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Data fusion has been widely applied to analyse different sources of information, combining all of them in a single 

multivariate model. This methodology is mandatory when different omic data sets must be integrated to fully understand 

an organism using a systems biology approach. Here, a data fusion procedure is presented to combine genomic, proteomic 

and phenotypic data sets gathered for Tobacco etch virus (TEV). The genomic data correspond to random mutations 

inserted in most viral genes. The proteomic data represent both the effect of these mutations in the encoded proteins and 

the perturbation induced by the mutated proteins to its neighbours in the protein-protein interaction network (PPIN). 

Finally, the phenotypic trait evaluated for each mutant virus is replicative fitness. To analyse these three sources of 

information a Partial Least Squares (PLS) regression model is fitted in order to extract the latent variables from data that 

explain (and relate) the significant variables to the fitness of TEV. The final output of this methodology is a set of functional 

modules of the PPIN relating topology and mutations with fitness. Throughout the re-analysis of these diverse TEV data, 

we generated valuable information on the mechanism of action of certain mutations and how they translate into 

organismal fitness. Results show that the effect of some mutations go beyond the protein they directly affect and spread 

on the PPIN to neighbour proteins, thus defining functional modules. 

1. Introduction 

Complex networks are widely used nowadays to model 

systems in several fields, e.g. sociology, physics, technology, or 

linguistics
1,2

. However, it is in biology, with the omics 

revolution, where complex networks are being applied in a 

broader range (metabolomics, proteomics, genomics...). The 

case of protein-protein interaction networks (PPINs) is of 

special interest. PPINs represent a map of physical contacts or 

functional interactions between proteins
3
. Graphs are the 

most commonly used tool to visually represent these maps, 

being the nodes the proteins of the network, and the edges 

their interactions. For this, graph theory
1,2

  is usually applied to 

extract statistical and topological descriptors from the PPINs as 

a first step. Then, other graph theory tools, usually applied on 

social or computer complex networks (e.g. clustering 

algorithms
4
), are used to identify functional modules within 

the network. 

The present work is carried out using the case of potyviruses. 

Potyvirus is the largest genus within the Potyviridae family, 

containing more than 180 different members. Indeed, the 

Potyviridae are among the most common plant RNA viruses
5
. 

Potyviruses have a single-stranded, positive-sense RNA 

genome of approximately 10 kilobases (kb). Their genomes 

encodes for eleven different proteins: P1, HC-Pro, P3, 6K1, CI, 

6K2, VPg, NIaPro, NIb, CP, and P3N-PIPO. Its PPIN is composed 

by the interactions established at different stages of the 

infectious cycle between these eleven proteins. Since 

biological activity usually arises from the association of several 

proteins, it is crucial to relate these elements (proteins and 

interactions) with a biological function or phenotype. In this 

study, the data is obtained from a collection of 20 Tobacco 

etch virus (TEV) single nucleotide substitution mutants and 53 

double mutants resulting from the pairwise combination of the 

single ones
6
. For each of these 73 mutant genotypes, absolute 

fitness was evaluated in its natural host Nicotiana tabacum var 

Xanthi nc during a single infection cycle
6
. Complementary, a 

PPIN inferred from empirical protein-protein interaction (PPI) 

data from several potyviruses
7
 is used to relate the mutations 

and the organismal fitness. A mutation in a protein may 

change (slightly or dramatically) its ability to perform its 

biological functions correctly. The mutated TEV proteins 

establish interactions with other viral proteins according to the 

PPIN of potyviruses
7
. Since viral proteins are multifunctional, 

and they carry out some of their functions as protein 

complexes, it is reasonable to assume that a part of the effect 

of the mutated protein on the fitness is channelled through its 

PPIs. In other words, mutations affect PPIs, which ultimately 

affect biological fitness. Some mutations are much more 

harmful while others have no fitness effect. The PPIN of 
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Potyvirus adds biological context to the mutation and allows 

for a deeper analysis of the importance of each protein in the 

virus’ infectious cycle. 

Some assumptions are made in the present approach. The 

main one is that each mutation affects all the PPIs of a 

mutated protein in the same way. Probably the true 

modifications are subtler, depending also on other factors. 

Proteins are highly heterogeneous structures and 

modifications in different parts of their sequence may have 

different biological consequences for different interactions. 

However, the lack of available data and their nature 

constrained the present study. The problem revolves around 

two issues. On the one hand, there are protein residues or 

domains that are much more sensitive to mutations than 

others. Mutations in some locations, such as the catalytic site 

of an enzyme, are potentially much more harmful for its 

function than mutations affecting other domains. In this study 

we have available data for only 73 mutants for a genome of 10 

kb encoding for eleven proteins. Instead of relating mutants 

and fitness directly, the present approach relates mutants with 

fitness using proteins and interactions between them as a way 

to channel those effects and hopefully obtain useful 

information. Even with a relatively small pool of mutants it is 

possible to apply the proposed methodology and obtain valid 

results. 

On the other hand, very scarce information is available to 

particular interactions. One way to include variability in the 

influence of a particular mutation to each interaction could be 

carrying out a docking study. Having structural information of 

two proteins it would be possible to estimate the influence 

that any change in their sequences have on a possible docking 

between them. Unfortunately, none of the TEV proteins has 

been crystallographically determined so this analysis is not 

possible yet. Therefore, until no new proteomic information 

arises, the influence of mutations is spread equally to all the 

interactions that the mutated protein establishes. 

The problem of relating different sources of data has been 

widely assessed in Systems Biology using data fusion. Data 

fusion can be defined as a statistical procedure to analyse 

simultaneously different sources of complex data sets
8
. This 

methodology has been applied to identify genes related to 

specific diseases
9
, to PPINs and gene expression

10
, to fuse gene 

regulatory networks, transcriptional factors and amino acid 

sequences
11

, for metabolic profiling
12

 and for biomarker search 

in proteomics
13

. One of the most used methods in data 

fusion
12-16

 is Partial Least Squares regression
17

 (PLS), which 

pursues to relate a set of biological descriptors or process 

variables and a set of biological outputs or quality variables 

taking advantage of the existing correlations among them. 

The aim of the present work is to fuse genomic, proteomic and 

phenotypic data of potyviruses in a single multivariate model 

to understand the relationships among the different data 

sources. This way, the objective is to relate mutated proteins, 

their effect on the PPIN, and the resulting organismal fitness 

measured in controlled laboratory conditions. Fig. 1 shows a 

scheme of the data fusion. In this case, the mutations and the 

PPIN are the explanatory variable data blocks, and the fitness  

 

Fig. 1 Schematic representation of the study. The aim of this paper is to relate the 

mutations generated on the genome of TEV, their effect on the protein-protein 

interaction network, and the resulting phenotypic fitness of the virus in vivo. 

measured for each mutant take the role of the dependent 

variable. Finally, a set of functional modules of the PPIN is 

isolated using the PLS modelling. The purpose of this approach 

is to gain insight into the molecular interactions that occur 

during the virus infection more than to construct a robust 

predictive model. Similar grey models have been proposed 

during the last years, using exploratory
18-19

 and predictive 

methods
20

, dealing with metabolic networks. To improve the 

predictive power of the model we would need more genetic 

and proteomic information, such as the analysis of codon 

usage and, specially, the characterization of protein structure. 

Unfortunately, this information is not available at the moment.   

The rest of the paper is organised as follows. The Results 

section presents the results of the data fusion approach of the 

reconstructed and mutated PPIN of Potyvirus, the 

mathematical and statistical modelling, and the relevant 

modules of the network. Some conclusions on the analysis and 

future lines are drawn in Discussion and conclusions section. 

Finally, further information on the methodology and the 

reconstructed PPIN of Potyvirus can be found in Methods 

section. 

2. Results 

The following subsections explain in detail the data acquisition 

and the mathematical and statistical modelling. First, the PPIN 

of Potyvirus is built, based on an exhaustive literature review
7
. 

Then, the effects of mutations in the fitness of TEV are 
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measured in the natural host N. tabacum. Finally, the effect of 

the mutations on the PPIN is mathematically modelled, and 

the three sources of data (mutations, PPIN and fitness) are 

related using a multivariate statistical projection method. 

 

2.1. Protein-protein interaction network reconstruction 

All currently available PPIs of Potyvirus were gathered as an 

initial step
7
. This data was obtained from six different articles 

published over the last years
21-26

. In the original dataset 681 

PPIs were tested, 194 PPIs were detected among the 11 viral 

proteins. Integrating this data from different sources in a 

common pool required some statistical standardization and 

pre-processing. To determine which interactions were relevant 

and an accurate representation of the Potyvirus’ PPIN topology 

a relevance coefficient was defined (more details in 
7
). From 

this analysis, a complete and biologically significant PPIN of 

Potyvirus was built. This network (Fig. 2) is used here to relate 

mutations and organismal fitness and to extract information 

about biological importance of proteins and their interactions. 

 

2.2. Mutations and fitness 

The collection of single and double mutants used in this work 

was reported in 
6
. Twenty single nucleotide substitution 

mutants and 53 double mutant genotypes of TEV form the 

dataset analysed here. The fitness of these mutants had been 

previously quantified by means of growth assays in the natural 

host N. tabacum. Fitness is a measure that captures the ability 

of a mutant virus to grow and spread through the plant during 

an infection cycle relative to the ability of the unmutated wild 

type virus
27

. 

The collection of mutants was generated at random and thus it 

is somehow irregular, not affecting all TEV proteins: 6K1, CP 

and P3N-PIPO were not mutated (see Table 1). Moreover, 

some proteins like P1 and VPg were mutated more times than 

others such as 6K2, CI and NIb. Although a more complete 

collection of mutants would be very useful to further increase 

the accuracy of our findings, the collection of 73 mutants used 

for this study is a fair representation of the TEV genome and its 

11 proteins. 

 

 

Fig 2 PPIN of Potyvirus. Eleven proteins (represented as circles) and their 25 detected 

interactions (represented as double-arrows). 

Table 1 Mutations experimentally generated on the genome of TEV  

Mutation Protein type # of mutants 

PC2 P1 nonsynonymous 2 

PC6 P1 nonsynonymous 7 

PC7 P1 nonsynonymous 5 

PC12 P1 nonsynonymous 4 

PC19 HC-Pro synonymous 10 

PC22 HC-Pro nonsynonymous 6 

PC26 HC-Pro synonymous 4 

PC40 P3 synonymous 5 

PC41 P3 nonsynonymous 4 

PC44 P3 synonymous 5 

PC49 CI nonsynonymous 8 

PC60 CI synonymous 3 

PC63 6K2 nonsynonymous 10 

PC67 VPg nonsynonymous 4 

PC69 VPg nonsynonymous 13 

PC70 VPg nonsynonymous 5 

PC72 VPg nonsynonymous 3 

PC76 NIaPro synonymous 8 

PC83 NIb nonsynonymous 10 

PC95 NIb nonsynonymous 10 

 

The mutant collection has some features that make it an 

interesting and appropriate starting point for the data fusion. 

Six of the 20 single mutants correspond to synonymous 

mutations. In other words, the nucleotide substitution does 

not translate in an amino acid replacement in the protein 

sequence. In spite of being synonymous, some of these 

mutations had a significant effect on fitness
27

 due to RNA 

stability, enhanced RNA silencing responses or improved 

translational efficiency, among other possibilities. Although 

these mutations have no effect in the protein sequence and 

thus no predictable effect in the PPIN either, they represent a 

natural source of fitness variability that is taken into account in 

our results. Other particularity of the data is that lethal 

mutations exist, meaning those that render zero fitness for the 

virus bearing them, i.e. these mutations do not allow the virus 

to survive and grow. Nine of the double mutations are lethal. 

These mutations are excluded from the analysis because, if 

included, they will mask all the variability of non-lethal 

mutations varying fitness in a discrete manner. 

The effect of the mutations on the proteins can be quantified 

using different information. The most precise way to do it 

would be using structural information. Having the resolved 

structure of the viral proteins, it is possible to change a 

particular amino acid and observe how that change affects 

some structural variables. Some mutations would increase the 

stability of the protein and some would decrease it, defining a 

magnitude for the mutation. Unfortunately, as it was 

mentioned before, none of the TEV proteins has been 

crystallized making this approach unfeasible. Another 

approach consists of assuming that biochemically different 

amino acids would induce more severe perturbations in the 

structure conformation. This way a mutation changing an 

amino acid for another very similar would produce only a slight 

P1
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structural disturbance and consequently only a minor protein 

activity variation. An extremely different amino acid would 

produce a much more dramatic change in the protein activity. 

To represent the biochemical similarity or distance between 

the original amino acid in the sequence and the new one 

produced by the mutation we used an empirical amino acid 

substitution matrix. These matrices describe the rate at which 

one amino acid changes to any other over time. These 

matrices are commonly used in the field of protein sequence 

alignment, calculating the probability that a particular amino 

acid changes over time to a new one through mutation. The 

underlying idea is that an amino acid substitution is more likely 

to survive to the filter of selection if it is similar to the original 

amino acid than if it is physically very different. Similar amino 

acids would then preserve a similar folding structure and 

activity for the protein. Thus, we used the information 

contained in the entries of these matrices to quantify the 

magnitude of each mutation. Since the collection of mutants 

available is composed by single and double nucleotide 

mutations it seemed appropriate to use the Point Accepted 

Mutation
28

 (PAM)
 
matrix to compute the distances generated 

by the mutations. These matrices were developed using 

observed mutations in closely related proteins. Large numbers 

in the PAM matrix denote substitutions very likely to be 

removed by purifying natural selection, thus unlikely to persist 

in the long-term evolutionary time. Since the mutants used for 

this study have almost identical sequences it seemed more 

precise to use a low number PAM matrix. For this, we decided 

to use the PAM2 matrix
28

 to quantify the effect of the amino 

acid replacement on viral proteins. It was assumed that 

mutations with high PAM2 values would induce a strong 

disruption in the protein structure and, therefore, would have 

a high probability to negatively affect its biological function. 

 

2.3. Mathematical modelling 

Once the distance produced by each mutation is computed 

from the PAM2 matrix, the effect of the mutation on the PPIN 

has to be modelled. However, as commented previously, some 

mutations result in a zero distance (synonymous mutations). 

Since these mutations have no effect on the network, they 

may directly affect fitness without crossing the PPIN. The 

distances generated by all mutations are provided in 

Additional file 1, jointly with the fitness measured for all 

mutants. 

The distance registered for all nonsynonymous mutations is 

modelled as follows. The distance generated by an amino acid 

replacement, which affects a particular protein, weakens the 

existing interactions between the influenced one and its first-

step neighbours in the PPIN. Fig. 3 shows a small example of 

this modelling concept. If a mutation is produced on protein A, 

with a registered distance j, the interactions relating A with its 

neighbours, B and C, are weakened as follows: 

�~� = �~� = 1 −
�

	
 (1) 

 

Fig. 3 Small example of the mutation modelling. Initially, all detected interactions 

between proteins have a value 1. When a mutation is performed on protein A with 

distance j, the intensity of the PPIs A~B and A~C is lowered by k/U. 

where A~B and A~C mark the interaction between A and B, 

and A and C, respectively, and U is the reference value, which 

refers to the maximum value in the entire PAM2 matrix. In 

other words, the maximum distance an amino acid change 

defines. 

It is worth noting that the distance produced in the protein is a 

measure of how different is the protein after mutation. Then, 

this distance is translated into a strength/intensity measure in 

the network between the protein and its first-step neighbours. 

So no distance is being considered between different proteins 

in the PPIN. 

The different data sources presented in this study must be 

combined properly to be analysed using a latent structure 

method. Since PLS, in its original form, works with two-way 

data matrices, the information collected on the previous 

subsections must be arranged in such a way that each 

individual (i.e. experiment) is represented by rows, and the 

different types of variables (i.e. mutations, interactions and 

fitness) by columns. So three data matrices are built: the 

mutation matrix M has the 20 different mutations as variables, 

the interactions matrix I has the intensity in each of the 25 

interactions by columns, and the vector y has the fitness 

registered for each individual. All matrices have 64 rows, 

corresponding to the non-lethal mutants. Fig. 4 presents an 

example of the matrices defined above, following the small 

PPIN taken as an example in Fig. 3. In this case three 

individuals are considered, e.g. in Exp1 a nonsynonymous 

mutation is performed on protein A, producing a distance j and 

registering a fitness y1. Note that on Exp3 a synonymous 

mutation on protein A is performed, therefore, it has no effect 

on I, i.e. neither A~B nor A~C are lowered in this case. 

 

Fig. 4 Data matrices. Matrices M, I and vector y have the information from the 

mutations, interactions and fitness, respectively. Three examples are presented. On 

Exp1 a nonsynonymous mutation is performed on A, with distance j, and fitness y1. A 

nonsynonymous mutation on D is performed in Exp2, producing a distance k and 

fitness y2. On Exp3 a synonymous mutation is performed in A, producing no distance 

(and no effect on I), and a fitness y3. The colours correspond to the data sources 

described in Fig. 1. 
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2.4. Statistical modelling 

The data matrices built in the previous subsection can be 

analysed using different statistical techniques. Considering 

only mutations and fitness, a design of experiments (DOE) can 

be performed, but this approach presents some drawbacks 

here. There are 20 different mutations performed individually 

or two-by-two, across the original 73 individuals. A model 

including only mutations and fitness could be fitted using 

penalized regression (such as Lasso
29

 or Elastic Net
30

) to 

prevent rank deficiency problems. However, it is known that 

the PPIs affect the fitness, so in the previous approach this 

effect is not taken into account.  

Other possible approach consists of relating all the interaction 

strengths/intensities with the fitness, using classical linear 

regression. The problem is that the mutations are performed 

on different proteins and affecting different interactions, 

which may not be comparable in this model. 

In this work, a PLS regression is applied to fuse the genomic, 

proteomic and phenotypic data in a single multivariate model, 

being the first two sources the explanatory variable blocks and 

the phenotypic fitness the dependent variable. Using a PLS 

model, the available data is compressed into a set of latent 

variables that relates mutations and interactions with the 

observed fitness. This allows to clarify which mutations, and 

also which sections of the network, increase or decrease the 

fitness of TEV. 

The different data sources, detailed in previous subsections, 

have to be pre-processed in order to obtain meaningful 

components in the PLS model. In the present case the dataset 

is directly autoscaled, i.e. the variables are centred and divided 

by its standard deviation to have mean 0 and standard 

deviation 1. 

Regarding the statistical modelling, the PLS model can be 

strongly (and harmfully) affected by some of the mutants 

compiled for the present study. As commented above, lethal 

mutations decrease the fitness straight to zero, while for the 

non-lethal mutations it oscillates in a small range around the 

fitness of the wild-type virus. The inclusion of the lethal ones in 

the study will force the model to explain only the variation 

between the lethal and non-lethal, pointing simply to the 

mutations that have been lethal. To avoid this spurious result, 

and explain equally the positive and negative effect of the 

mutations and interactions on the fitness of TEV, these lethal 

genotypes have been removed from the datasets. This relates 

directly with the way in which mutation severity is quantified. 

PAM matrices are constructed assuming non-lethal scenarios. 

Even the most extreme amino acid substitution is quantified in 

the prerequisite of biological success. Therefore it is sensible 

to exclude the lethal mutations from the main analysis, since 

the benchmark chosen to represent mutation magnitude 

excludes them originally. 

Once the data is prepared for the analysis, a PLS model is fitted 

using the software ProSensus ProMV
31

. To decide how many 

components extract from the data, the cross-validation 

criterion using seven groups is selected (more details in  

 

Table 2 PLS regression results (reduced model). Cumulative variances in X = [M I] and y 

explained by the model (R
2
X and R

2
y, respectively) and predictive power of the model 

(Q
2
). 

Component R
2
X cumulative R

2
y cumulative Q

2
 cumulative 

1 11.8% 57.6% 39.5% 

2 23.4% 70.0% 46.7% 

3 30.1% 78.3% 56.7% 

 

Methods section). The aim of this criterion is to choose the 

number of components that offers the highest predictive 

power. 

First, a PLS model including all X and y variables is fitted. Later 

on, a reduced PLS model is obtained by deleting some 

mutations and interactions that have a very low influence on 

the fitness. These mutations are PC12, PC67, PC69, and PC72. 

The PPIs deleted are: HC-Pro~VPg, VPg~VPg, VPg~NIaPro and 

VPg~CP. Basically, these variables have a non statistically 

significant PLS regression coefficient in the first PLS model 

(95% of confidence level). The results of the first PLS model 

can be found on Additional Files 2-3.  

Table 2 shows the results of the reduced PLS model. For the 

analysis, matrices M and I are merged in a single matrix X, 

including all the variables collected in the study. With a 3-

component model, 30.1% of the variability in X explains 78.3% 

of variance in the fitness, y), with a predictive ability of 56.7%. 

It is worth noting that although network topology is definitely 

a major contributor to the variance of the fitness, there are 

some other factors that are not included in this particular 

approach, harming the predictive power of the PLS model. 

RNA structure stability and codon usage bias are two clear 

examples of important contributors to fitness that are not 

included in the analysis.  

Fig. 5 shows the PLS regression coefficients of the variables in 

the dataset. The red bars mark the statistically significant PPIs 

and mutations. The relevant ones are chosen based on the 

95% Jackknife confidence intervals computed for their 

correspondent PLS regression coefficient
32

. In this way, when 

the interval does not include zero, the variable has a relevant 

effect on the fitness, either positive or negative, with a 95% 

confidence level. 

Fig. 5 PLS regression coefficients. For each regression coefficient, the 95% Jackknife 

confidence interval is shown. The statistically significant variables are plotted as red 

bars. The mutations with a relevant effect on the fitness are PC6, PC19, PC22, and 

PC83. The significant PPIs are: P1~CI, P1~VPg, HC-Pro~HC-Pro, HC-Pro~NIaPro, 

6K2~NIaPro, NIaPro~NIb, NIb~NIb, and NIb~CP. 
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PC22 has a statistically significant negative effect on the 

resulting fitness of TEV; i.e. when this mutation is generated in 

the genome, the fitness lowers its value (see Fig. 5). PC6, PC19, 

PC63, and PC83 also affect fitness, but in a positive direction. 

The fitness increases when either of these mutations is present 

in TEV genome. It is worth noting that a PLS model using only 

the mutations and the fitness identifies basically the same 

relevant mutations as the combined mutations-interactions 

model, but with less explained variance and predictive power 

in fitness (70.1% and 47.0%, respectively). 

The PPIs P1~CI, P1~VPg, 6K2~NIaPro, NIaPro~NIb, NIb~NIb, 

and NIb~CP have a statistically significant negative effect on 

the fitness (see Fig. 5). Bearing in mind the mathematical 

modelling, when a mutation is performed, the corresponding 

interactions lower their values. So, the negative correlation 

interaction value, the higher is the fitness computed. 

Alternatively, HC-Pro~HC-Pro and HC-Pro~NIaPro have a 

statistically significant positive effect on the fitness, i.e. the 

lower the value of the interaction, the lower the fitness 

computed is.  

All the statistically significant variables, mutations and PPIs, 

are summarized in Table 3. This information will be valuable to 

define the functional modules in the next subsection. 

 

2.5. Functional modules 

On the previous subsection, the explanatory variables, PPIs 

and mutations with a statistically significant effect on the 

organismal fitness, are identified among the rest of the 

variables registered. In order to finally establish the 

relationships among the three data sources, following the 

scheme proposed in the Background section (see Fig. 1), the 

genomic-proteomic-phenotypic effect must be explained using 

the information in Table 3. If the relevant mutations and PPIs 

are represented on the original PPIN (see Fig. 6) some 

interesting conclusions can be drawn. 

Mutation PC6, affecting protein P1, is positively correlated 

with TEV fitness. At the same time, interactions P1~VPg and 

P1~CI are also relevant in the PLS model, being negatively 

correlated with viral fitness. These mutation-fitness effect and 

interactions-fitness effects represent a unified mutation- 

interactions-fitness effect. Fig. 7 shows a scheme of this 

process: when PC6 is generated on P1, the interactions with its 

neighbours VPg and CI lower their values, and the fitness is 

increased as a result. A cyan ellipse in Fig. 6 rounds this 

functional module. 

 Table 3 Statistically significant explanatory variables. +/- superindices mark the 

positive/negative effect of the variable on the fitness. 

 Mutation Protein affected Interactions 

PC6
+
 P1 P1~C1

-
, P1~VPg

-
 

PC63
+
 6K2 6K2~NIaPro

-
 

PC83
+
 NIb NIb~NIaPro

-
, NIb~NIb

-
, NIb~CP

-
 

PC22
-
 HC-Pro HC-Pro~HC-Pro

+
, HC-Pro~NIaPro

+
 

PC19
+
 HC-Pro (synonymous mutation) 

 

 

Fig 6 Functional modules of TEV PPIN. The cyan module is activated via mutation 

PC6 in protein P1 and affects proteins CI and VPg. The violet module is activated 

by mutation PC63 on protein 6K2 and affects protein NIaPro. The blue module is 

activated via mutation PC83 in protein NIb and affects CP and NIaPro. The brown 

module is activated via mutation PC22 in protein HC-Pro and affects HC-Pro and 

NIaPro. The synonymous mutation PC19 is performed in HC-Pro. Mutation PC22 

has a negative effect on the fitness while the rest of the mutations have a 

positive effect. 

 

This behaviour is also observed with the blue and violet 

modules (see Fig. 6). The former one is activated via mutation 

PC83 on protein NIb, and affects NIaPro and CP. The latter 

starts with mutation PC63 on 6K2, affecting only its 

relationship with NIaPro. When these sections are activated, 

the fitness increases. In this way, Fig. 7 can also represent the 

behaviour observed in these modules, replacing the mutations 

and interactions names. 

Two mutations affecting HC-Pro have a statistically significant 

effect. When mutation PC22 is generated, the PPIs HC-Pro~HC-

Pro and HC-Pro~NIaPro are affected (brown module in Fig. 6) 

and the phenotypic fitness decreases. Alternatively, PC19 is 

positively correlated with the fitness: when it is introduced in 

HC-Pro, the fitness increases significantly. Both mutations are 

compatible with the mathematical modelling due to PC19 is a 

synonymous mutation, and therefore it has no effect on the 

PPIN network. Fig. 8 shows the different effects related to HC-

Pro. This modelling would be infeasible if PC19 were a 

nonsynonymous mutation. In this hypothetical case, since it 

would affect HC-Pro~HC-Pro and HC-Pro~NIaPro, it would be 

incoherent that the mutation increase the fitness and its 

associated interactions lower its value at the same time. 

 

Fig 7 Diagram of mutations - PPI - fitness effects. The mathematical modelling implies 

that, when mutation PC6 is applied, the protein-protein interactions P1~VPg and P1~CI 

lower their values (1). The data fusion results indicates that: (i) when PC6 is applied the 

fitness increases (2), and (ii) when the previous interactions lower their values, the 

fitness increases (3). The mathematical and statistical modelling are describing the 

effect of the mutation on the protein-protein interaction network and the effect of the 

network on the fitness. 

P1

6K1

P3

CI

CP

NIb

6K2VPg

P3N-PIPO

HC-Pro

NIaPro

PC22

PC19

PC83

PC6

PC63+ Fitness

- Fitness

PC6
P1  VPg

P1  CI
Fitness

3

21 ~

~

mutation protein-protein interaction network fitness
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Fig 8 Diagram of mutations - PPI - fitness effect in the case of multifunctional protein 

HC-Pro. The mathematical modelling implies that, when mutation PC22 generated in 

HC-Pro, the protein-protein interactions HC-Pro~HC-Pro and HC-Pro~NIaPro lower their 

values (1). The data fusion results indicates that: (i) when PC22 is introduced the fitness 

decreases (2), and (ii) when the previous interactions lower their values, the fitness 

decreases (3). When PC19 is generated, the fitness increases (6). All the effects 

described in this diagram are coherent among them because PC19 is a synonymous 

mutation; therefore it has no effect on the protein-protein interaction network (4 and 

5). 

Two comments are here in due regarding the functional 

modules (Fig. 6). Firstly, if an interaction between two proteins 

is included in a module (e.g. P1~CI) implies that the effect of 

the interaction on the fitness is statistically significant, 

considering that it can be activated by nonsynonymous 

mutations performed on both proteins (i.e. P1 and CI). 

However, the effect is stronger when the mutation defining 

the module is performed (i.e. PC6 on P1), since the mutation is 

activating other relevant interactions (i.e. P1~VPg). Secondly, if 

an interaction activated by a key mutation is not included in 

the correspondent module (i.e. interaction 6K2~VPg, activated 

via mutation PC63) implies that the effect of the interaction, 

considering that it can be activated by nonsynonymous 

mutations performed on both proteins (i.e. 6K2 and VPg), is 

not statistically significant. 

High-level and mid-level data fusion procedures obtain 

separate models and extract relevant features of each data 

matrix, respectively, to combine them in a fused model to 

predict the biological output
33

. In this study, however, we 

decide to apply a low-level data fusion, concatenating row-

wise, matrices M and I because the mathematical modelling 

applied here establish a direct relationship between the 

mutations and the PPIN, so the joint analysis of both matrices 

in a single PLS model lead us to identify functional modules 

exploiting not only the mathematical modelling but also the 

topological interactions being affected by the different 

mutations. 

3. Discussion and conclusions 

The PLS modelling applied to genomic, proteomic and 

phenotypic data sets allows us to integrate the mutations 

performed on viral proteins, its effect on the PPIN, and its 

influence on the organismal fitness experimentally quantified. 

In this way, three biological functional modules affecting the 

PPIN and influencing the fitness positively have been detected. 

Two additional modules are identified affecting a single 

protein. One influences the protein network, being negatively 

correlated with the organismal fitness. The other one has a 

positive effect on the fitness without affecting the PPIN. This 

implies that different mutations affecting the same protein 

induce different behaviours in the activity of the PPIN and the 

resulting fitness. 

Classical clustering algorithms usually work with a standalone 

version of the network, detecting dense sections of the 

topology based solely on its interaction intensities (or basically 

on node degrees). In comparison to traditional clustering, the 

presented methodology allows working with different sources 

of information, combining them to squeeze the data and 

extract the relevant information. With this data fusion, (i) the 

mutations are related to topological changes on the network 

and its subsequent influence on the fitness, and (ii) the 

mutations not affecting the network can also be related to the 

fitness. 

Data fusion reveals as a very powerful tool to analyse and 

relate different types of biological information. The larger the 

network and the collection of mutants, the more precise its 

findings are. The present study, analysing a relatively small 

PPIN (11 nodes and 25 interactions) and a small number of 

combinations of mutations (64 out of the 210 possible ones), 

results in a quite high-explained variability. However, there are 

intrinsic biological considerations that limit the scope of the 

method. These considerations, such as RNA stability, efficiency 

inducing the antiviral RNAi response of the plant and codon 

usage bias may be included in the model as additional sources 

of variability but much more data would be needed. Besides 

this, further work of interest includes testing the proposed 

methodology with a larger dataset containing more mutants, 

and extending the analysis to larger PPINs, in order to build 

multivariate models with a higher predictive power, exploiting 

the features of the projection to latent structure methods. 

4. Methods 

4.1. Amino acid substitution matrix 

Describing and measuring the severity of the mutations 

produced in TEV genome is essential for applying the data 

fusion methodology in this work. As it was briefly commented 

before, the PAM2 amino acid substitution matrix is used to 

quantify the potential severity that a mutation produces in the 

virus. Although PAM2 is based in evolutionary changes over 

time, and it is used more often in sequence alignment 

methods, it is still a valuable and proved source of information 

regarding the likelihood of amino acid substitutions. It is 

assumed that if a determined change from a particular amino 

acid to another one is evolutionarily unlikely it is because such 

change is potentially more disturbing to the protein function. 

Alternatively, evolutionarily common amino acid replacements 

are assumed to have a minor impact on protein structure. 

We used the scores in the matrix to quantify the effect of the 

mutations on each of the 73 mutants used in the present study 

(Equation 1). Each mutation gives a value that represents the 

difference between the substitution of a particular amino acid 

by itself (meaning no mutation at all) and the new amino acid 

PC22
HC-Pro  HC-Pro

HC-Pro  NIaPro
Fitness

3

21

PC19
4

X    Fitness

6

5

~

~

mutations protein-protein interaction network fitness

X    
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in the sequence. For instance, mutation PC2 produces an 

amino acid change between F and C. The matrix establishes a 

score of nine for the F to F substitution (no change) and -30 for 

the F to C substitution. The difference (39 in this example) 

between these values represents how similar (chemically and 

structurally) both amino acids are. We then normalized that 

value for all mutations with the maximum possible value for a 

change among the 20 amino acids (W to E replacement, with a 

difference value of 47). Since, in the absence of epistatic 

interactions, double mutants are potentially twice as harmful 

as single mutants, in order to compare all mutants (single and 

double) we chose as normalizing value 2 · 47 = 94. 

Equation 1 then gives a value between 0 and 1 that expresses 

how potentially disturbing is the mutation for the protein 

(being 0 the most aggressive and 1 the least). This approach is 

a rough way to translate qualitative (mutations and amino acid 

changes) into quantitative data. The way this quantitative data 

is used later would imply that when a particular mutation is 

given the value of 0 the function of the protein is totally 

eliminated. However, this is unlikely to happen: even with very 

severe mutations the proteins may perform their functions 

with some lesser degree. This approach should be taken as an 

indication of the direction that the protein function may take. 

On the other hand, proteins are very complex and 

heterogeneous structures and therefore some areas of the 

sequence may be particularly sensible to changes (catalytic 

sites, docking areas, etc). Unfortunately, the 3D structure 

information needed to precisely quantify this severity is not 

yet available for any TEV protein. 

 

4.2. Partial least squares regression (PLS) 

Partial least squares regression (PLS) is a multivariate 

projection method commonly applied to model the 

relationships between a set of X variables (descriptors or 

process variables) and a set of Y variables (output or quality 

variables) reducing significantly the dimensionality of the initial 

data set. The PLS model finds a set of latent variables (LVs) 

that both describe the X data and predict the Y data, with the 

aim of maximising their covariance. 

In the present study, since the Y data comprises only a single 

variable y (fitness), the PLS-1 version of PLS regression is 

applied. When the number of Y-variables increases, these 

variables have to be projected in the same manner as the X 

ones (more details in 
17,34

). The first step of PLS-1 consists on 

obtaining the scores of X as linear combinations of its original 

variables (Equation 2). 


 = ��∗ (2) 

where W
*
 is the weighting matrix of the X variables. 

These new variables are, multiplied by the loadings matrix P, 

good summaries of X, i.e. the residual matrix E in the equation 

X = TP
T
 + E, have small entries. Additionally, the T variables are 

built in such a way
17

 that they are good predictors of y. Then, 

the y variable can be expressed as follows: 

� = 
� + � = ��∗� + � = ��∗ + � (3) 

where c is the loadings vector of y, f is the residual vector and 

b
*
 is the PLS regression coefficients vector. 

 

4.3. Cross-validation and Jackknife confidence intervals 

Cross-validation (CV) is a resampling technique widely used in 

statistics and chemometrics
35

. The aim of CV is to assess the 

number of relevant components to be extracted in the 

multivariate model. This procedure groups the observations, in 

the present study into seven groups, and then fits as many PLS 

models as groups, leaving each time a single group out. Then, 

the sum of squares of the differences between the actual 

fitness values and the predicted ones are used to estimate the 

predictive ability of the model
17

. CV is usually performed one 

component after another, until the predictive power of the 

model decreases. 

Simultaneously with the CV, the Jackknife confidence intervals 

for the PLS regression coefficients are computed, at a 

confidence level of 95%, from all models fitted
32

. These 

intervals are built based on the estimated PLS regression 

coefficients of each round of the CV. 

 

4.4. Software 

The PLS model and the correspondent plots shown in the 

present study are built using ProSensus ProMV
31

 version 

14.0.8. 

Supplementary files 

Additional file 1. Mutations performed on TEV, distances 

registered and fitness measured. 

Additional file 2. PLS regression results (first model). 

Additional file 3. PLS regression coefficients (first model). 
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