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Abstract:  

Alcoholic liver disease (ALD) is a significant cause of death and morbidity. However little is known regarding the 

widespread pathway changes of ALD disorder. This study utilized metabolomic profiling to examining the 

pathogenic mechanisms of ALD based on rat model. A total 21 metabolites with significant changes were identified, 

involved several key metabolic pathways such as pentose and glucuronate interconversions, starch and sucrose 

metabolism, cysteine and methionine metabolism. Furthermore, the differential proteins corresponding alterations in 

metabolism across the metabolic network were identified using iTRAQ-based quantitative proteomics analysis. The 

proteins appear to be involved in protein binding, metabolism, immune response, and signal conduction. Interestingly, 

integrated omics profiling firstly reveals that p53 and Fc epsilon RI signaling pathways were closely related with 

ALD. Our study indicates that most of these proteins were found to play a pivotal role in the regulation of multiple 

metabolism pathways. Collectively, the current study provides insights into the molecular mechanisms of ALD from 

widespread pathway changes.  
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Introduction 

Alcohol has been a part of human culture since the beginning of recorded history. Problems associated with excess 

alcohol consumption include social issues, increased accidents, chronic health problems and mortality [1]. Alcohol 

related morbidity in developed countries is second only to tobacco use and is responsible for 2.5 million deaths 

globally each year, and costs 1% of the GDP of middle to high income countries [2]. Alcohol misuse is a major public 

health problem in the worldwide and accounts for elevated social and economic costs. Alcoholic liver disease (ALD) 

is a common complication of alcohol misuse. Detection of ALD at an early stage could provide opportunities for 

more optimal management. The biomarkers including the erythrocyte mean cell volume, c-glutamyltransferase and 

carbohydrate-deficient transferring provide an objective measure of alcohol consumption, can assist in the detection 

of at-risk drinking [3]. Clearly, there is a need for more effective and definitive treatment options in order to improve 

prognosis and outcome of patients with severe ALD. Fortunately, integrated omics technology has been used to 

explore the particular metabolites, potentially diagnostic and prognostic biomarkers for deep understanding the 

essence of diseases [4-6]. 

At the end of the 20th century, genomics wrote out the ‘script of life’; proteomics decoded the script; and 

metabolomics came into bloom [7]. These ‘omics’ quickly became the thrust of life sciences, pushing the discipline to 

new high. At present, numerous studies have discovered potential markers of disease using proteomics [8]. Isobaric 

tags for relative and absolute quantitation (iTRAQ), as a quantitative method, is a common tool in proteomics and has 

been extensively used for biomarker discovery in various disease contexts [9]. Metabolomics is the endpoints of 

genotype functions and biochemical phenotype in body, are linked closely to functions alteration in body, and 

incorporates a ‘top-down’ strategy to reflect the terminal symptoms of a whole system [10]. Recent advances have 

suggested that metabolite profiles will improve understanding the disease mechanisms [11-17]. Gobal metabolomic 

profiling with alcoholic fibrosis has proceeded very slowly, and changes in the serum proteomes of ALD are rarely 

reported. There is an urgent need for the discovery of novel molecular signatures to understand the underlying 

biological basis for ALD. However, to date there are few works aimed at gaining deeper insights into ALD through 

integrated metabolomics approach. Therefore, unlike other studies, this study was to devise the systematically 

integrated omics approach to focus and identify widespread pathway changes of ALD in rats. 

 

Materials and Methods 

Reagents.  

HPLC grade acetonitrile was obtained from Merck (Darmstadt, Germany); methanol (HPLC grade) was purchased 

from Fisher Scientific Corporation (Loughborough, UK); water was produced by a Milli-Q Ultra-pure water system 

(Millipore, Billerica, USA); formic acid was obtained from Honeywell Company (Morristown, New Jersey, USA); 

leucine enkephalin was purchased from Sigma-Aldrich (St. Louis, MO, USA). iTRAQ reagent multi-plex kit, 
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containing the iTRAQ reagents, was bought commercially (Applied Biosystems, Foster City, CA, USA). The assay 

kits for alanine aminotransferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), triglycerides 

(TG), total bilirubin (T-BIL), total protein (TP), albumin (ALB), total cholesterol (CHOL), hyaluronic acid (HA), 

laminin (LN), procollagen Iii (PIIINP), and collagen IV (CIV) were purchased from the Nanjing Jiancheng Biotech 

Company (Nanjing, China). 

Animals.  

Male Wistar rats were maintained in a specific pathogen-free environment. The animals were allowed to acclimatize 

in metabolic cages for 1 week prior to treatment. The animals were randomly assigned to 4 groups of 8 rats each as 

follows: control, 7w, 11w and 12w groups. The rats in the model group were orally administrated at a dose of 

0.8ml/100g mixture (6g/kg alcohol liquor) and high-fat diet (high fat emulsion (10ml/kg)) for 12 consecutive weeks. 

The alcohol-fed model rats were fed ad libitum. Rats were sacrificed by an intraperitoneal injection of 1% 

pentobarbital sodium (0.15 ml/100 g body weight) at four time points: 4, 7, 11 and 12 weeks after initiation of 

injection. Livers were collected and washed three times with saline water. Each liver was cut into two pieces. The 

small piece was immediately fixed in buffered formalin for pathological staining. We collected plasma samples in 

heparinized tubes, kept them on ice for 1 h and centrifuged them at 5,000rpm for 20 min at 4°C, flash frozen in liquid 

nitrogen and stored at -80°C until the liver function tests and proteomics analyses were performed. Urine was 

collected daily (at 8:00 a.m.) from the metabolic cages at ambient temperature throughout the entire procedure and 

centrifuged at 10,000 rpm at 4°C for 5 min to remove any solid debris; the supernatants were then stored frozen at 

-80°C for subsequent metabolomic analysis. The study was approved by the Ethical Committee of Heilongjiang 

University of Chinese Medicine and was conducted according to the principles expressed in the Declaration of 

Helsinki. 

Liver histology and biochemical assay  

We quantified the levels of ALT, AST, ALP, TG, T-BIL, TP, ALB, CHOL, HA, LN, PCIIINP, CIV activities using 

assay kits according to the manufacturer’s instructions. Liver samples from each rat were fixed in 10 % neutral 

buffered formaldehyde solution, embedded in paraffin, stained with hematoxylin-eosin (HE) and Masson trichrome 

collagen stain and then examined under an optical microscope. 

Metabolomics analysis 

Preparation of urine Samples Thawed urine samples were collected via centrifugation at 13,000 rpm for 10 minutes 

at 4◦C, and then filtered through a 0.22 µm syringe filter, 3 µL of the supernatant were injected into the UPLC/MS. 

Chromatographic condition Urine metabolite profiling was performed using a Waters ACQUITY UPLC system 

(Waters Corporation, Milford, MA). The chromatographic separation was conducted on an Acquity HSS T3 column 

(100 mm x 2.1 mm, 1.8 µm). The column oven temperature was set to 45°C, injection volume at 3 µL and flow-rate 

at 0.4 ml/min without a split. The mobile phase consisted of phase A (acetonitrile containing 0.1% formic acid) and 
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phase B (water with 0.1% formic acid). The gradient was as follows: 0–2.5 min, 99–89% B; 2.5–4.5 min, 89–79% B; 

4.5–7.0 min, 79–60% B; 7.0–7.5 min, 60-50% B; 7.5–10 min, 50–1% B; 10–12 min, 1% B; 12–12.5 min, 1–99% B; 

12.5–15 min, 99% B.  

Accurate mass time-of-flight mass spectrometry A Waters Micromass Q-TOF micro Synapt High Definition Mass 

Spectrometer (Synapt HDMS, Waters, Manchester, U.K.) equipped with electrospray ionization in positive and 

negative modes. MS/MS spectra were acquired as two separate positive ion (ESI+) and negative ion (ESI-) polarity 

runs for each sample. The following parameters were employed: ESI+: source temperature at 110 ◦C; capillary 

voltage was set at 3kv; cone voltage at 25 V; extraction cone voltage 3.0 V; the desolvation temperature was set at 

300◦C; cone gas flow 50 L/h; desolvation gas flow 500 L/h; ESI-: source temperature at 110 ◦C; capillary voltage was 

set at 3kv; cone voltage at 30 V; extraction cone voltage 2.5V; the desolvation temperature was set at 300◦C; Cone 

gas flow 50 L/h; desolvation gas flow 400 L/h. Nitrogen was used as the drying gas, the desolvation gas flow rate was 

set at 500 L/h, and cone gas flow was maintained at 50 L/h. Collision energy was set at 35 eV in MS/MS mode for 

identification of potential metabolites. All the data were acquired using an independent reference lock mass (Leucine 

enkephalin) via the LockSpray
TM

 interface to ensure accuracy and reproducibility during the MS analysis. Centroid 

data were collected at a rate of 1 MS spectrum per second from 100 to 1000 m/z with a scan time of 0.2 s, an 

inter-scan delay of 0.1 s, and a lock spray frequency of 10 s. 

Multivariate statistical analysis The ion intensities for each peak were normalized within each sample, and then were 

introduced to EZinfo 2.0 software for principal components analysis (PCA), partial least-squared discriminant 

analysis (PLS-DA), orthogonal partial least-squared discriminant analysis (OPLS-DA) analysis. EZinfo 2.0 analysis 

software was used to extract molecular features in each of sample. VIP-plot which was constructed from the OPLS 

and was carried out to select distinct variables as potential biomarkers which were chosen based on their contribution 

to the variation and correlation within the data set. The ions furthest away from the origin in the VIP-plot may be 

therefore regarded as the differentiating metabolites. Student’s t-test was performed to identify features with 

differential abundances across groups.  

Metabolite identification Exact MS data from redundant m/z peaks were first used to help confirm the metabolite 

molecular mass. The candidate biomarkers were annotated based on retention behavior, mass assignment, and online 

database query. The accurate mass and structure information of candidate metabolites were matched with those of 

metabolites obtained from HMDB, METLIN, and Lipid Maps. The mass tolerance between the measured m/z values 

and the exact mass of the components of interest was set to within 5 mDa. Pathway analysis was performed using 

MetaboAnalyst tool. 

iTRAQ-based quantitative proteomic analysis 

Sample preparation and protein extraction. Plasma was fractionated with ProteinMiner Protein Enrichment 

Small-Capacity kit (Bio-Rad Laboratories, Hercules, CA, USA). Protein solutions were reduced for 1 h at 56˚C with 
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10 mM dithiothreitol and were cysteine blocked with 55 mM iodoacetamide at room temperature for 10 min. Each 

sample was precipitated with four times the volume of cold acetone.  

Protein digestion and peptide tagging. Protein solutions were digested for 24 h with 10 µg 

L-1-(4-tosylamido)-2-phenylethyl tosylphenylalanyl chloromethyl ketone treated trypsin. Each peptide solution was 

labeled for 3 h at room temperature using an iTRAQ reagent (Applied Biosystems, Foster City, CA, USA). The 

reaction was terminated by adding MilliQ water, and the samples were labeled with tagged iTRAQ reagents. 

Nano LC with tandem mass spectrometry. Nanoflow electrospray ionization tandem mass spectrometric analysis of 

peptide samples was carried out using Thermo fisher Q-Exactive (Thermo Scientific, Bremen, Germany) interfaced 

with Agilent’s 1200 Series nanoflow LC system. The chromatographic capillary columns used were packed with 

Magic C18 (particle size 5 um, 100um x 150mm, Michrom Bioresources, CA, USA). The peptides were eluted using 

a linear gradient (0.01-50 min, 0% B; 50–51 min, 0–5% B; 51–71 min, 5–30% B; 71–76 min, 30-50% B; 76–81 min, 

50% B; 81–86 min, 50-100% B; 86–96 min, 100% B.) over 96 min.  

Protein identification and quantitative analysis. Peptides were quantified using the centroided reporter ion peak 

intensity. Intra-sample channels were normalized based on the median ratio for each channel across all proteins. 

Multiple isobaric tag samples were normalized by comparing the median protein ratios for the reference channel. 

Protein quantitative values were derived only from uniquely assigned peptides. The minimum quantitative value for 

each spectrum was calculated as the 5.0% of the highest peak. Protein quantitative ratios were calculated as the 

median of all peptide ratios. Fold-changes > 1.2 or and a two-tailed p-value <0.05 were set as cut-off values to 

designate significant protein expression changes. Independent component analysis (ICA) was performed to visualize 

the similarity of selected features between the test groups at different conditions.  

Database screening and functional annotation Data were processed using BioTools software (Bruker Daltonics, 

Inc.). Gene Ontology (GO) functional classifications were analyzed with Blast2GO software, and GO enrichment 

analysis was performed to identify GO terms that were significantly enriched in DEP. Identified proteins were further 

analysed using STRING (http://string-db.org/) for protein-protein interactions. All statistical analyses were performed 

using the Student’s t-test.  

 

Results  

Histopathology and Biochemical analysis  

For histopathological analysis, liver samples were quickly obtained and fixed in a 10 % neutral buffered 

formaldehyde solution, embedded in paraffin and sectioned. Paraffin sections were stained with H&E for routine 

examination, followed by Masson staining for collagen. H&E staining and Masson’s staining showed the presence of 

hepatic fibrosis, marked fatty degeneration, and collagen accumulation in the model group (Fig.1A). The HE staining 

showed that ALD was more severe in the 12W-treated group than in the 7W-treated group. Representative figures of 
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HE-stained sections of liver tissue from control group were evaluated as a normal histology. The liver lobules of the 

control group showed no pathological changes and the liver cells were normal. Compared with controls, liver cell 

steatosis was apparent in liver samples at 4W. Foci infiltration around fibrosis tissue can be seen. Large numbers of 

black and brown particles were deposited and accompanied with fibrosis tissue at 7W, and a similar pattern was 

evident at 12W. The collagen was shown to be green-colored in the Masson-stained section at 12W.  

The extent of liver injury was assessed by measuring the enzymes of the liver in the mouse serum. As shown in the 

liver index, it was significantly different among the experimental groups. Liver index was decreased in rat groups 

compared to controls (Fig.1B). AST and ALT concentrations in serum were used as biochemical markers to evaluate 

hepatic injury. Serum activities of ALT and AST were found to be significantly increased in 12W-treated group when 

compared with control group (p < 0.01). The value of MDA in the serum was decreased (p <0.01) in 12W-treated 

group, but the values of the activities of SOD in the liver tissue were increased (p <0.01) compared to control group, 

and there was no significant change in either group at 4W. Both serum CHOL, TG, and the liver tissue Hyp, HA, LN, 

PCIIINP, CIV were markedly increased at 12W. The TP content in 12W-treated group were markedly decreased 

(p<0.01), while the level of ALP, T-BA, TB, and r-GT were increased, compared with that of controls. A significant 

increase of the liver enzymes in the serum was occurred at 12W, and suggested that the degree of ALD. Consequently, 

combined with the histopathological manifestation results, we successfully established ALD in animal models at 

12W. 

Urine metabolomic profiles  

Metabolomics involves studying the processes of all metabolites in diseased samples, thereby revealing 

disease-related metabolic pathways. The total ion chromatograms exhibited the ideal separation result under the 

optimized gradient elution procedure. Urine metabolomic profile for each sample consisted of approximately 8000 

peaks. Low molecular mass metabolites could be separated well in the short time of 10 min. In order to better 

visualize the subtle similarities and differences among these complex data sets, multiple pattern recognition methods 

were employed to phenotype the urine metabolome of rats. 

Multivariate statistical analysis Urine samples were analyzed in both positive and negative ionization modes with the 

UPLS/MS. Typically, the trajectory analysis of PCA score plots for the alcohol treatment in positive mode (Fig.2A) 

and negative ionization mode (Fig.3A) can really reflect a clear separation between the model and control groups. 

PCA plot of the model groups deviated from control group on 12W reached the maximum trend, the 4W to 7W 

gradually away to the normal state. The tracks of the metabolic profiles at different time points also clearly 

demonstrate the time dependent changes in the urine metabolites, which suggest that urinary biochemical perturbation 

significantly happened in model groups. To maximize the differences between the groups and determine the variables 

that contribute to discrimination, the OPLS-DA, a supervised pattern recognition method, was further employed for 

metabolic data (Fig.2B and Fig.3B). 
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Identification of metabolite candidates All chromatographic peaks were extracted for the discovery of metabolic 

biomarkers associated with ALD. For further analysis of feature ions, VIP-plot (Fig.2C and Fig.3C) from the OPLS 

and dendrogram analysis (Fig.2D and Fig.3D) of metabolite candidates were carried out to select distinct variables as 

potential biomarkers for distinguishing ALD from controls. From the corresponding VIP-plot, the ions furthest away 

from the origin may be therefore regarded as the differentiating metabolites. We generated VIP plots from the 

OPLS-DA with a threshold of 1.5 to identify the metabolites that significantly contribute to the clustering between 

groups. 21 differentially expressed small molecule metabolites considered to be strong contributors were 

distinguished from those of the healthy controls (p < 0.05, VIP>1.5, 8 ions in the positive mode and 13 ions in 

negative mode). Of note, it was found that, among them, 13 metabolites were upregulated and 8 metabolites were 

downregulated (Table 1). Histogram plots of Fig.2E and 2F show relative signal intensities for 21 metabolites in 

control and ALD group.   

Metabolic pathway and function analysis To gain insight into the metabolic mechanism of ALD, metabolic 

pathways of the significantly altered metabolites were analyzed using the ‘‘pathway analysis’’ module within the 

MetaboAnalyst software. We identified a total of seven distinct metabolic pathways that were significantly altered in 

the urine (Table S1) samples from model group. The detailed analysis of the most relevant pathways of ALD was 

performed by MetaboAnalyst’s tool. A total of feature compounds in 7 pathways which were identified together are 

important for the host response to ALD (Fig.S1A). The predominant hits were pathways involved in pentose and 

glucuronate interconversions, starch and sucrose metabolism, cysteine and methionine metabolism, etc. The detailed 

construction of the perturbed pathways of pentose and glucuronate interconversions (Fig.S1B), starch and sucrose 

metabolism (Fig.S1C), cysteine and methionine metabolism (Fig.S1D) with higher score had yield satisfactory 

results (details in Table S1). 

iTRAQ-proteomics analysis 

ICA aggregates the set of proteins studied into one point per sample in the two-dimensional coordinate system 

spanned by the two most relevant independent components (Fig.S2). These trajectories reveal that the proteome 

profiles markedly change immediately after ALD. ICA can really reflect a clear separation between the 12W and 

control group. 

Differentially expressed proteins To examine the difference in serum proteome between ALD rat models and 

controls, we conducted the analysis by iTRAQ. After trypsin digestion of total proteins, peptides from the model and 

control groups were labeled with 114 and 113, respectively. To identify the differentially expressed proteins (DEP), 

the relative protein expression values were compared between groups. These proteins could provide leads for 

potentially useful diagnostic and prognostic biomarkers for disease progression. The confidence value for each 

peptide was calculated based on agreement between the experimental and theoretical fragmentation patterns. Each 

protein was provided with a confidence score based on confidence scores of its constituent peptides with unique 
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spectral patterns. The threshold was set as < 0.83 and >1.2 for iTRAQ labeling, 85 proteins were identified as DEP 

between mouse models and controls at 12w time point. Of these, 33 were down-regulated (Table S2) and 52 were 

up-regulated in ALD model rat. To determine the proteins with abundance changes, a histogram was used to generate 

the number of proteins in different abundance ratio (Fig.4).  

Gene ontology analysis We subjected the DEP to GO analysis and categorized them according to molecular function, 

biological processes and pathways. When we analyzed these proteins for molecular function (Fig.S3), we found that 

over 20% of proteins were grouped under “metabolism” such as macromolecule metabolic process, primary 

metabolic process and cellular metabolic process etc. The remaining DEP were grouped under “cellular process”, 

“biological regulation”, and “multicellular organismal process”. Based on analysis of the cellular component, 51.13% 

of the DEP were annotated proteins. In the molecular function analysis of GO analysis, most DEP were associated 

with function of binding. Classification analysis of the biological processes with UniProt database and KEGG online 

tool (http://david.abcc.ncifcrf.gov/) showed the DEP are mainly involved in the processes of p53 signaling pathway, 

PPAR signaling pathway, fatty acid metabolism, TGF-beta signaling pathway, mTOR signaling pathway, 

cytokine-cytokine receptor interaction, purine metabolism, natural killer cell mediated cytotoxicity, neurotrophin 

signaling pathway, and Fc epsilon RI signaling pathway, respectively (Table 2). These data suggest that interruption 

of these pathways may provide a means to the development of molecularly targeted therapies for ALD. Interestingly, 

p53 signaling pathway (Fig.S4) including insulin-like growth factor-binding protein 3, insulin-like growth factor I, 

and Fc epsilon RI signaling pathway including Ig gamma-2C chain C region, RAC-gamma serine/threonine-protein 

kinase, was firstly reported in ALD. STRING analysis depicts known protein–protein interactions among genes of 

interest in overrepresented pathways (Fig.5). Tumor protein p53 acts as a tumor suppressor in many tumor types; 

induces growth arrest or apoptosis depending on the physiological circumstances and cell type. It is also involved in 

cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes 

required for this process.  

 

Discussion 

Alcohol consumption is one of the world's major risk factors for disease development. Ongoing studies show that 

alcohol consumption is associated with fatty liver disease in mammals. Recent advances in metabolomic technologies 

have enabled elucidate the effect of alcohol consumption on metabolism. Jaremek and co-workers have investigated 

the relation of alcohol intake and serum metabolite concentrations and identify potential biomarkers that could predict 

high levels of intake [18]. It suggests that alcohol affects mostly the sphingolipid, glycerophospholipid and ether lipid 

metabolism. Clugston and co-workers analyzed altered hepatic lipid metabolism in mice fed alcohol using a targeted 

lipidomic approach [19]. They found that chronic alcohol consumption is associated with increased hepatic free fatty 

acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and 
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decreased fatty acyl-CoA synthesis, increased hepatic ceramide levels associated with higher levels of the precursor 

molecules sphingosine and sphinganine; and increased hepatic levels of the endocannabinoid anandamide associated 

with decreased expression of its catabolic enzyme fatty acid amide hydrolase. Kalhan et al. examined the plasma 

metabolomic profile in nonalcoholic fatty liver disease [20]. Their results suggested that markedly higher levels of 

glycocholate, taurocholate and glycochenodeoxycholate in subjects. A study showed that the expression of two 

proteins associated with alcoholic liver disease, peroxiredoxin 6 and aldehyde dehydrogenase 2, was down-regulated 

in ethanol fed rats [21]. As far as we are aware, no metabolomics-proteomics profiling analyses of ALD rats with 

alcohol consumption have yet been conducted.  

In the present study, special attention was paid to the time points of the 1W and 12W which is closely associated with 

ALD, in the experimental animal model. The results showed that histopathology and biochemical results had 

significant differences between the controls and 12W. Through biochemical analysis combined with the 

histopathological results, we successfully established ALD in animal models at 12W. Additionally, alcoholic-induced 

ALD rat may be a useful model for determination of ALD. Metabolic changes are associated with a number of 

complex diseases. A panel of biomarkers to characterize disease could be useful for ALD diagnostics. In this paper, 

UPLC-MS combined with pattern recognition analysis approach were used to simplify and quicken the identification 

of the metabolites of ALD. UPLC-MS based metabolomics could be an advanced tool to help us find metabolites due 

to its capacity of processing large datasets, and classifying of sample groups, as well as its indiscriminative nature of 

metabolites. By using our metabolomics platform, PCA revealed a statistically significant separation between the 

ALD and control samples. OPLS model was built to find biomarker candidates of ALD and 21 statistically important 

variables with VIP>1.5 were defined, many are in various stages of progress at the ALD. Differential metabolites 

from the urine metabolome indicate the disrupted the pentose and glucuronate interconversions, starch and sucrose 

metabolism, cysteine and methionine metabolism pathways, etc, would be helpful for the understanding occurrence 

and development of ALD. 

Proteomics, which measures mature proteins, could be used to closely observe biological functions in body [22]. 

Proteomics research is a potentially useful and effective tool for studying pathogenesis, establishing prognosis and 

determining treatment outcomes in a variety of diseases [23]. Though proteomics is widely performed, the changes in 

the serum proteomes of ALD are rarely reported due to the complicated mechanism of ALD, therefore this study was 

also to describe the changes in protein levels in ALD using iTRAQ proteomics. The authors hypothesized that this 

approach had the potential to ultimately be beneficial for the identification of proteins that were important in the 

progression of ALD. We constructed the mouse model of early stage of ALD using alcohol. Based on proteomics 

analysis, we investigated the proteomic changes and pathways leading to ALD by alcohol. For data analysis, we 

optimized the normalization of iTRAQ signals and quantified the expression of proteins identified. iTRAQ identified 

85 different proteins that had ≥1.2-fold differences in expression level between the ALD with the controls. Finally, the 
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most significant pathway elucidated by bioinformatics methods was subsequently validated. Bioinformatics analysis 

of the DEP illustrated the enrichment of metabolism related processes, such as macromolecule metabolic process, 

primary metabolic process and cellular metabolic process etc. Studies have shown that p53 signaling pathway, PPAR 

signaling pathway, fatty acid metabolism, TGF-beta signaling pathway, mTOR signaling pathway, cytokine-cytokine 

receptor interaction, purine metabolism, natural killer cell mediated cytotoxicity, neurotrophin signaling pathway, and 

Fc epsilon RI signaling pathway are critical in the pathogenesis of ALD. Interestingly, p53 signaling pathway and Fc 

epsilon RI signaling pathway were firstly reported in ALD. This study helps to achieve a better understanding of the 

complexity of metabolic regulations of ALD, which may shed light on metabolism to ALD. GO analysis indicated 

that these proteins are involved in transport, biological regulation, cellular processes, immune response, and 

metabolic process. The DEP may be involved in the host response to ALD at the molecular level and may be potential 

diagnostic biomarkers for ALD. It also provides insights into the molecular basis for the use of PPAR signaling 

agonists, which has been advocated for treatment of ALD. 

The findings yield a valuable tool that can engender new insights into the pathophysiology of ALD and advance the 

early diagnosis and monitor the progression of ALD, and showed that omics has the potential as a promising 

screening tool for exploring essence of ALD disease. In addition, future research will be directed to the biological 

interpretation: which pathways were involved in the biochemical changes associated with the onset, development and 

progression of ALD, and whether these changes are the same during onset and progression, or if different changes of 

biochemistry occur at the different stages of ALD. Thus, the findings presented contribute to a better understanding of 

the molecular signature of ALD and may provide the biological background to pharmacological interventions in the 

future. 

 

Conclusions 

ALD represents a significant cause of morbidity and mortality worldwide and constitute a problem of global public 

health importance. Therefore, it needs more reliable metabolism information for effective treatment. We successfully 

reproduced ALD in animal models from liver histology combined with biochemical results. Omics is a powerful 

approach for the comprehensive assessment of endogenous metabolites or proteins and attempts to systematically 

identify them from biological samples. In this study, the proteomics and metabolomics improves discrimination 

between ALD and control. Metabolomics approach coupled with multivariate statistical methods showed 21 altered 

metabolic biomarkers indicated that ALD could cause more severe disturbances in pentose and glucuronate 

interconversions, starch and sucrose metabolism, cysteine and methionine metabolism, etc. Using iTRAQ based 

proteomic methods, we identify 85 differentially expression proteins related to ALD, which might provide clues to 

clarify novel mechanisms underlying alcohol-induced ALD. Of these, 33 were down-regulated and 52 were 

up-regulated in ALD. Interestingly, integrated proteomic and metabolomic profiling reveal that p53 signaling 
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pathway and Fc epsilon RI signaling pathway were firstly found in ALD. These data suggest that interruption of these 

pathways may provide a means to the development of molecularly targeted therapies for ALD.  
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Fig.1 Representative photomicrographs of rat liver tissues with Hematoxylin and Eosin (200×) and Masson Staining 

(200×) in the experimental rats (A). Liver tissue from model group showed disorderly hepatocyte cords, severe fatty 

degeneration, spotty or focal necrosis and infiltration of inflammatory cells; hemorrhagic necrosis with foci of 

lymphomonocytic infiltration around fibrosis tissue can be seen. Biochemical analysis (B). The extent of liver injury 

was assessed by measuring the enzymes of the liver in the mouse serum. As shown in the liver index, serum activities 

of ALT and AST were found to be significantly increased in 12W-treated group when compared with control group. 

The value of MDA in the serum was decreased in 12W-treated group, but the values of the activities of SOD in the 
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liver tissue were increased compared to control group, and there was no significant change in either group at 4W. 

Both serum CHOL, TG, and the liver tissue Hyp, HA, LN, PCIIINP, CIV were markedly increased at 12W. The TP 

content in 12W-treated group were markedly decreased, while the level of ALP, T-BA, TB, and r-GT were increased, 

compared with that of controls. A significant increase of the liver enzymes in the serum was occurred at 12W. The 

values are expressed as mean± SD. 
*
 P<0.05 and 

**
 P<0.01, vs. control group. 
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Fig.2 Metabolomic multivariate analysis of untargeted metabolomics data. Trajectory analysis of principal 

components analysis score plots of the alcoholic ALD at the continuous 12W in positive mode (A); partial 

least-squared discriminant analysis plot of ALD in positive mode (B); Panel C shows the VIP-score plots constructed 

from the supervised orthogonal partial least-squared discriminant analysis of urine. Ions with the highest abundance 

and correlation in model group with respect to the controls are present on the upper far right hand quadrant, whereas 

ions with the lowest abundance and correlation in the ALD with respect to the control group are residing in the lower 

far left hand quadrant. (D) Dendrogram analysis of metabolite candidates. Histogram plots show the relative signal 

intensities for marker metabolites for the control and model groups in positive mode (E) and negative mode (F).  
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Fig.3 Metabolomic profiling of AFLD. Principal components analysis model results for ALD group in negative mode 

(A). Loading plot of partial least-squared discriminant analysis in positive mode (C). Panel C shows the combination 

of VIP-score plots constructed from the supervised orthogonal partial least-squared discriminant analysis of urine 

(ESI- mode).  
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Fig.4 Heatmap for the differentially regulated proteins in biosamples. 
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Fig.5 STRING analysis depicting known protein–protein interactions among genes of interest in overrepresented 

pathways. Modes of action are shown in different colors. Differentially expressed proteins are represented as 

pill-shaped nodes, while proteins are shown as spheres. p53 signaling pathway (A) and Fc epsilon RI signaling 

pathway (B)  

 

Page 20 of 22Molecular BioSystems



 

 1

 

Table 1. Urinary biomarker candidates in alcoholic liver disease rat identified by UPLC/ESI-Q/TOF-MS. 

No. Retention 

time/min 

Ion 

form 

Determined 

mass/Da 

Calculated 

mass/Da 

Error/mDa Formula  Identity VIP-Value t-test 

/p-value 

Trend 

1 1.05 [M+H]+ 150.0581 150.0589 -0.8 C5H11NO2S L-Methionine 2.9 4.65E-08 ↑ 

2 1.78 [M+H]+ 153.0647 153.0664 -1.7 C7H8N2O2 N-Methyl-2-pyridone-5-carboxamide 1.9 3.88E-02 ↑ 

3 1.81 [M+H]+ 246.0547 246.0507 4.0 C7H14NO5P N-Acetylphosphinothricin 11.1 1.19E-07 ↑ 

4 3.59 [M+H]+ 152.0698 152.0712 -1.4 C8H9NO2 N-(Acetyloxy)benzenamine 1.5 1.03E-03 ↓ 

5 4.03 [M+H]+ 338.0883 338.0876 0.7 C15H15NO8 3-Indole carboxylic acid glucuronide 8.7 1.87E-03 ↓ 

6 4.26 [M+H]+ 340.1020 340.1022 -0.2 C15H17NO8 5-Hydroxy-6-methoxyindole glucuronide 8.1 1.46E-03 ↓ 

7 4.61 [M+H]+ 279.1328 279.1345 -1.7 C14H18N2O4 N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole 5.3 6.08E-06 ↑ 

8 5.91 [M+H]+ 338.1247 338.1240 0.7 C16H19NO7 Indole-3-acetyl-myo-inositol 2.7 1.08E-07 ↑ 

9 0.70 [M-H]- 377.0752 377.0720 3.2 C13H16O10 1-O-Galloyl-beta-D-glucose 2.1 6.19E-06 ↓ 

10 0.87 [M-H]- 124.9908 124.9909 -0.1 C2H6O4S 2-Hydroxyethanesulfonate 1.8 4.51E-07 ↑ 

11 0.89 [M-H]- 295.0138 295.0124 1.4 C8H10O7S 3,4-Dihydroxyphenylglycol O-sulfate 2.2 2.63E-08 ↑ 

12 1.26 [M-H]- 221.0656 221.0661 -0.5 C7H12O5 2-Isopropylmalic acid 4.2 4.78E-06 ↑ 

13 1.87 [M-H]- 227.9975 227.9967 0.8 C8H6NO5S 3-Hydroxyindolin-2-one sulfate 3.4 3.04E-06 ↑ 

14* 3.61 [M-H]- 178.0515 178.0504 1.1 C9H9NO3 Hippuric acid 5.2 2.71E-06 ↓ 

15 4.26 [M-H]- 338.0865 338.0876 -1.1 C15H17NO8 5-Hydroxy-6-methoxyindole glucuronide 2.4 5.408E-03 ↓ 

16 4.28 [M-H]- 192.0649 192.0661 -1.2 C10H11NO3 2-Methylhippuric acid 2.6 3.11E-03 ↑ 

17 5.10 [M-H]- 283.0810 283.0818 -0.8 C13H16O7 p-Cresol glucuronide 5.5 2.45E-06 ↑ 

18 5.51 [M-H]- 173.0815 173.0814 0.1 C8H14O4 Suberic acid 2.0 4.17E-06 ↓ 

19 5.91 [M-H]- 336.1071 336.1083 -1.2 C16H19NO7 Indole-3-acetyl-myo-inositol 2.2 3.2E-06 ↑ 

20 6.77 [M-H]- 297.0970 297.0974 -0.4 C14H18O7 2-Phenylethanol glucuronide 5.4 1.08E-05 ↓ 

21 8.01 [M-H]- 291.1290 291.1287 0.3 C12H22O5 3-Hydroxydodecanedioic acid 2.8 7.99E-08 ↑ 

* detected metabolites in both positive and negative modes. 
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Table 2. List of the pathway associated with differentially expressed proteins in the iTRAQ experiments. 

No. Pathway Pathway ID Proteins 

1 p53 signaling pathway ko04115 P15473, P08025 

2 PPAR signaling pathway ko03320 P06759, P04639, P07871, P04638 

3 Fatty acid metabolism ko00071 P07871, P06757 

4 TGF-beta signaling pathway ko04350 P49000, Q9WUK5 

5 mTOR signaling pathway ko04150 Q63484, P08025 

6 Cytokine-cytokine receptor interaction ko04060 P49000, Q9WUK5 

7 Purine metabolism ko00230 Q9Z244, Q64640 

8 Natural killer cell mediated cytotoxicity ko04650 P15978, P20762 

9 Neurotrophin signaling pathway ko04722 P68511, P35213, Q63484 

10 Fc epsilon RI signaling pathway ko04664 P20762, Q63484 

 

 

 

 

Page 22 of 22Molecular BioSystems


