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Molecular docking studies and 2D analyses of DPP-4 inhibitors as 

candidates to the treatment of diabetes 

Simone Queiroz Pantaleão,a Vinicius Gonçalves Maltarollob, Sheila Cruz Araujoa, Jadson Castro 
Gertrudesc and Kathia Maria Honorioa,c* 

Dipeptidyl peptidase-4 (DPP-4) is an important biological target related to the treatment of diabetes as DPP-4 inhibitors 

can lead to an increase in the insulin levels and a prolonged activity of glucagon-like peptide-1 (GLP-1) and gastric 

inhibitory polypeptide (GIP), being effective in the glycemia control. Thus, this study analyses the main molecular 

interactions between DPP-4 and a series of bioactive ligands. The methodology used here employed molecular modeling 

methods, such as HQSAR (Hologram Quantitative Structure-Activity) analyses and molecular docking, with the aim of 

understanding the main structural features of the compound series are essential for the biological activity. Analyses of the 

main interactions in the active site of DPP-4, in particular, the contribution of the hydroxyl coordination between Tyr547 

and Ser630 by the water molecule, which is described in the literature as important for the coordinated interactions in the 

active site, were performed. Significant correlation coefficients of the best 2D model (r2 = 0.942 and q2 = 0.836) were 

obtained, indicating the predictive power of this model for untested compounds. Therefore, the final model constructed in 

this study, along with the information from the contribution maps, could be useful for the design of novel DPP-4 ligands 

with improved activity. -----------------------------------------------------------------------------------------------------------------------------------

1 Introduction 

 Diabetes is characterized by a metabolic disorder in the 

protein synthesis and storage, cell uptake and use of 

carbohydrates. The occurrence of this imbalance may originate 

in insulin resistance.1 Metabolic diseases such as diabetes and 

obesity are considered as the century epidemy.1-3 According to 

the International Health Organization, there are over 347 

million people with diabetes and it is predicted that, around 

2030, it will become the seventh leading cause of death 

worldwide. The lack of awareness about diabetes, combined 

with poor access to health services and essential medicines, 

can lead to severe complications such as blindness, 

amputation and kidney failure.4 The most common 

complications of diabetes include: (1) hypoglycemia that 

occurs when there is large amount of released insulin, (2) 

inflammatory reactions, which may contribute to the 

development of vascular complications and atherosclerosis, (3) 

microangiopathy that can lead to myocardial infarction, stroke 

and gangrene of lower members. Other complications involve 

retinopathy, edema, microaneurysms, nephropathy frames, 

symmetrical peripheral neuropathy affecting motor and 

sensory nerves of the lower limbs, and others.1,5,6  

 For the diabetes treatment, there are the following drugs 

available in the market: insulin, secretagogues (sulfonylureas 

and incretins) and hypoglycemiants (biguanides, 

thiazolidinediones and α-glucosidase inhibitors), as well as the 

combination of different drug classes.7-13 These drugs are 

effective but can result in side effects such as cardiac 

complications, bone density loss, fluid retention, weight gain, 

digestive problems and urinary tract. From these 

consequences, the progression of diabetes constantly 

challenges the search for new drugs with tolerable side effects 

and easy acquisition by population. Inhibitors of dipeptidyl 

peptidase-4 (DPP-4) enzyme are considered as a recent 

pharmacological class to treat diabetes, which lead to an 

increase in the insulin levels and a prolonged activity of 

glucagon-like peptide-1 (GLP-1) and gastric inhibitory 

polypeptide (GIP), being effective in the glycemia control.9,10 

This control mechanism of insulin, associated with the 

distribution of energy for the cells of body tissues, is 

responsible for the glucose transport across the cell wall.14 

 DPP-4 is also known as adenosine deaminase complexing 

protein 2 or CD26 (cluster of differentiation 26) and is encoded 

by DPP4 gene in humans. DPP-4 enzyme is expressed on the 

surface of most cell types and is associated with immune 

regulation, signal transduction and apoptosis. It is responsible 

for the degradation of incretins such as GLP-1. DPP-4 inhibition 

prevents the inactivation of glucagon-like peptide 1 (GLP-1), 

which increases the insulin secretion, thereby lowering glucose 

levels. It is important to mention that, in the case of serine 

peptidases, the region of the catalytic domain that comprises 

the catalytic triad (Ser630, Asp708 and His740), the subdomain 
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region with the presence of Tyr547, Tyr666, Ser630 (the latter 

residue is responsible for the interaction of the subdomain-

field regions), as well as structural water molecules, that 

establish the coordination with these aminoacids, are essential 

to understand the main interactions between the biological 

target and the bioactive ligands.11,12 

 With the aim of analyzing the main molecular fragments 

related to the DPP-4 inactivation, we employed HQSAR 

(Hologram Quantitative Structure-Activity Relationships) 

technique, which is capable of generating 2D maps with 

positive and negative fragment contributions for the biological 

activity, allowing the planning of new ligands with better 

biological potential.15-18 Other technique used in this study was 

molecular docking, which helps the understanding of the main 

interactions between the studied compounds and the residues 

in the active site of DPP-4. The combination of HQSAR and 

molecular docking analyses allows us to understand the main 

ligand-receptor interactions, as well as indicating molecular 

modifications for the design of new DPP-4 inhibitors. 

2 Methodology 

2.1 Compound set 

 60 inhibitors of the DPP-4 enzyme, derived from 3-

aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones; quinoline; 

3-pyridylacetamide and 3-pyridylacetic acid, were employed in 

all molecular modeling studies. These compounds were 

synthesized and the biological activity (IC50 concentration) was 

measured under the same experimental conditions, as 

performed by Banno et al.
19, Maezaki et al.

20 and Miyamoto et 

al.
21,22. For the construction of the statistical models, the IC50 

values were converted to pIC50 (-logIC50) and the compounds 

were grouped in training and test sets, containing 80 and 20% 

of the total number of compounds, respectively. In order to 

perform the training and test splitting, the compounds were 

divided in 4 subsets according to the pIC50 values: subset 1 

(pIC50 ≥ 5 and < 6); subset 2 (pIC50 ≥ 6 and < 7); subset 3 (pIC50 ≥ 

7 and < 8) and subset 4 (pIC50 ≥ 8 and ≤ 9). After the splitting of 

the compounds, we employed MATLAB software23 to perform 

a random selection of the test compounds, considering each 

pIC50 range and respecting an homogeneous distribution 

(chemical diversity) in both training and test sets (Figure 1). 

The structure of the studied compounds and the pIC50 values 

are presented in Table S1. 

 
Figure 1. Distribution of the compounds in the training and 

test sets according to the pIC50 range. 

2.2. HQSAR 

 Using the 60 selected compounds, we employed the 

HQSAR technique to generate a 2D model that correlates the 

molecular hologram (fragments derived from the 2D structure 

and its respective contributions) with the biological activity 

(expressed as pIC50 values). For the generation of the 

molecular hologram, some parameters are varied during this 

procedure, such as the distinction of fragments using 

information on atoms (A), bonds (B), connections (C), 

hydrogen atoms (H) chirality (Ch) and hydrogen bonds 

acceptor/donor (DA), as well as the fragment size (defined by 

the number of atoms) and the fragment length (amount of 

binary descriptors related to fragment count). The molecular 

holograms are mathematical representations of the fragments 

present in each compound of the dataset and can be related to 

the biological response from the use of multivariate 

techniques, such as partial least square (PLS) regression.24 

 After the construction of the HQSAR model, the holograms 

can graphically be converted in contribution maps using a 

range of specific colors that represent the contribution of the 

fragments to the biological activity. 12 In this study, the quality 

of the models was evaluated taking into account the internal 

validation coefficient (q2) values obtained from leave-one-out 

(LOO) cross validation method, as well as the regression 

coefficient (r2) values and the respective errors. After the 

construction of the best 2D model and the respective internal 

validation, other validation procedures were carried out with 

the aim of verifying the robustness, the predictability and the 

applicability domain of the constructed HQSAR model. The 

construction and validation of the HQSAR model were 

performed employing the computational package Sybyl 8.1.25 

2.3. Molecular Docking 

 After all HQSAR analyses, molecular docking studies were 

performed in order to combine the information provided from 

the HQSAR model and the binding mode of the studied DPP-4 

ligands. For all molecular docking studies, we used GOLD 5.0 

software26 which employs genetic algorithm to generate the 

poses (conformations) of the ligands at the active site of the 

biological target. 
 The docking protocol employed in this study consisted in 
the following steps: (i) preparation of the ligands (construction 
of 3D structures, setting the protonation state according to the 
physiological pH and calculation of the atomic charges 
employing PM3 semi-empirical method27 from the MOPAC 
software28, implemented in Sybyl 8.1 package25; (ii) selection 
of the 3D structure of the DPP-4 enzyme (PDB ID: 4A5S29,30, 
that has the best resolution (1,52Å)); (iii) inclusion of 2 
structural waters in the docking calculations according to 
experimental data from the literature11,29-33; (iv) addition of 
hydrogen atoms and protonation setting of the main residues 
in the active site; (v) setting the flexibility of the residues 
Ser630, Tyr547 and Tyr666 according to the previous 
validation (Table S2); (vi) GOLDScore26 was employed as 
scoring function; (vii) definition of the active site as 5Å around 
the crystallographic ligand; (viii) validation of the docking 
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protocol based on root mean squared deviation (RMSD) values 
(calculated with Chimera software34) from the redocking 
poses. The validation step was performed varying the use of 
structural waters and the flexibility of some residues in the 
docking calculations (Table S2 and Figure S1). The conditions 
adopted for the docking simulations were evaluated according 
to several studies in the literature11,19-22, 31, 33, 35 and also the 
redocking analysis. The structural water positions at the active 
site were obtained according to the alignment of several DPP-4 
structures (PDB IDs: 4A5S29, 30, 3SWW36, 3D4L37, 3EIO38, 3C4539, 
2OGZ40, 2QT941, 1X7042, 2AJ843, 2IIV44, 2P8S45, 2QJR46, 1RWQ47, 
3QBJ48, 3HAC49), which contain the conserved water molecules 
at the active site. 

3 Results and Discussion 

 Initially, we constructed 13 HQSAR models varying the 

fragment distinction and maintaining the default fragment size 

(4-7 atoms) with the aim of assessing the influence of the 

descriptors on the robustness of the models (Table 1). For 

each constructed model, we also evaluated the influence of 

the hologram length (HL) by constructing models varying HL 

as: 53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 353 and 401 bins. 

All constructed models showed acceptable LOO validation 

coefficients (q2
 > 0.7) indicating that the HQSAR method is 

suitable to generate robust statistical models and can be used 

to predict the biological activity of new bioactive ligands. The 

best 2D model, according to the highest q
2 value, was 

constructed with atoms, bonds, H atoms, chirality and H-bond 

donor and acceptor as fragment distinction (A/B/H/Ch/DA, 

model 11). The model 11 had higher q
2 value and lower 

standard error of prediction than the two second best models 

(models 5 and 8). 

 

Table 1. Statistical results of the 13 initial models obtained 

from the variation of the fragment distinction and maintaining 

the default fragment size (4 - 7 atoms) 

Model Fdist q
2
 SEP r

2
 SEE HL PCs 

1 a/b 0.789 0.496 0.866 0.395 97 3 

2 a/b/c 0.771 0.528 0.919 0.315 307 5 

3 a/b/c/h 0.761 0.547 0.937 0.280 353 6 

4 a/b/c/h/ch 0.769 0.538 0.911 0.333 61 6 

5 a/b/h 0.817 0.479 0.927 0.302 61 6 

6 a/b/c/ch 0.769 0.519 0.857 0.409 199 3 

7 a/b/da 0.798 0.503 0.939 0.276 401 6 

8 a/b/c/da 0.817 0.479 0.934 0.288 53 6 

9 a/b/h/da 0.802 0.481 0.852 0.416 61 3 

10 a/b/c/ch/da 0.791 0.511 0.928 0.301 53 6 

11 a/b/H/ch/da 0.829 0.463 0.937 0.282 257 6 

12 a/b/c/h/ch/da 0.794 0.502 0.921 0.311 71 5 

13 a/b/c/h/Da 0.804 0.495 0.947 0.258 97 6 

Fdist: fragment distinction; q2: cross-validated coefficient; SEP: standard error of 

validation; r
2: non-validated coefficient; SEE: standard error of estimation; HL: 

hologram length; PCs: number of principal components 

 

 After this first analysis (variation of the fragment 

distinction), we constructed more six models by varying the 

fragment size and maintaining both fragment distinction 

(A/B/H/Ch/DA) and hologram length (257 bins) (see Table 2). 

From this procedure, we found that the variation of the 

fragment size provided an improvement in the statistical 

quality of the model 11, i.e. the model with fragment 

distinction as A/B/H/Ch/DA, hologram length equals to 257 

bins and fragment size as 3 to 6 atoms was the best one 

(model 16, Table 2). 

 

Table 2. Variation of the fragment size for the model 

containing A/B/H/Ch/DA as fragment distinction 

Fsize q
2
 SEP r

2
 SEE HL PCs 

1 to 4 0.806 0.493 0.923 0.310 257 6 

2 to 5 0.818 0.471 0.918 0.316 257 5 

3 to 6 0.836 0.453 0.942 0.270 257 6 

5 to 8 0.799 0.501 0.944 0.266 257 6 

6 to 9 0.773 0.532 0.935 0.286 257 6 

7 to 10 0.761 0.547 0.934 0.288 257 6 

Fsize: fragment size; q
2: cross-validated coefficient; SEP: standard error of 

validation; r
2: non-validated coefficient; SEE: standard error of estimation; HL: 

hologram length; PCs: number of principal components 

 

 We also evaluated the internal quality of the model 16 by 

carrying out a robustness test. We validated the model with 

leave-N-out technique varying the number of cross-validation 

groups, in triplicate experiments, in order to check the 

sensibility of the model robustness by varying the number of 

compounds employed in the model construction. All q2 values 

for each N cross-validation groups were higher than 0.770, 

indicating the robustness of the model 16. The average q
2 

value was equal to 0.775 ± 0.005 (Figure 2)  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Robustness test for the HQSAR model with variation 

in the number of cross-validation groups from 5 to 45. 

 
 After all internal validations, the model 16 was submitted 
to external validations employing the test compounds. In this 
step, the obtained results were very promising taking into 
account some data: (i) the predicted pIC50 values for all test 
compounds showed a residual error lower than 1 log unit 
(Table 3); (ii) the external validation coefficient (r2

test) was 
equal to 0.835; (iii) the predictive potential for the test set 
(r2

m) was equal to 0.684 (Figure 3) and; (iv) the predictive 
potential for all compounds (r2

moverall) was equal to 0.691. 
We also calculated the percentage of missing fragments for 
the test compounds and all molecules showed missing 
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information equals to 0%, indicating that all dataset is inside 
the applicability domain. These results indicate that the model 
16 has a high predictive power and robustness. Therefore, this 
model is reliable to predict the biological activity of new 
compounds. 

 

Table 3. Experimental and predicted pIC50 for the test 

compounds 

Compound Experimental pIC50 Predicted pIC50 Residual 

10 5.824 5.952 0.128 

15 7.076 7.288 0.212 

17 8.125 7.417 0.708 

20 7.000 7.135 -0.135 

23 8.658 8.666 -0.008 

28 7.137 7.733 -0.596 

29 8.432 8.084 0.348 

35 7.523 7.850 -0.327 

38 7.959 7.727 0.232 

51 7.244 7.006 0.238 

58 8.602 8.610 -0.008 

60 8.276 8.389 -0.113 

 

 

Figure 3. Experimental versus predicted pIC50 for the training 

and test sets. 

 

 Finally, we performed 19 more training/test set splittings 

using the same strategy (random selection taking into account 

each pIC50 range) in order to evaluate the influence of the 

composition in each compound subset on the statistical 

results. All test compounds in the 20 subsets are displayed in 

Table S2 and this test indicated that all statistical parameters 

(q2, r
2
 and r

2
test) are acceptable according to the literature 

(Figure 4), suggesting .that the model was not obtained by 

chance. 

 

 

Figure 4. Training and test set splittings (20 subsets). The dark 

gray bars represent q2 values, light gray bars indicate r2 values 

and black bars represent r2
test values. 

 

 After the construction of the 2D model, we calculated the 

contribution maps for the most active compounds (Figure 5) 

and the least active ones (Figure 6). The green and yellow 

regions indicate essential groups for the biological activity, 

while regions in orange and red indicate groups that negatively 

contribute to the biological activity and could be modified to 

increase the biological potential. 
 

 

Figure 5. HQSAR map and docking analysis of the most active 
compounds. 

 

 Analysing the HQSAR maps, we can see that some regions 

can be considered as essential for the biological activity, such 

as: (1) pyrrolidine ring; (2) isobutyl group; (3) anilide group, 

which are responsible for a significant number of primary 

interactions with residues in the active site. From the docking 

studies, we analysed the main interactions of some ligands 

with the main residues at the active site (Ser630, Tyr547, 

Tyr666, His740 and Asp708), taking into account the presence 

of structural water molecules. The nitrogen atom of the amine 

group (NH3) in the compound 42 performs hydrogen bonding 

with Ser630, which interacts with a water molecule (W1) and 

the amide group interacts with Glu205 and Glu206. It is also 

important to mention that t-butyl group of the compound 42 

(colored as yellow in the HQSAR contribution map) could 

perform hydrophobic interactions with the phenyl ring of 

Tyr547. Finally, the compound 42 can perform a π-stacking 
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interaction with the phenyl ring (predicted by the HQSAR 

model as positive contributor to the biological activity) and 

Arg125. 

 Compound 40 can also perform hydrophobic interaction 

with Tyr547, which performs hydrogen bond with a structural 

water (W1). The amine group (NH3) of the compound 40 

(colored as green in the HQSAR contribution map) performs a 

hydrogen bond with Tyr662 and ionic interactions with Glu205 

and Glu206. A possible cation-π interaction between Arg125 

and the phenyl group (also colored as green in the HQSAR 

map) contributes for the biological activity. 

 
 

 

Figure 6. HQSAR map and docking analysis for the least active 

compounds. 
 

 The main interactions performed by the compounds 3 and 

1 (the least active ones, Figure 6) are ionic interactions with 

Glu206, as well as hydrogen bond with Tyr662, indicating that 

these interactions are important to explain the biological 

activity of the DPP-4 inhibitors studied in this work. 

Furthermore, both amine groups of these compounds are 

highlighted as neutral contribution in the HQSAR contribution 

map. The compound 3 can also perform a hydrogen bond with 

the nitrogen atom of the main chain of Tyr547 via carboxyl 

moiety of the quinoline group. The benzene ring of both 

compounds (3 and 1) are located at Phe357 region and is 

colored as orange in the HQSAR map, indicating that 

hydrophobic interactions at this region do not favorable the 

biological activity.  

Conclusions 

 From the HQSAR analyses, it was possible to obtain a 

significant statistical model (q2=0.836, r
2=0.942 and 

r
2

test=0.835) and can be used to predict the activity of novel 

ligands with unknown activity. Furthermore, the contribution 

2D maps indicate regions with positive contribution to the 

biological activity, for example, the presence of pyrrolidine, 

isobutyl and anilide groups, favoring a significant number of 

primary interactions with residues in the active site. It was 

found that not only the catalytic triad is important for the 

biological activity, but also the residues Tyr547 and Tyr666, 

can provide essential interactions in the active site. Structural 

water molecules were also crucial to understand the main 

interactions between the studied compounds and the 

biological target. Furthermore, interactions with Tyr547 and 

Arg125 can improve the potency of the DPP-4 inhibitors. The 

polar and hydrophobic interactions are very important for the 

molecular recognition of the network interactions formed 

between ligands, water molecules and the main residues in the 

active site. Therefore, the results obtained in this study can 

contribute to the understanding of the fundamental 

requirements for the interaction between the bioactive 

substances and the DPP-4 enzyme, helping the design of new 

DPP-4 ligands. 
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