two typical matrices can give the comparable 

performance with much lower computational complexity [48]. 

3.2 LPMIHN algorithm 

Graph-based label propagation algorithms (LP) are the semi-supervised methods, 

which use the global network structure to improve the performance of classification 

and ranking [56-58]. Label propagation (LP) algorithm is closely related to the 

random walk (RW) algorithm. There are two major differences between LP and RW: i) 

LP fixes the labeled points: ii) the solution of LP is an equilibrium state while RW is 

dynamic w.r.t a time parameter t [56]. LP algorithm is mathematically identical to 

random walk with restart (RWR) algorithm if the similarity matrix W in RWR is 

normalized as 1 *S D W−= , where D is the diagonal degree matrix with ii ijj
D W=∑ .  

In LP algorithms, some vertices (labeled data) are initialized with labels (e.g., 1) and 

other vertices (unlabeled data) are initialized with 0. The known label information on 

the vertices is iteratively propagated between the neighboring vertices and the 

propagation process will finally converge toward the unique global optimum by 

minimizing the quadratic criteria[59] . Until now, most graph-based label propagation 
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algorithms propagate label information on the single network or 

homo-network[58-60], which are not suitable for propagating label information across 

several sub-networks with different types of vertices and edges, because label 

propagation associated with the graph Laplacian of a signal network through a 

regularization framework ignores the difference among the sub-networks in a 

heterogeneous network. Thus, a heterogeneous label propagation (MINProp) 

algorithm was proposed by Hwang et al.[61] for discovering the disease gene on the 

disease-phenotype heterogeneous similarity network, which is superior to the original 

label propagation algorithm on a single network. In this paper, based on the 

assumption that similar drugs tend to target similar proteins and the framework of 

label propagation[56, 57], we will introduce a new label propagation algorithm, called 

LPMIHN, to infer the potential drug-target interactions. LPMIHN algorithm can be 

described in detail as follows:  

Step1. For each drug-target dataset, we compute its drug/target similarity 

matrices Sd , St , and obtain its drug-target interaction adjacent matrix A to construct 

the heterogeneous network. Use the following equations to normalize the drug 

similarity matrix Sd, target similarity matrix St and drug-target interaction adjacent 

matrix A. 

1 1
2 2

d d dD W S W
− −

=                                    (7) 

1 1
2 2

g g gG W S W
− −

=                                    (8) 

[ ],
ij

ij ij

ij

j

A
A A A

A
= =

∑
% % %

                            (9) 

where d
W and gW  are the diagonal matrices whose diagonal elements are , ,d ii d ij

j

W S=∑ , 

, ,g ii g ij

j

W S=∑  respectively, ijA  is the element of i row and j column in matrix A.  

Step2. For a given query drug, we first implement label propagation on the drug 

similarity network by optimizing the following objective function to obtain state drug 

label network.  

2 0 21

,

min( ( ) ( ) )
iij i j i

f
i j i

D f f f fα
α
−− + −∑ ∑                         (10) 
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where fi is the current label confidence score of drug di; 
0

if is the initial label score of 

drug di; diffusion parameterα specifies the relative amount of the information from 

the initial label information to its neighbors. The solution of objective function Eq.10 

can be obtained by iteratively performing the following equation.  

1 0(1 ) , (0,1)t tf Df fα α α−= + − ∈
                            (11) 

where, tf is a n dimensional vector in which the ith element represents the label 

confidence score of drug di at time step t, and 0f is a n dimensional initial label vector 

which derives from the known drug-target interaction network. 

Step3. Implement label propagation on the target similarity network to predict 

which targets associate with the query drug by optimizing the following objective 

function.  

2 0 21

,

min( ( ) ( ) )ij i j i i
p

i j i

G p p p pα
α
−− + −∑ ∑                          (12) 

where pi is the current label confidence score of target gi; 
0

ip  is the initial label score 

of target gi ; diffusion parameterα specifies the relative amount of the information 

from the initial label information to its neighbors. The solution of objective function 

Eq.12 can be obtained by iteratively performing the following equation. 

1 0(1 ) , (0,1)t tp Gp pα α α−= + − ∈                              (13) 

where 
tp is a m dimensional vector in which the ith element represents the label 

confidence score of target gi at time step t; 
0p  is a m dimensional initial label vector 

which is defined as follows. 

0 01 2
1

p g Afα α
α α
−

−
= + %                          (14) 

where 0g is a m dimensional initial label vector which derives from original 

target-drug interaction network, and f is the current label confidence score vector of 

drugs in the convergent drug label network. The first term is the initial label 

information of the targets, and the second term is the mutual interaction information 

which can capture the bi-cluster structures between the vertices in each pair of the 

sub-networks[61].   

Page 12 of 28Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 12 / 27 

 

Step4. The vector pt converges to its limit p* after 
1t tp p σ−− < , in general, 

910σ −= , and p*gives the ranking score of every target for a query drug. Targets with 

maximum in p* are considered as the most probable target of query drug.  

For a given query target, we first implement label propagation on the target 

similarity network same as step3. Then, implement label propagation on the drug 

similarity network same as step3-4, give the ranking confidence scores of every drug 

for a query target.  

4 Results and Discussion 

4.1 Performance Evaluations 

In order to illustrate the effectiveness of the strategies used in our LPMIHN algorithm, 

that is, the strategy of label propagation with mutual interaction information derived 

from heterogeneous network and the strategy of integrating the similarity information 

of drug and target with the topology information of drug-target interaction network, 

we introduce another two algorithms (MINProp and LPMIHN-S) to predict the 

potential drug-target interactions. MINProp algorithm proposed by Hwang[61] 

sequentially propagates the label information on Sd and Sg sub-network with the 

current label information derived from the known drug-target network and repeat this 

step until convergence. LPMIHN-S performs the label propagation on c

d
S  and 

s

g
S  

sub-networks. The difference between LPMIHN and MINProp is the label 

propagating pathways. LPMIHN algorithm firstly propagates the label on the Sd 

sub-network, and then performs the label propagation on the Sg sub-network, but 

MINProp sequentially propagates the label on the Sd and Sg sub-networks. The only 

difference between LPMIHN and LPMIHN-S is that LPMIHN-S doesn’t integrate the 

topology information of the known drug-target interactions.  

In statistical prediction, the following three cross-validation methods are often 

used to examine a predictor for its effectiveness in practical application: independent 

dataset test, K-fold (e.g. 5-fold, 10-fold) crossover or subsampling test, and jackknife 

test (also called as leave-one-out test)[62-64]. In the three test methods, the jackknife 
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test is deemed the least arbitrary that can always yield a unique result for a given 

benchmark dataset [65]. Accordingly, the jackknife test has been increasingly and 

widely used by investigators to examine the quality of various predictors [38, 63, 64, 

66]. During the jackknife test, each known drug-target interaction in the dataset is 

singled out in turn as a test sample, and the remaining known drug-target interactions 

are used as training samples. However, jackknife test is more sensitive to over fitting 

than K-fold validation test, and independent dataset test is often used to evaluate the 

generalization ability of the predictors [65].  Therefore, we used the three 

cross-validation methods of jackknife, k-fold validation and independent tests to 

evaluate the performance of LPMIHN and other methods in the following 

experiments. The metrics of AUC and AUPR were used to measure the quality of the 

predicted drug-target interactions. AUC is the area under the receiver operating 

characteristic (ROC) curve which plots the true-positive rate (sensitivity) versus 

false-positive rate (1-specificity) at different cutoffs. AUPR is the area under the 

precision-recall curve which plots the ratio of true positives among all positive 

predictions for each given recall rate. For the prediction of drug-target interaction, 

AUPR is a more significant quality measure than AUC, as it punishes much more the 

existence of false positive drug-target interactions found among the best ranked 

prediction scores[28, 67] .  

Table 2 gives the AUC and AUPR scores of the LPMIHN, MINProp and 

LPMIHN-S methods for the four binary drug-target interaction datasets of Enzymes 

(Es), Ion Channels (ICs), G-protein coupled receptors (GPCRs) and nuclear receptors 

(NRs), and two quantitative drug-target bioactivity datasets of the kinase 

disassociation constant (Kd) and the kinase inhibition constant (Ki). From table 2, we 

can see that the AUC scores of our LPMIHN method is little higher than that of 

MINProp and LPMIHN-S methods, but the AUPR scores is more high than that of 

MINProp and LPMIHN-S methods. The AUPR scores of our LPMIHN method are 

0.9290, 0.9611, 0.9733, 0.9703, 0.7096 and 0.9944 on the enzyme, Ion Channel, 

G-protein coupled receptor, nuclear receptor, kinase disassociation constant and 

kinase inhibition constant datasets, respectively, which is 0.0799, 0.1197, 0.0463, 
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0.0319, 0.0729 and 0.1703 higher than that of MINProp method on the enzyme, Ion 

Channel, G-protein coupled receptor, nuclear receptor, kinase disassociation constant 

and kinase inhibition constant datasets, respectively, meaning that our label 

propagation strategy is superior to the strategy used in MINProp. The AUPR scores of 

our LPMIHN is also 0.1, 0.0696, 0.0232, 0.0476, 0.0411 and 0.0046 higher than that 

of LPMIHN-S method on the enzyme, Ion Channel, G-protein coupled receptor, 

nuclear receptor, kinase disassociation constant and kinase inhibition constant datasets, 

respectively, meaning that incorporating the network-based similarity can indeed 

improve the performance of LPMIHN. Especially, the efficacy of our label 

propagation strategy is better than that of the strategy of incorporating the 

network-based similarity.  

Table 2  Performance of MINProp, LPMIHN-S and LPMIHN in jackknife (leave-one-out) test 

Dataset Methods AUC AUPR 

Es 

MINProp 0.9899 0.8491 

LPMIHN-S 0.9592 0.8290 

LPMIHN 0.9989 0.9290 

ICs 

MINProp 0.9837 0.8414 

LPMIHN-S 0.9917 0.8915 

LPMIHN 0.9985 0.9611 

GPCRs 

MINProp 0.9869 0.9370 

LPMIHN-S 0.9894 0.9501 

LPMIHN 0.9986 0.9733 

NRs 

MINProp 0.9729 0.9384 

LPMIHN-S 0.9804 0.9227 

LPMIHN 0.9960 0.9703 

Kd 

MINProp 0.9773 0.6367 

LPMIHN-S 0.9603 0.6685 

LPMIHN 0.9819 0.7096 

Ki 

MINProp 0.7375 0.8241 

LPMIHN-S 0.9985 0.9898 

LPMIHN 0.9995 0.9944 

In order to investigate the potential false risk of only using the protein sequence 

similarity information, we just use one kind of similarity information (e.g., protein 

sequence similarity, GO similarity, protein-protein interaction network topological 

similarity, drug-target interaction profile similarity) to construct the target similarity 
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matrix Sg, then perform Label propagation on these target similarity networks and 

drug similarity network. For convenience, we name these methods as LPMIHN-SS, 

LPMIHN-GO, LPMIHN-PPI, LPMIHN-IP, respectively. The GO-based similarity 

matrix can be produced by computing the overlap rate of gene ontology annotations 

between any two proteins [23]. The PPI-based similarity matrix can be generated by 

computing the shortest distance between two target proteins in a human 

protein-protein interaction (PPI) network[68], and transforming these shortest 

distances into the similarity measures with Eq.1 in literature [69].  The 

sequence-based similarity and the drug-target interaction profile-based protein 

similarity matrices are the 
s

gS  and 
IP

gS , respectively. The results of LPMIHN-SS, 

LPMIHN-GO, LPMIHN-PPI and LPMIHN-IP on the four benchmark datasets with 

jackknife test and 10CV test are shown the table 3 and table S1 (see supplementary). 

From table 3 and S1, we can see that the false positive rate (FPR) of four kinds of 

information sources is almost at the same level, the results of drug-target interaction 

profile information are the best in the four kinds of information sources, which 

indicate that the known drug-target interaction profile information can be used to 

improve the prediction performance, and the FPR of our LPMIHN method is not 

sensitive to the protein sequence similarity information.  

Table 3 Results of LPMIHN-SS, LPMIHN-GO, LPMIHN-PPI and LPMIHN-IP on the four 

benchmark datasets with Jackknife test 

Dataset 

AUC AUPR FPR (%) 

SS GO PPI IP SS GO PPI IP SS GO PPI IP 

Es 0.9593 0.9293 0.9543 0.99 0.884 0.6011 0.57 0.911 0.2 0.44 0.5 0.14 

ICs 0.9918 0.9799 0.9915 0.9928 0.8912 0.8657 0.9195 0.9514 0.55 0.71 0.54 0.28 

GPCRs 0.9894 0.9792 0.9844 0.9976 0.9508 0.9259 0.9469 0.9623 0.25 0.32 0.3 0.18 

NRs 0.9937 0.9613 0.9684 0.9956 0.9579 0.8961 0.9155 0.9669 0.53 0.91 0.76 0.53 

Notes: SS, GO, PPI and IP represent the LPMIHN-SS, LPMIHN-GO, LPMIHN-PPI and LPMIHN-IP, 

respectively. 

4.2 Compared with other state-of-the-art methods 
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We compared the performance of LPMIHN with two recent state-of-the-art network 

methods of BLM-NII[32] and NRWRH[42] on the binary drug-target interaction 

datasets of Enzymes (Es), Ion Channels (ICs), G-protein coupled receptors (GPCRs), 

nuclear receptors (NRs), and two quantitative kinase bioactivity datasets of the kinase 

disassociation constant (Kd) and the kinase inhibition constant (Ki) in jackknife test. 

The results of BLM-NII, NRWRH and LPMIHN are shown in table 4, from which we 

can see that the performance of our LPMIHN is superior to other two methods both in 

terms of AUC and AUPR for all the six datasets. The AUC scores of LPMIHN is 

0.008~0.056 higher than that of BLM-NII, and the AUPR scores of LPMIHN is 

0.01~0.1735 much higher than that of BLM-NII on the Ion channels, G-protein 

coupled receptors , nuclear receptors datasets and two quantitative kinase bioactivity 

datasets of Kd, Ki. In addition, the AUPR is a more significant quality measure than 

AUC [28, 67]. The reason that AUPR scores both of LPMIHN and BLM-NII are 

equal on the Enzymes dataset may be that the network constructed with enzymes 

dataset is too sparse, whose sparsity is just 0.0099. These results show that our 

LPMIHN can effectively predict the drug-target interactions, especially for dense 

interaction network. 

Table 4 Comparison with existing network approaches on binary drug-target interaction datasets in 

jackknife test 

Dataset Method AUC AUPR 

Es  

BLM-NII 0.9880 0.9290 

NRWRH 0.9533 0.6338 

LPMIHN 0.9989 0.9290 

ICs 

BLM-NII 0.9900 0.9500 

NRWRH 0.9707 0.5908 

LPMIHN 0.9985 0.9611 

GPCRs 

BLM-NII 0.9840 0.8650 

NRWRH 0.9447 0.6739 

LPMIHN 0.9986 0.9733 

NRs 

BLM-NII 0.9810 0.8660 

NRWRH 0.8665 0.6630 

LPMIHN 0.9960 0.9703 

Ki 

BLM-NII 0.9820 0.8209 

NRWRH 0.8213 0.1602 

LPMIHN 0.9995 0.9944 

Kd 

BLM-NII 0.9252 0.6270 

NRWRH 0.8601 0.2484 

LPMIHN 0.9818 0.7096 
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To test the robustness of the presented approach, we also performed 10/5-fold 

cross-validation (10CV, 5CV) test and compared with the reported results of other 

methods: NBI[35], DNBSI[35], TBSI[35], BLM-NII[47], NetLapRLS[29], 

KBMF2K[34],  NetCBP[43] and NRWRH[42]. The AUC values of these methods 

on the four benchmark datasets in 10/5CV test can be found in tables S2-S5 of the 

Supplementary materials. From tables S2-S5, we can see that the AUC value of 

LPMIHN is still higher than that of other methods in 10CV (or 5CV) test, which 

indicates that the robustness of our LPMIHN is better.  

In order to test the generalization ability of our LPMIHN, we used one of the two 

external validation datasets in ref.[27] Table S6 collected from DrugBank and KEGG 

databases to evaluate the performance of our LPMIHN. The external dataset contains 

86 approved and investigated drugs and 44 GPCRs, and there are 256 known 

interaction relationships among these drugs and GPCRs. We removed these 

drug-target interactions from GPCRS benchmark dataset, and the remaining 

drug-target interactions are used as training samples to train NRWRH and LPMIHN 

models. The results of NRWRH and LPMIHN on this external dataset are shown in 

table 5, from which we can see that LPMIHN achieved higher performance in terms 

of AUC and AUPR, indicating that our LPMIHN method has a better generalization 

performance for predicting drug-target interactions. 

Table 5 Results of NRWRH and LPMIHN in independent dataset test 

Methods AUC AUPR 

NRWRH 0.818 0.3567 

LPMIHN 0.9749 0.8885 

 

To further evaluate the generalization of our LPMIHN algorithm, we randomly 

select 10% drugs from Kd and Ki databases respectively as the testing subsets, and all 

known interaction relationships with targets of these test drugs are deleted. The 

residual 90% drugs are as the training subsets to train the LPMIHN. The average AUC 

values of 5 independent tests arrive at 0.761 and 0.8094 for Kd and Ki respectively, 
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which indicates that our LPMIHN algorithm has a certain extent of over-fitting risk, 

but it has the better generalization.  

To further confirm the superior performance of LPMIHN, considering the fact 

that high-confidence prediction results are interested by the drug developers, we also 

compared the results of BLM-NII, NRWRH with LPMIHN on the sensitivity, positive 

predictive value (PPV) and Matthews correlation coefficient (MCC) when the upper 1% 

and 3% target in the prediction list is chosen as a threshold. Table 5 shows the 

comparative results of BLM-NII, NRWRH with LPMIHN for NR dataset. 

Table 6 Performance comparison of BLM-NII, NRWRH and LPMIHN on top 1% and 3% ranked 

in the prediction list 

 Method 
Top 1% Top 3% 

Sensitivity PPV MCC Sensitivity PPV MCC 

λ=0.5 

BLM-NII 0.156 1.0 0.383 0.456 0.976 0.654 

NRWRH 0.156 1.0 0.383 0.378 0.810 0.534 

LPMIHN 0.156 1.0 0.383 0.467 1.00 0.671 

 

4.3 Effect of the parameters 

There are two parameters λ and α  in our LPMIHN algorithm. λ is a combination 

weight parameter, which controls the contribution of two kinds of information of the 

drug chemical (or target sequence) similarity and the network-based drug/target 

similarity. By selecting differentλ values (varying from 0 to 1 with scale 0.05) to 

simulate, the AUC and AUPR values for Nuclear receptors dataset are shown in 

figure 2, in which we found that the AUC value is almost equal in the range

0.05 0.5λ≤ ≤ , and decreased slowly in the range 0.5 0.95λ< ≤ ; AUPR value kept 

almost constant value in the range 0.05 0.35λ< ≤ , and decreased slowly in the range

0.35 0.95λ< < . But for value 0λ = , and 1λ = , the AUC value and AUPR value are all 

very small. In this work, we selected 0.5λ = . 
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Figure 2 The relationship between the parameter λ and AUC, AUPR for LPMIHN algorithm on 

the NR dataset 

α is a diffusion parameter, which adjusts the relative amount of the information 

from the initial label information to its neighbors. By selecting differentα values 

(varying from 0.05 to 0.95 with scale 0.05) to simulate, the AUC and AUPR results 

for Nuclear receptors dataset are shown in figure 3, in which we found that the AUC 

value is almost equal in the range 0.4α ≤ , decreased quickly in the range 0.4 0.5α< ≤ , 

decreased gradually in the range 0.5 0.7α< ≤ , and decreased quickly in the range 

0.7α > . In this work, we fixed 0.2α = . The parameters effects of λ and α  for 

Enzymes, ICs, GPCRs, Kd and Ki datasets are shown in supplement figures S1-S4 of 

supplementary materials. 

     

Figure 3 The relationship between the parameterα and AUC, AUPR for LPMIHN algorithm on 

the NR dataset  
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The computational complexity of our LPMIHN algorithm is comprised of three parts: 

separately performing label propagation on drug target similarity networks, updating 

initial label. In the phrase of separately performing label propagation on drug and 

target similarity network, the time complexity is in the order of O(n
2
) and O(m

2
), 

where n and m are the total number of nodes in drug and target similarity networks, 

respectively. If separately iteratively performing k1 and k2 times label propagation on 

the drug and target similarity networks to obtain the final label confidence scores of 

all the vertices, then, the total time complexity of performing label propagation on 

drug and target similarity networks is in the order of O(k1*n
2
 +k2*m

2
). For the phase 

of updating initial label, it should perform label propagation on the drug-target 

interaction bipartite network, thus, thus the maximum time complexity is in the order 

of O(n*m). Therefore, the overall time complexity of LPNMIH algorithm is in the 

order of O(n*m+ k1*n
2
 +k2*m

2
). While the time complexity of NRWRH is in the 

order of O(k*(n+m)
 2

), where k is iterative times of random walk. Obviously, the time 

complexity of NRWRH is smaller than that of NRWRH.  

4.5 Analysis of the predicting potential drug-target interactions 

Except for predicting known interactions, detecting potential unknown drug-target 

interactions is more significant. In order to illustrate the performance of our LPMIHN 

algorithm in predicting unknown drug-target interactions, we used all the known 

drug-target interactions on the four benchmark datasets as the initial labels, and 

performed LPMINH algorithm to rank the unknown drug-target interactions. 

According to their ranking scores, we extracted the top 50 potential drug-target 

interactions for each of the four datasets, and manually checked these predicted 

interactions in the latest online versions of ChEMBL[5], KEGG DRUG[6], 

Drugbank[8] and SuperTarget[7] datasets. Here, we reported only the top five 

potential interactions for each dataset and other potential interactions are listed in 

supplementary Tables S6-S9, in which we found that some target proteins target more 

drugs. For example, within the top 50 predicted drug-target interactions, hsa590 is the 
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potential target of 14 drugs in Enzymes dataset; hsa3781 and hsa6531 is the potential 

target of 6 drugs in Icon Channel dataset; hsa152 is the potential target of 9 drugs in 

GPCR dataset; hsa2100 is the potential target of 11 drugs in Nuclear Receptor dataset.   

 Table 7 Top five predicted potential drug-target interactions on the four benchmark datasets 

Dataset Rank Pair Annotation Source 

Es 

1 
D00097 

hsa:5743 

Salicylic acid (JP16/USP) 

prostaglandin-endoperoxide synthase 2 
ChEMBL, 

Drugbank 

2 
D00449 

hsa:5742 

Sulfinpyrazone (JAN/USP/INN) 

Prostaglandin-endoperoxide synthase 1 
ChEMBL 

3 
D00947 

hsa:4129 

Linezolid (JAN/USAN/INN) 

monoamine oxidase B 
ChEMBL 

4 
D05458 

hsa:4128 

Phentermine (USAN/INN 

Amine oxidase [flavin-containing] A 
Drugbank 

5 
D00005 

hsa:4128 

Flavin adenine dinucleotide(JAN) 

Amine oxidase [flavin-containing] A 
Drugbank 

ICs 

1 
D05453 

hsa:3738 

Phencyclidine hydrochloride (USAN) 
potassium voltage-gated channel, shaker-related 
subfamily, member 3 

 

2 
D02207 

hsa:3782 

Tubocurarine chloride (USP) 
Potassium intermediate/small conductance 
calcium-activated channel subfamily N member 3 

 

3 
D02356 

hsa:6323 
Verapamil (USAN/INN) 
Voltage-gated sodium channel type I alpha  

4 
D00616 

hsa:9312 

Diltiazem hydrochloride(JP16/USP) 
Potassium voltage-gated channel Shab-related 
subfamily B, member 2 

 

5 
D03830 

hsa:9312 

Diltiazem malate (USAN) 
Potassium voltage-gated channel Shab-related 
subfamily B, member 2 

 

GPCRs 

1 
D02910 

hsa:154 

Amiodarone (USAN/INN) 

adrenoceptor beta 2, surface  

2 
D00454 

hsa:152 

Olanzapine (JAN/USAN/INN) 

adrenoceptor alpha 2C 
Drugbank 

3 
D02358 

hsa:154 
Metoprolol (USAN/INN) 
adrenoceptor beta 2, surface 

Drugbank 

ChEMBL 

4 
D04625 

hsa:154 

Isoetharine (USP) 

adrenoceptor beta 2, surface 
KEGG 

ChEMBL 

5 
D00283 

hsa:152 
Clozapine(JAN/USP/INN) 
adrenoceptor alpha 2C 

Drugbank 

NRs 

1 
D00585 

Has:2099 

Mifepristone (USAN/INN) 

estrogen receptor 1 
ChEMBL 

2 
D00182 

Has:2099 

Norethisterone (JP16) 

estrogen receptor 1 
ChEMBL 

3 
D00951 

Has:2099 

Medroxyprogesterone acetate (JAN/USP) 

estrogen receptor 1 
Drugbank 

4 
D00690 

Has:2099 

Mometasone furoate (JAN/USP) 

estrogen receptor 1  

5 
D01217 

Has:2099 

Dydrogesterone (JP16/USP/INN) 

estrogen receptor 1  

Table 7 lists the top 5 predicted potential interactions for each dataset, in which 

we can see that top five predicted drug-target interactions on Enzymes dataset, and 
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four of the five predicted interactions on GPCR and three of the five on Nuclear 

receptor datasets are reported in ChEMBL, KEGG DRUG, Drugbank and 

SuperTarget databases. Other predicted interactions that are not reported yet may also 

be verified by the experiments in the future. These results show that our LPMIHN 

algorithm can effectively mine the unknown drug-target interactions. 

5 Conclusions 

In this work, LPMIHN was developed to predict the potential drug-target interactions 

by integrating multi-source information to construct a heterogeneous network, and 

introducing a new strategy of network-based label propagation with mutual 

interaction information derived from heterogeneous network. The originality of 

LPMIHN mainly lies in that it separately performs label propagation on drug/target 

similarity networks, while the initial label information of target (or drug) network 

comes from drug (or target) label network and known drug-target interaction bipartite 

network. The independent label propagation on each similarity network can explore 

the cluster structure in its network, and the label information from the other networks 

can be used to capture mutual interactions between the nodes in each pair of the 

similarity networks. We used four benchmark datasets of enzymes, ion channels, 

GPCRs and nuclear receptors, and two quantitative kinase bioactivity datasets of the 

kinase disassociation constant (Kd) and the kinase inhibition constant (Ki) to 

demonstrate the performance of LPMIHN algorithm in the jackknife, K-fold 

cross-validation and independent tests. The results show that the strategies of label 

propagation and information fusion are effective for predicting the drug-target 

interactions. Comparison with other recent state-of-the-art methods, such as 

NetlabRLS, KBMF2K, NBI, BLM-NII, NetCBP and NRWRH, our LPMIHN 

algorithm obtains the best results in terms of AUC and AUPR. We also predicted the 

unknown drug-target interaction on the four benchmark datasets, and found that many 

top predicted potential interactions are reported in the latest publicly available 

drug-target databases, meaning that LPMIHN can help drug developers to find new or 

potential drug-target interactions.  
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Despite the encouraging improvement, our method performs the label 

propagation in the drug similarity network and target similarity network, respectively. 

From a technical viewpoint, the performance of our method could be improved by 

sequentially propagating the label information in the drug similarity network, target 

similarity network and drug-target heterogeneous network. However, it does not get 

the better results by using this way to predict the drug-target interactions. This is due 

to the drug-target interaction bipartite network too sparse, and it will result in local 

solutions. Thus, it would be an interesting future work to explore the label 

propagation way on the sparse heterogeneous network.  
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