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Abstract 

Drug combinations have been widely applied to treat complex diseases, like 

cancer, HIV and cardiovascular diseases. One of the most important 

characteristics for drug combinations is the synergistic effects among different 

drugs, that is to say, the combination effects is larger than the sum of individual 

effects. Although quantitative methods can be utilized to evaluate the 

synergistic effects based on experimental dose-response data, it is both time and 

resource consuming to screen all possible combinations by experiment trails. 

This problem makes it a formidable challenge to recognize synergistic 

combinations. Various attempts have been put on the prediction of drug 

synergy by network biology, however, most of them are limited to estimating 

target associations on the PPI network.  Here, we proposed a novel 

“pathway-pathway interaction” network-based synergy evaluation method to 
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predict the potential synergistic drug combinations. Comparison with previous 

target-based methods shows inclusion of systematic pathway-pathway 

interactions makes this novel method outperform others in predicting drug 

synergy. Moreover, it can also help to interpret how different drugs in a 

combination cooperate with each other to implement synergistic therapeutic 

effect. In general, drugs acting on the same pathway through different targets or 

drugs regulating a relatively small number of highly-connected pathways are 

more likely to produce synergistic effects. 
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Introduction 

Drug combination, in which two or more agents are administrated together, is 

increasingly applied to treat complex diseases like HIV and cancer 
1, 2
. One of 

the most important benefits of drug combination is synergistic effect, which 

means the combination effects is larger than the sum of individual drugs
3
. The 

synergistic effect can help to improve therapeutic efficency and reduce side 

effects or drug resistance by modulating the activity of multiple proteins,thus 

overcoming the limitation of “one drug,one target” approach against the 

systematic and multifunctional physiological processes of complex disease
4
. 

Consequently, drug combination is gradually becoming one promising way to 

conquer complex diseases.  

Experimentally, dose-response based methods like Loewe additivity
5
, 

isobologram
6
 and Chou-Talalay method 

7
 have been devised to evaluate the 

interactions between drugs in a combination. However, since such methods are 

applied to quantify drug synergy in a case-by-case way and certain number of 

experiments are required to obtain the dose-response data for one combination, 

it will be both time and resource-consuming to screen all possible combinations 

among the increasingly available drugs. In addition, these dose-response 

methods cannot provide clues on the latent mechanism. 

Owing to the above limitations, some computational approaches, which 

utilized various drug-related informaion like chemical structure, target, ATC 

code and side effect, have been applied to predict and explore drug 

combinations. For example, Li et al. designed a PPI network-based method 
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termed “NIMS” 
8
 to evaluate drug synergy by exploring the topological 

associations between targets of different drugs. Wang et al. discovered that drug 

combinations tended to target proteins which were closer in the PPI network 

comparing against random combinations 
9
. Zou et al. utilized neighbor 

communities, which describe the interactions between drug targets and their 

neighbors in the PPI network, to distinguish synergistic drug combinations 
10
. 

These methods focus on the relations of targets from different drugs. Taking 

more drug properties into account, Zhao et al. proposed a prediction method by 

integrating both molecular and pharmacological features
11
, where combinations 

with features enriched by approved ones were identified as novel combinations. 

Besides, Chen et al. predict drug combination based on chemical interaction, 

protein interaction and target enrichment of KEGG pathways 
12
. Among these 

computational methods, the network-based ones are widely used. They can not 

only help predict the potential synergistic drug combinations, but also help to 

illustrate the latent molecular mechanism of drug synergy from the perspective 

of mutual interactions. It seems that topology relationships of drug targets on 

the PPI network are of great importance for estimating drug synergy. Although 

the PPI network-based methods can be applied to explore promising drug 

combinations, they can only help understand synergism in terms of target 

associations. To compensate for the limitation of targets in reflecting biological 

function, pathway analysis is often conducted to unveil underlying mechanism 
9, 

13, 14
. In the study of Wang et al., they observed that drug combinations are 

more likely to modulate functionally related pathways 
9
. Likewise, Zou et al. 
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discovered that drug combinations mainly act on multiple targets of a pathway 

and its crosstalk pathways 
10
. Investigating on some promising signaling 

pathway modulatory drug combinations, Dent et al. came to the inclusion that 

rational drug combinations should simultaneously inhibit multiple inter-related 

pathways 
14
. Another extensive investigation on the molecular mechanism of 

drug combinations pointed out that “pathway analysis can be an effective 

approach for a more comprehensive assessment of drug combination effects” 
15
.  

Due to the effectiveness in illustrating the mechanism of drug combination, 

some pathway-based approaches aiming at identifying synergistic drug 

combinations have been proposed. Most of these approaches are based on the 

dynamic simulation
16
 of specific pathway like the EGFR signaling pathway 

17, 

18
. However, the incompleteness of kinetics parameters and lots of constraints 

specified for model utilization often makes it difficult to implement pathway 

simulations massively, thus limiting the simulations to only several specific 

pathways. Consequently, to do a more systematical exploration of effective 

drug combinations with respect to pathways, we first need to build a more 

comprehensive and flexible pathway-based model. 

Pathways should not be regarded as isolated individuals, complex 

inter-pathway dependences exist among pathways 
19, 20

, e.g., activation of the 

antigen processing and presentation pathway will lead to activation of other 

immune pathways. In this work, we constructed a pathway-pathway interaction 

(WWI) network which can describe the complex pathway-pathway 

dependencies to explore the drug synergy from a pathway-based perspective. 
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Since the topological relations between drug targets on the PPI network has 

been demonstrated to be able to estimate drug synergy to some extent, we ask if 

the pathway relations on the WWI network also possess a similar function or 

even prevail over target relations in determining whether the drug combination 

is synergistic or not. In order to test this hypothesis, we constructed a WWI 

network and comprehensively calculated the pathway-associations of different 

drugs based on the WWI network, thus evaluating whether synergistic drug 

combinations are more likely to target on inter-dependent pathways than 

random combinations.  

According to a series of recent publications 
21-25

 in compliance with the 

5-step rule 
26
, to develop an effective prediction method for a biomedical 

problem, we need to follow the five guidelines: (a) collect valid benchmark 

datasets to train and test the model; (b) formulate the samples by an effective 

feature value that can truly describe their intrinsic properties concerning the 

discussed problem; (c) develop a powerful method to implement the prediction; 

(d) objectively assess the performance of the proposed method; (e) establish a 

user-friendly web-server for the proposed method. Below, we try to predict 

drug synergy based on the WWI network following the above 5-step rule. 

Results and discussion 

Construction of a WWI network 

A WWI network consisting of 269 nodes and 5991 edges was constructed as 

the basis of this study. Pathway information including the biological 

components, as well as pathway dependencies for each pathway was collected 
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from the KEGG 
27
 Markup Language (KGML) files, an exchange format of 

KEGG pathway maps. As of April 2015, there are 269 pathways which contain 

6527 genes in total. To obtain the edges of WWI network, three kinds of 

pathway interactions were considered in the WWI network. First,  manually 

annotated pathway dependencies, termed as functional-related WWIs, were 

extracted from the KGML files: if one pathway is recorded as one related 

pathway of another pathway in the KGML file, these two pathways can be 

taken as one functional-related WWI (see Materials and methods). In addition 

to these recorded relations, there must be other latent WWIs which are not 

curated in the KGML files at present. Intuitively, if two pathways are composed 

of shared biological components, there may be interactions between them- 

influence on one of them can be passed on to the others through the shared part. 

We calculated the significance (by P-value of Fisher’s exact test) of 

gene-overlapping between two pathways, and pathway pairs with P-values less 

than a specific threshold 0.001, see Materials and methods for threshold 

determination were taken as gene-overlapping WWIS, i.e., the second kind of 

WWIs. In addition to the above two kinds of WWIs, pathways can also interact 

with each other by protein-protein interaction
20
. This type of interactions 

termed as protein-interacting WWIs are obtained by exploring pathway pairs 

with interacting coefficients (see Materials and methods) larger than certain 

threshold (0.001, see Materials and methods for the threshold determination). 

There are respectively 1100, 4929 and 12436 WWIs with respect to the 

functional-related, gene-overlapping and protein-interacting WWIs,  where 
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4898 WWIs were redundant ones belonging to more than one type of WWIs 

(see Table S1). Most of the recorded pathway dependencies (860/1100) can 

also be recognized as gene-overlapping or protein-interacting WWIs. 

Meanwhile, most of the gene-overlapping WWIs (4038/4929) also interact with 

each other by PPIs. Besides, isolating pathways which are not connected with 

any pathway in the WWI network were removed from the WWIN.  

The WWIN can provide a comprehensive description about 

pathway-pathway interactions. Taken the “NF-kappa B signaling pathway” 

(path:hsa04064) as one example, it is connected with 173 different pathways 

(see Table S2 for details), like “Toll-like receptor signaling pathway” 

(path:hsa04620), “TNF Signaling pathway” (path:hsa04668), and the pathway 

of “Hepatitis C” (path:hsa05160) on the WWI network. These interactions can 

cover the functional relations of different pathways. For example, Toll-like 

signaling pathway, which acts as primary sensors that detect microbial 

infections and induce innate immune responses can culminate in the activation 

of NF-kappaB 
28
; TNF-alpha induces both survival and apoptotic signals, while 

the survival signal is mediated by the activation of NF-kappaB 
29
; while the 

core protein of Hepatitis C virus can potentiate the activation of NF-kappaB 
30
. 

Therefore, we make an assumption based on these functional associations 

among pathways, if a drug can act on one pathway, it may exert indirect impact 

on the other neighbor pathways which may be functional-related with the 

targeted one, and vice versa. With extensive description about pathway 

relations, the WWI network can also provide an opportunity to discover the 
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pathway associations between drugs and illustrate how different drugs 

cooperative with each other by acting on correlated pathways.  

WWI network-based drug synergy evaluation 

Based on the hypotheses that synergistic drugs may target on inter-dependent 

pathways 
9, 15, 31

, we defined a WWI network-based synergy score (WNS-score) 

to evaluate and prioritize drug pairs considering the topological associations of 

pathways on the WWI network. Two types of topological associations were 

considered here. The first one corresponds to the connectivity of different 

pathways on the WWI network. It is straightforward to calculate the 

connectivity simply based on the shortest path length between pathways if 

different drugs can act on totally different pathways. However, two drugs may 

exert influences on the same pathway, termed as co-regulated pathway in this 

study, through different or same targets, at the meantime. Under such condition, 

we take another type of topological association, the connectivity of targets on 

the PPI network, instead, to evaluate the synergistic association generated by 

the co-regulated pathway. Given two drugs A and B, we first collected their 

targets and projected them to the corresponding pathways. Next, the 

WNS-score of A and B was calculated based on the distances between 

pathways targeted by A and B on the WWI network, where the distance with 

respect to the co-regulated pathway is transformed from the distance of targets 

on the PPI-network (Figure 1, Materials and Methods). Thus, WNS-score can 

reflect the pathway-oriented associations between different drugs, which not 

only depends on the inter-relations of different pathways but also on the 
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inner-connection of targets belonging to co-targeted pathways. All candidate 

drug pairs were ranked by the WNS-scores, the top-ranked ones are more likely 

to be synergistic combinations. 

 

Figure 1. WWI network-based synergy. A. Collecting targets for each drug in 

a candidate drug combination. B. Mapping targets to pathways. C. Calculating 

synergy score based on the distances of all connected pair-wise pathways 

between drug A and B on the WWI network. When two drugs target on the 
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same pathways, like P3, the pathway distance in terms of this pathway, i.e. d(P3, 

P3), was transformed from the target connection on the PPI network. 

 

Performance evaluation and comparison with other methods 

To evaluate our synergy scoring scheme, we calculated the WNS-scores for 

both synergistic drug pairs (SDPs) and non-synergistic drug pairs (NSDPs) (see 

Table S3-S5 for details).  The SDPs with confirmed synergistic effects were 

collected from the DCDB database version 2
32
, while the NSDPs, which are 

utilized as negative contrasts to SDPs, were collected from DCDB and 

DrugBank
33
 (see Materials and methods).  

Three different kinds of pathway interactions including functional-related 

WWIs, protein-interacting WWIs and gene-overlapping WWIs were considered 

in this study (see Materials and methods). To see which kind of WWIs can 

contribute most to the effective prediction of SDPs, we tried to evaluate the 

performance of the WNS-scores based on different types of WWIs. We applied 

receiver operating characteristic (ROC) curves to estimate the performance of 

WNS-score in predicting SDPs. It turns out that the gene-overlapping WWIs 

can lead to the best prediction accuracy on all negative samples, and next to the 

gene-overlapping WWI, the protein-interacting ones performed better than 

functional-related WWIs (Figure 2). When three types of WWIs were merged 

together, the performance will be worse than that based on gene-overlapping or 

protein-interacting WWIs. This implies that pathway interactions predicted 

based on the shared genes may contribute most to predict drug synergy. The 
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shortage of knowledge on functional dependences among pathways, and the 

excessive amount of protein-interacting relations between pathways may 

underestimate or over-evaluate the interactions among pathways, thus reducing 

the performance of WNS-scores. We utilized the WNS-scores based on 

gene-overlapping WWIs to predict drug synergy in the following study. 

 

Figure 2. Comparison of the performances of WNS-scores based on 

different types of WWIs. The WNS-scores were respectively calculated based 

on the WWIN constructed by each single type of WWIs (gene-overlapping, 

protein-interacting and functional-related WWIs) and all types of WWIs 

merged together (denoted as “merged”).   

Next, we adopted fold enrichment analysis to test whether SDPs are with 

higher WNS-scores compared with NSDPs in the negative dataset. Results 

show top-ranked drug pairs are enriched by SDPs, and the number of SDPs 

decreased with the WNS-scores (Figure 3), i.e., synergistic drugs are more 

likely to get high WNS-scores compared to other combinations. According to 

the definition of WNS-score, it will be high when the number of connected 
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pathway pairs is small (but not zero) and the distances between pathways are 

short. It implies that two drugs are more likely to generate synergistic 

combination effects if these two drugs act on the same pathway through 

different targets or they cooperatively regulate a few of highly-associated 

pathways.  

 

Figure 3. Fold-enrichment of SDPs. All drug pairs’ WNS-scores were ranked 

from high to low. The x-axis represents the bin of rank, with each bin contain 

500 drug pairs, while the y-axis represents the fold enrichment score of SDPs 

with in each bin. 

To further verify the ability of WNS-score in predicting drug combination,  

we compared it with target-based prioritizing methods and other simple forms 

of pathway-based measurements: (1) target-overlapping (TarOverlap), 

calculating the target association by cosine similarity of two target sets, it is 

based on the hypothesis that drugs target on the same protein may generate 

synergistic effect 
34
; (2) target distance (TarDis), calculating the target 

association based on the shortest path length between targets on PPI network 
9；
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(3) network-based multi-target synergy (NIMS), a method calculating the target 

associations considering both shortest path length between targets and node 

centrality on the PPI network 
8
; (4) pathway-overlapping (PathOverlap), 

calculating the pathway association by cosine similarity of two pathway sets; (5) 

pathway distance (PathDis), calculating the pathway association based on the 

shortest path length between pathways on the WWIN; (6) a simplified version 

of WWI network-based synergy (SWNS) score, simplifying the WNS-score by 

overlooking the target association within co-regulated pathways and taking the 

distance between two same pathways as zero. What’s more, to check whether 

the WNS-scores always perform better than other methods on different negative 

datasets, we evaluate the performances of these methods considering different 

negative datasets (see Materials and methods). 

It turns out that all pathway-based measurements (pathOverlap, PathDis, 

WNS, SWNS) show better performance than target-based methods (TarOverlap, 

TarDis, NIMS) on all negative datasets, and our method, WNS-score, can 

achieve the best performance (Figure 4). Among all three negative datasets, the 

WNS-scores perform best (AUC: 0.82) when random drug pairs from 

DrugBank were taken as the negative dataset. When random drug pairs or 

unsuccessful drug pairs from DCDB were utilized as the negative dataset, the 

performance is decreased to 0.68 and 0.66. The reason may lie in that both 

datasets “NS2” and “NS3” are based on DCDB which aims at collecting 

synergistic drug combinations. These NSDPs based on drugs from DCDB are 

more likely to be similar with those SDPs which are also collected from DCDB 
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than those from DrugBank, thus making it difficult to distinguish SDPs and 

NSDPs.  Although the performance varies when different negative datasets 

were adopted, the WNS-scores always out-perform other methods, in spite of 

which negative dataset was used. These comparisons prove that pathway 

associations between different drugs play an even more important role in 

estimating drug synergy. Besides, the simplified version of WNS-score, i.e., 

SWNS-score (see Materials and methods), although achieve better performance 

than most methods, is still inferior to WNS-score. This indicates that inclusion 

of the target associations within specific co-regulated pathways can help 

enhance the accuracy in predicting drug synergy. It also implies that target 

relations within specific pathway, like the upstream-downstream relations 

between targets of different drugs
35
, also play key roles in generating 

synergistic effects. This WWI network-based synergy evaluation method which 

considers both the interactions between different pathways and the target 

associations within co-regulated pathways can provide one effective way to 

predict potential synergistic drug combinations. 
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Figure 4. ROC curves to evaluate the performance of different methods 

based on different negative datasets. A. Performance evaluation based on 

random drug pairs from DrugBank, i.e., the negative dataset “NS1”. B. 

Performance evaluation based on random drug pairs generated from DCDB, i.e., 

the negative dataset  “NS2”. C. Performance evaluation based on unsuccessful 

drug pair combinations in DCDB, i.e., the negative dataset “NS3”. D. 

Performance evaluation based on all negative samples, i.e., all drugs pairs in the 

above three negative datasets.   

Case studies on synergistic drug combinations 

To further illuminate the superiority of WNS-score in predicting and explaining 

drug synergy, we adopted the combination of Gabapentin and Carbamazepine 
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as one example to illustrate how this WWI network-based method can help 

reveal the potential synergy mechanism. This combination is predicted with 

high WNS-score (0.9556) but low target-based scores (tarDis=0.049787, 

tarOverlap=0, NIMS=0.07778). Gabapentin and carbamazepine are both 

antiepileptic drugs. A preclinical isobolography study has proven that this 

combination can produce synergistic effects against epilepsy 
36
. However, the 

latent mechanism is still unclear. According to the WWI network, both 

gabapentin and carbamazepine may both have effects on the pathway of 

“Adrenergic signaling in cardiomyocytes” (path:hsa04261) where the 

antiepileptic effects can be mediated through adrenergic alpha 1 or alpha 2 as 

indicated in 
37, 38

. This co-regulation effect on “Adrenergic signaling in 

cardiomyocytes” through different targets may be the main reason for the 

synergistic outcome against epileptic.      

Different from the above drug combination which only has one co-regulated 

pathway, more drug combinations may simultaneously act on more than one 

co-regulated pathways and inter-connected pathways. Taken another 

combination of naphazoline hydrochloride and pheniramine as an example, the 

scores for this combination were: WNS-score= 0.7165, tarOverlap=0, tarDis=0, 

and NIMS=0. This combination has been approved by FDA on the treatment of 

temporary relief of the minor eye symptoms of itching and redness. According 

to the WNS evaluation, it turns out that two pathways, “Neuroactive 

ligand-receptor interaction” (path:hsa04080) and “Calcium signaling pathway” 

(path:hsa04020), are co-regulated by these drugs through different targets. In 
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addition to the co-targeted pathways, two other pathways only targeted by 

Naphazoline hydrochloride can be related with the co-regulated pathways 

through one or two step network connection. Both the co-regulated and 

functional-related pathways may contribute to the synergistic effects of the drug 

combination. 

Without remarkable target associations, neither of the above cases will be 

predicted as synergistic combinations by previous target-based approaches 

(tarDis, tarOverlap or NIMS). However, this novel WWI network-based 

method can distinguish them from random combinations and discover the 

potential synergy mechanism by exploring the WWIs between different drugs. 

As the above two cases indicate, drugs acting on the same pathway through 

different targets or drugs regulating a relatively small number of 

closely-correlated pathways are more likely to produce synergistic effects when 

combined.  

 

Figure 5. WWI-based synergy mechanism. A. Co-regulated pathways of 

oxcarbazepine and gabapentin. B. Co-regulated as well as inter-connected pathways 
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of naphazoline hydrochloride and pheniramine. Triangle, circle and rectangle nodes 

respectively represent drugs, targets, and pathways. The targets are labelled by gene 

Entrez ID 
39
, while the pathways are labelled by KEGG ID. To be noted, for clarity, 

not all targeted pathways for each drug are shown, and only those involved in the 

WNS-score calculation are presented. 

Discussions 

Synergistic drug combination has become a new promising way to improve the 

therapeutic management of complex diseases. With the development of 

computational methods in predicting the interactions between different 

biological elements
25, 40-43

, more and more computational methods have been 

applied to investigate biomedical problems, drug synergy evaluation
8-12
 is one 

of them. In this study we put forward for the first time a WWI network-based 

synergy evaluation method. This method can not only give rise to a much better 

performance than previous comparable target-based methods, but also provide 

an effective way to understand the potential synergy mechanism for some 

combinations. Compared with those methods incorporating various chemical 

information of drug combination
11, 44, 45

, or models constructed on deliberate 

classification algorithm
10
, this WNS-score presented in this study is much 

simpler and free of model training, but can still achieve a competitive 

performance. All these demonstrate the importance of pathway-pathway 

interactions in estimating drug synergy. Although obtained from in-silico 

studies, the WWI network-based findings have the potential to capture valuable 

insights and hypotheses on drug synergism.  

Page 20 of 31Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



20 

 

20 
 

However, limitations still exist for this method. First, this method is limited 

by the incomplete knowledge on pathway-pathway interactions as well as the 

pathway compositions, this WNS-score only works for drugs targeting on 

known pathways. Meanwhile, due to the incompleteness of the specific 

interaction effect like the potentiating or attenuating effect between pathways, 

we can only consider whether two pathways can interaction with each other or 

not, the specific interaction effect was still not taken into account. With more 

knowledge on the interaction effects, we will re-define the WNS-score based on 

a directed or weighted WWI network which can describe the interactions 

between pathways from a more comprehensive perspective. Second, although 

with relatively high prediction precision, only focusing on the interactions 

among pharmacological pathways which are interfered by drug targets is not 

enough, the synergy mechanism for some combinations may lie in the 

interactions between drug metabolizing processes. Therefore, more information 

about drug enzymes and corresponding metabolizing pathways should be 

incorporated in the future study. Besides, as suggested by some recent studies 

of classification or prediction methods
41-43

, user-friendly and publically 

accessible web-servers will help improve the application values and influences 

46
, we shall make great efforts to provide a web-server for this WWI-based drug 

synergy evaluation method in our future work. With these further 

improvements, we believe that our method can be a promising way to supply 

guidance on drug combination development and provide meaningful hypothesis 
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on the synergy mechanism for further investigation. These mechanisms could 

be valuable for rational drug combination design among existing drugs. 

Materials and methods 

Data collection and preparation 

Basic requirement for collected drugs. Since this study focus on the pathway 

correlations between different drugs, all drug pairs collected in the study must meet 

the premise that both drugs can be assigned with at least one pathway, i.e., we can 

obtain the target information for each drug and the targets can be projected to at least 

one pathway. The targets for drugs were collected from DrugBank and DCDB, and 

the  target-pathway relationships were obtained from KEGG. 

Positive data set. The positive data set was composed of synergistic drug pairs 

(SDPs). We collected drug combinations from the DCDB database, which collects 

and organizes information on drug combinations from clinical studies or the FDA 

orange book. Although there are 1363 drug combinations for the current version 2 of 

DCDB, a great part of them (1033/1363) is still investigational, and 237 of them were 

unsuccessful. To guarantee the effectiveness of selected SDPs, only 211 drug pairs 

which have been approved by FDA or recorded with synergistic effects in the DCDB 

records were taken into consideration. Further, according to the above basic 

requirement for drug collection, we retained 139 drug pairs from these drug 

combinations as the SDPs.  

Negative datasets. Three different negative datasets composed of NSDPs were 

prepared. The first one, denoted as “NS1”, was based on drugs of DrugBank. We 

randomly produced 5000 drug pairs which do not belong to drug combinations 
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recorded in DCDB. Further investigation on the availability of targets and pathways 

of each drug left 2948 drug pairs which meet the basic requirement.  The second one 

(“NS2”) was based on drugs from DCDB. The ones which meet the basic requirement 

for drug collection were taken as the candidate drugs, and we randomly produced 

additional 2948 pairs which are different from the recorded drug combinations of 

DCDB for dataset “NS2”. To be more rigorous than random pairs, we also considered 

drug pairs recorded as unsuccessful combinations in the DCDB. Among them, 70 

drug pairs which can meet the basic requirement were taken as the third negative data 

set (“NS3”).  

Pathway information collection. We downloaded all the KEGG
 
xml (called 

KGML) files for pathways belonging to “Homo sapiens” from the KEGG 

pathway database (updated on April, 27, 2015). In the KGML file for one 

specific pathway, we can acquire both its gene members and pathway 

dependencies. Taken the pathway “Influenza A” as one example, one gene member 

for the pathway is recorded as an “entry” of type “gene”: 

<entry id="9" name="hsa:23586" type="gene" 

        link="http://www.kegg.jp/dbget-bin/www_bget?hsa:23586"> 

        <graphics name="DDX58, RIG-I, RIGI, RLR-1" fgcolor="#000000" 

bgcolor="#BFFFBF" 

             type="rectangle" x="403" y="570" width="46" height="17"/> 

 </entry> 

And one dependent pathway, like “Apoptosis” was recorded as one “entry” of type 

“map” as below: 
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<entry id="79" name="path:hsa04210" type="map" 

        link="http://www.kegg.jp/dbget-bin/www_bget?hsa04210"> 

        <graphics name="Apoptosis" fgcolor="#000000" bgcolor="#FFFFFF" 

             type="roundrectangle" x="301" y="1037" width="76" 

height="25"/> 

</entry> 

Parsing the KGML files, we can obtain extensive meaningful information 

which will assist in the construction of WWI network. 

Network construction 

PPI network. A PPI network was constructed based on all the PPIs from the 

HPRD database
47
. 

WWI network. A WWI network was constructed based on the pathway-pathway 

interactions (WWIs) among all KEGG pathways. In the WWI network, nodes are the 

“Homo sapiens” pathways, edges are based on the WWIs. Three types of WWIs were 

taken into consideration here. The first one, termed as functional-related WWIs, refers 

to the pathway dependencies recorded in the KGML files. For two pathways P and Q, 

if pathway Q is recorded as one “entry” of type “map” in the KGML file of P, or vice 

versa,  these two pathways will be taken as one functional-related WWI. The second 

one is based on the gene-overlapping between different pathways
20
. If the number of 

shared genes between two pathways is significant against occasional condition (by 

Fisher’s exact test, p-values of WWIs should be less than certain threshold), they are 

regarded as one gene-overlapping WWI. In addition, two pathways can also interact 

with each other by protein-protein interactions
20
. This type of interaction is termed as 
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protein-interacting WWI. The association was evaluated by the fraction of PPIs 

among two pathways. For example, if the number of proteins belonging to pathways 

P and Q are respectively m and n, and there are actually k pairs of PPIs between 

proteins of different pathways except of the overlapping part of two pathways, then an 

interacting coefficient was calculated as k/(m*n). If the coefficient is larger than 

certain threshold, there is one protein-interacting WWI between P and Q.Network 

visualization. All visualized networks were generated by Cytoscape
48
, an open source 

software for visualizing biological networks. 

WNS-score calculation 

According to the synergy mechanism revealed by previous studies
9, 15, 49, 50

, 

drugs with different but highly associated targets which belong to the same or 

related pathways are more likely to implement synergistic effects. Accordingly, 

a synergy score for each pair of compound ingredients was calculated based on 

the connectivity of pathways regulated by different drugs on the WWI network, 

as well as the inner-pathway’s target associations for pathways regulated by 

both drugs. 

The WWI network-based synergy score (WNS-score) for drugs DA and DB 

was calculated as: 

, , ( , ) 1

( , )

( , , )

i j

P P P P linked P Pi A j B i j

P PA B

d P P

N N

A B WWIWNS F P P G e

∈ ∈ =
−

∑

= =  

where PA and PB are respectively the pathway sets affected by drug DA and DB, 

while Pi and Pj are respectively one of them; linked(Pi, Pj)=1 means that only 

pathway pairs which can be linked on the WWI network are considered in the 
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calculation; and NPA, NPB are respectively the number of pathways affected by 

drug DA and DB. In this equation, if Pi and Pj are different pathways, the 

distance between them is calculated by the shortest path length; if Pi and Pj is 

the same pathway, termed as co-regulated pathway, the distance in terms of this 

pathway is transformed from the target connections on the PPI network: 

, , ( , ) 1, ,

, ,

( , )

, , i

( , , ),                                              if 

( , )

( , , ) ,      if 

i j

T T T T linked T Ti P a j P b i ji i

T TP a P ai i

i i

i j WWI i j

d T T

i j

N N

P a P b PPI j

SPL P P G P P

d P P

F T T G e P P

∈ ∈ =
−

≠
 ∑= 


= =

 

where ,iP aT  and ,iP bT  respectively represent Drug A and Drug B’s targets which 

belongs to the co-regulated pathway Pi, SPL(Pi,Pj,GWWI) represents the shortest 

path length between Pi and Pj on the WWI network, and the target distance 

between two Targets Ti and Tj was defined as : 

i

( , , ), if 
( , )

0, if 

i j PPI i j

i j

j

SPL T T G T T
d T T

T T

≠
= 

=
 

where SPL(Ti,Tj,GPPI) represents the shortest path length between Ti and Tj on 

the PPI network. 

  This WNS-score was applied to predict the potential synergistic relations 

between two drugs. All candidate drug pairs were ranked by this score, the 

top-ranked ones are more likely to be synergistic combinations. 

  For comparison purpose, a simplified version of WNS-score (SWNS-score) 

was also calculated. For SWNS-score, we didn’t consider the target 

associations within certain co-targeted pathway, that is to say, when two drugs 

target on the same pathway, the pathway-distance between these two drugs was 

regarded as zero: 

Page 26 of 31Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



26 

 

26 
 

'

i

( , , ),    if 
( , )

0,                               if 

i j WWI i j

i j

j

SPL P P G P P
d P P

P P

≠
= 

=
 

Except of the pathway distances concerning co-targeted pathways, the 

SWNS-score was calculated in the same way of WNS-score. 

Performance evaluation 

Fold enrichment analysis. To check whether the drug pairs with high 

WNS-scores are more likely to be synergistic combinations, all candidate drug 

pairs in both positive and negative datasets were ranked by the WNS-score and 

binned into groups of 500 drug pairs. A fold enrichment score is defined as 

/ 500

/

m

M N
 
45
, where m is the number of SDPs within one certain bin of 500 drug 

pairs, M is the number of all SDPs, and N is the number of all drug pairs 

investigated. The denominator represents the expected percentage of SDPs in 

any bin if all SDPs equally distribute in the ranked list, the nominator 

represents the observed percentage of SDPs in the bin. If this score is high for 

certain bin, it represents the SDPs are more likely to be ranked in that bin. 

ROC curve. ROC curves were applied to evaluate the precision of different 

methods. A ROC curve is created by plotting the true positive rate (TPR) 

against the false positive rate (FPR) at various threshold setting. TPR is defined 

as: 
FNTP

TP
TPR

+
= , and FPR is defined as:

TNFP

FP
FPR

+
= , where TP, TN, 

FP and FN respectively represent the number of true positives, true negatives, 

false positives and false negatives. In this study, true positives refer to SDPs 

with scores larger than threshold; true negatives refer to NSDPs with scores less 

than threshold; false positives represent NSDPs with scores larger than 
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threshold; while SDPs with scores less than threshold are regarded as false 

negatives. The area under the ROC curve (AUC) can describe the ability of an 

evaluation score to rank synergistic drug pairs higher than random ones. 

Thresholds determination 

To determine the thresholds for both the p-values of gene-overlapping WWIs 

and the interacting coefficient of protein interaction WWIs, we tried to 

calculate the WNS-scores based on WWIs under different thresholds, and the 

one which can lead to the best performance in distinguishing SDPs and NSDPs 

was utilized as the final threshold. As shown in Figure 5, gene-overlapping 

WWIs with p-values less than 0.001 can lead to the best performance (AUC: 

0.75), and protein-interacting WWIs with coefficients larger than 0.001 perform 

best (AUC: 0.69). Consequently, these best-performance thresholds were taken 

as the final thresholds in the study. There were respectively 4929 

gene-overlapping WWIs and 12436 protein-interacting WWIs, with 4038 

WWIs belonging to both types. 

  

Figure 6. Performance of WNS-scores based on WWIs under different 

thresholds. The ROC curves were plotted according to the WNS-scores of the 
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positive and all three negative datasets. A. ROC curves of WNS-scores based 

on gene-overlapping WWIs determined by different thresholds of p-values. B. 

ROC curves of WNS-scores based on protein-interacting WWIs determined by 

different thresholds of interacting coefficient. 
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