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Despite the critical role of microglia in CNS homeostasis, the
mechanisms regulating microglial inflammation are not well
understood. Microglial secretion of pro-inflammatory cytokines is
often considered to be harmful, although prevention of microglial
activation has been shown to yield pathological consequences.
For instance, antibodies directed against tumor necrosis factor-α
(TNFα) have been shown to exacerbate multiple sclerosis, and
mutations in a TNFα receptor gene have been shown to be asso-
ciated with this disease26. Further, anti-inflammatory cytokine
interleukin-10 (IL-10) has been shown to produce inflammatory
effects in the periphery27. Hence, understanding how dynamic
interactions amongst cytokines coordinate the inflammatory
microenvironment is an outstanding goal in neuroinflammation
research.

It is clear that microglia both secrete and respond to a number
of inflammatory cytokines9. A expansive intracellular cytokine
signaling network has been utilized in computational studies of
microglia in Alzheimer’s disease28,29. However, a comprehensive
network of microglial cytokine/chemokine autocrine/paracrine
inter-cellular interactions has not been assembled to our knowl-
edge. The elucidation of this network structure is necessary
for defining the roles of secreted cytokines in coordinating
processes such as cellular adaptation. Cells often adapt to a
sustained stimulus by responding briefly and then returning to
baseline, and this adaptation is supported by signaling network
architectures involving negative feedback30. Bacterial toxin
lippopolysacharride (LPS) elicits TNFα release from cultured
microglia followed by response adaptation in the continuous
presence of the stimulus31. TNFα has also been shown to
stimulate negative feedback from IL-10 and transforming growth
factor–β (TGFβ)31–33. While TNFα is an important component
of the microglial innate immune response, its adaptation to LPS
is likely to be equally important for restraining inflammation and
preventing unnecessary tissue damage. However, the mechanistic
basis for TNFα adaptation, and the relative contributions of
feedback inhibitors such as TGFβ and IL-10 to adaptation, has
not been established. Computational analyses have provided
useful insight as to the mechanisms of adaptation30,34. For
instance, in a model of TLR-4-mediated NFκB responses to LPS,
occlusion of an anti-inflammatory negative feedback loop was
counter-intuitively shown to enhance adaptation35. Such results
highlight the value in studying the mutual influences of network
structure and kinetics on system dynamics36.

Many investigations of cytokine signaling in microglia ex-
amined the pairwise interactions between two cytokines, or
the effects of one cytokine on a set of others37,38. More com-
prehensive examinations of microglial phenotypic properties
under varied inflammatory conditions, accomplished using next
generation sequencing technologies39,40, were limited to studies
of few time points. Hence, we do not currently understand how
the interplay amongst secreted cytokines, to which microglia
are responsive, is coordinated to render physiological response
characteristics such as adaptation. Furthermore, defining the
interactions of the microglial cytokine network, as has been
accomplished for astroglia41, is necessary but insufficient for
providing insight as to the control mechanisms that govern

the physiological responses of the integrated network and the
coordination of such responses over time.

Computational modeling approaches have provided valuable
insights into the mechanisms of peripheral and CNS inflamma-
tory regulation. Such models vary according to level of analysis,
cell type specificity, and model formulation. Levels of analysis in-
clude intracellular biochemical signaling42, autocrine/paracrine
regulation of cell signaling , intercellular interactions43, global
tissue level inflammatory regulation44,45, and various multiscale
models incorporating integrated levels of analysis46–49. Intracel-
lular signaling models are generally cell type-specific, where cell
types include microglia28,42,50 and peripheral macrophage51,52,
as well as other cell types53,54. Modeling formalisms range from
Boolean logic representations28 to differential equations42,51,54

and agent based models46–48,55. We employed a novel com-
putational approach to study microglial autocrine/paracrine
cytokine interactions with a model characterized by differential
equations. We focused on studying the LPS response in microglia.
Simulations and analyses of our model revealed that TGFβ and
IL-10 have distinguishable kinetics and opposing contributions to
adaptation of TNFα responses to LPS.

Experimental and computational methods

Mathematical model of autocrine/paracrine cytokine signal-

ing in microglia

We employed a variant of the classic S-systems model formula-
tion56, based on the successful application of such an approach in
recent models incorporating cytokine-cytokine interactions57,58.
We used the following formulation to simulate the expression dy-
namics of each cytokine,

dCx

dt
= kx f (Ci) f (C j)− γxCx − γss,xCss,x (1)
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where Cx = Cx(t) is the expression of cytokine x (TNFα, IL-1β ,
IL-6, TGFβ , IL-10, or CCL5) that is produced at rate kx upon acti-
vation by cytokine Ci at time = t −τd,ix. Thus, the delay term τd,ix

is time between the activation of Ci and its subsequent activation
of Cx. The activation of Cx depends on Ci according to a Hill func-
tion characterized by half-maximal activation constant Kix and
cooperativity coefficient nix. Similarly, inhibitory cytokine C j re-
duces Cx production with time delay τd, jx according to a decreas-
ing sigmoidal function characterized by K jx and n jx. The degra-
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dation of Cx occurred with both concentration-dependent and
concentration-independent components determined by rate con-
stants γx and γss,x, respectively. The concentration-independent
degradation term encompassed the initial value of cytokine x,
which was set to Css,x = 0.1 for all cytokines, and a degradation
constant that was set to maintain a constant steady state (equa-
tion 2) in the absence of stimulation59. According to available
data, LPS directly stimulates the production of all species in our
model aside from TGFβ . Hence, LPS was included among the Ci

terms for all species other than TGFβ .
The model was implemented in MATLAB 2013a (The Math-

Works Inc., Natick, MA) using ode45 to integrate the differential
equations. We found that ode15s gave approximately identical
results. All parameter values appear in Supplementary Materi-
als and code to implement the model is available on the mod-
elDB database (http://senselab.med.yale.edu/modeldb/; acces-
sion number:170029)60.

Parameter estimation

We followed a procedure similar to our previous work61 (see Sup-
plementary Materials “Parameter estimation and model compari-
son" for further details). First, we initiated all coupling constants
(Kix and K jx) based on available data. We then fitted the en-
tire model parameter set to normalized experimental waveforms
because our primary interest was to recapitulate the relative ex-
perimental kinetics (Fig 1). Furthermore, it was not possible to fit
our model to cytokine concentrations, given the available data, so
the model was set in arbitrary units. We constrained the fits such
that all model outputs were of the same order of magnitude (Fig
S1). The model includes a total of 93 parameters. We modeled
cytokine interactions without explicitly incorporating mechanistic
detail, hence, there is not an explicit relation between parameter
values and biological mechanisms. In particular, our model is
phenomenological and does not include details such as the dy-
namics of receptor-ligand interactions, intracellular signaling in-
teractions, and gene expression regulation regulation. Hence, it
is not entirely appropriate to explicitly associate the model pa-
rameters with specific biological referents. Rather, each param-
eter aggregates a number of biological processes (e.g., cytokine
production rate depends on transcription, translation, and post-
translational modification). As described in the Supplement, we
used numerical optimization to fit parameters based on minimiza-
tion of summed square differences between model prediction and
experimental data. We implemented a global sensitivity analysis
prior to selecting a final parameter set and manually tuned the
most sensitive parameters, as well as parameter associated with
the most sensitive network interactions (see Fig 2 and Fig 4D).

Global sensitivity analysis

We implemented variance-based global sensitivity analysis as de-
scribed previously61,62. We used the high dimensional model
reduction technique to decompose model output variance with
respect to parameter variations imposed across 100,000 sam-
ples. This implementation of global sensitivity analysis is superior
in evaluating parameter sensitivity in terms of parameter sam-

pling63 and accurate performance on non-linear models64. The
total contribution of parameter θi to Cx, including effects due to
first and higher order interactions, was given by

STi
=

E

(

V (Cx|θ∼i)

)

V (Cx)
= 1−

V

(

E(Cx|θ∼i)

)

V (Cx)
(3)

where E(.) is the expectation of the argument and Var(Cx|θ∼i)

is the variance of Cx conditioned on all parameters other than θi.
We determined the global parametric sensitivities of the TNFα re-
sponse to LPS by numerically estimating STi

for all model param-
eters according to a previously described algorithm62. Two-fold
variations were implemented for all parameters61. See Supple-
mentary Materials for further detail on sensitivity analyses and
their implementation (“Sensitivity analyses", Figs S2,3).

Analysis of sensitivity to initial conditions

To assess the sensitivity of the LPS-mediated TNFα response to
the initial conditions of anti-inflammatory cytokines TGFβ and
IL-10, we varied their initial values from 0.01 to 20 and evalu-
ated the effects on the TNFα response. In addition, we performed
all of these anti-inflammatory variations over the same range of
initial TNFα values (TNFα0). For these variations, we used 20
initial values from the aforementioned range, varied incremen-
tally in log space. All combinations of TGFβ , IL-10, and TNFα

initial values were considered, thus generating 8000 simulations.
To assess TNFα sensitivity, we computed the normalized gradient
of the LPS-induced TNFα response with respect to either TGFβ or
IL-10 (see Results, equations 5,6). We computed these gradients
over a range of time points and TNFα0 levels and plotted the data
in a coordinate system defined by TGFβ0 and IL-100.

Experimental techniques and data analysis

Animals: All procedures were approved by the Animal Care Com-
mittee of the Research Institute of the McGill University Health
Centre (RIMUHC). Male homozygote IL-10 KO mice (obtained
from Dr Radzioch, RIMUHC) or C57BL/6 control mice (WT;
Charles River Laboratories, CA) at 8 to 12 weeks of age were
used to obtain bone marrow derived macrophages for cell culture.

Macrophage culture and treatment: Macrophages were generated
as previously described65. Briefly, mice were euthanized and
their hind leg bones were removed. Bone marrow was flushed
out, homogenized and red blood cells were hypotonically
lysed. After washing, cells were cultured in RPMI media
containing 10% fetal bovine serum (FBS; 10%. Invitrogen,
CA), L-cell-conditioned media (10%; a source of M-CSF), peni-
cillin/streptomycin, and vitamins solution (1%; Invitogen, CA)
for 7 days. Mature macrophages were re-plated at a density of
80,000 cells/well in 24–well plates and left to adhere overnight.
Cells were treated with lipopolysaccharide (LPS; 100 ng/mL) or
vehicle control (PBS) in RPMI containing FBS (10%) for 6 and
18 h durations.

Following LPS treatment, cells were lysed and total RNA
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and 5 (CCL5). These species were chosen as network nodes for
the following reasons: (1) there exist time-series data document-
ing the microglial release profile following LPS application for all
network species, (2) a wealth of data exist with characterizations
of the interactions amongst these cytokines (e.g., the application
of TGFβ to LPS treated microglial cultures attenuates TNFα re-
lease33), (3) these species are particularly relevant to our interest
in CNS-mediated control over cardiovascular physiology, based on
in vitro and in vivo data70–72, and (4) these cytokines are of broad
interest in neuroinflammation and neurodegenerative disease re-
search73–75.

We distilled the results of our literature search into the interac-
tion network shown in figure 1A. All species in the network other
than TGFβ have been shown to be directly activated by LPS, while
TGFβ activation following LPS treatment depends on TNFα 76.
With one exception (see below), every edge in the network was
derived from experimental data from microglia demonstrating an
activating or inhibitory effect of the source node on the target
(Supplementary Table 1). We assessed the topological properties
of the network and found that TNFα exhibited connectivity fea-
tures indicative of a prominent role in network control. TNFα

had the highest in-degree, out-degree, and number of shortest
path connections between other nodes. This suggests that TNFα

is topologically situated to globally control the dynamics of the cy-
tokine network, as expected based on experimental work75,77–79.

To examine the dynamic coordination of microglial cytokine
signaling, we developed a mathematical model based on the
network of microglial cytokine/chemokine signaling interactions
(Fig 1A). A modified S-systems model formulation permitted cali-
bration to experimental data (Fig 1B)56. A key assumption of our
model formalism was that AND logical gating governs the com-
bined effects of a group of cytokines on their target. For instance,
if cytokines A and B both activate the production of cytokine C,
cytokine C will only be produced if both A and B are active. In
OR gating, if cytokines A and B both activate the production of
cytokine C, cytokine C will be produced if either A and B is ac-
tive. We attempted to implement OR gating, in which the se-
quence product operator was replaced by the summation operator
in equation 1, but the model could not be calibrated to data with
this configuration (see Supplement, “OR gating model"). Hence,
we hypothesize that AND gating characterizes the collective in-
fluences of a group of cytokines on their mutual target. We also
assumed that the model rests at a steady-state state with arbitrar-
ily low species levels in the absence of LPS. This assumption is
consistent with data from cultured microglia in which cytokine
expression is nearly undetectable in the absence of a perturba-
tion76, and data suggest that the brain in vivo contains low cy-
tokine levels under baseline conditions relative to disease states
or responses to inflammatory stimuli80.

While we did not find evidence in the published literature on
microglia showing that TGFβ coordinates its own release, we hy-
pothesize the existence of this autoregulatory loop because its in-
clusion in our mathematical model was necessary to recapitulate
the time-series data. Without the positive feedback autoregula-
tion loop for TGFβ , cytokine/chemokine data from experiments
in which LPS was applied to cultured microglia could not be repli-

cated by our model (Fig 1B; see Supplement, “Experimental data
used for parameter estimation" for further information). In partic-
ular, this autoregulation loop was necessary to obtain delayed and
relatively slow LPS responses for TNFα, TGFβ , and CCL5. Sup-
porting the plausibility of this hypothesized TGFβ autoregulatory
loop, data from astrocytes (a CNS parenchymal cell-type involved
in cytokine release with many functional similarities to microglia)
show that TGFβ application stimulates TGFβ upregulation41,81.
TGFβ autoregulation has also been demonstrated in the CNS in

vivo82, and in other non-CNS cell types83–85. Our model predic-
tion of similar TGFβ autoregulation in microglia thereby yields a
novel hypothesis for experimental evaluation. The final calibrated
model recapitulated the relative experimental kinetics. These re-
sults suggest that our modeling formalism captures a complex set
of interactions triggered by inflammatory stimulation by LPS.

In subsequent simulations, we found that our model with de-
lay differential equations (DDEs, see Methods, equations 1,2) was
computationally demanding to implement, and occasionally the
model generated sharp deflections in the dynamic variables (see
arrows in Fig S1C; see also Fig S10). These sharp deflections were
likely related to a numerical integration issue. However, DDEs
did not provide a significant advantage, in terms of the model fit
to data and model predictions, in comparison to ordinary differ-
ential equations (ODEs). To test whether we could obtain com-
parable results using ODEs, we set all time delay terms to zero
(τd = 0 in equation 1) and verified that the resulting ODE model
yielded qualitatively similar simulation results (Fig S1C). Thus,
even though the DDE model provided a better fit to data, the per-
formance of the ODE model was optimal for our model analyses
(see Supplement, “Parameter estimation and model comparison",
Tables S2,3). The model fits appeared qualitatively similar and
other simulation results were nearly identical for the ODE and
DDE models. These results, along with others noted below, sug-
gest that the DDE and ODE models are comparable. We examined
the ODE model in the simulations and analyses presented below
unless otherwise noted.

TNFα is sensitive to anti-inflammatory feedback inhibition

To determine the relative influences of model parameters on cy-
tokine expression, we performed a global sensitivity analysis61,62.
This analysis entailed the variation of all parameters in tandem
followed by the decomposition of model output variance into the
relative contributions of each parameter. Because our initial anal-
ysis of the cytokine network revealed that TNFα is topologically
positioned to exert robust control over network dynamics, and
given the well documented role of TNFα in neuroinflammatory
disease states75, we focused on the sensitivity of TNFα to the
model parameters. Our sensitivity analysis showed that the TNFα

response to sustained LPS input was most sensitive to parameters
associated with TGFβ production, IL-10 inhibition of TNFα, IL-
1β activation of TNFα, and IL-6 activation of IL-10 (Fig 2). All
other parameters had a relatively insignificant impact (i.e., to-
tal sensitivity < 0.2) on the global variability of TNFα. Of all
model parameters, 5.7% of the parameters exerted a prominent
influence on the LPS-induced TNFα response, thereby indicating
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with respect to IL-100. In general, as TGFβ0 was reduced, the
TNFα response was larger with a faster decay.

To further elucidate the basis for the seperatrix observed at low
initial TNFα levels (Fig 5B), we examined adjacent temporal pro-
files of TNFα and ∇T NF |IL100

at select zones in TGFβ0 – IL-100

space (Fig 5D,E). For zone 1, the TNFα response to LPS was small
due to high TGFβ0 and an incremental increase in IL-100 resulted
in a modest peak reduction associated with a negative gradient
at corresponding times (Fig 5E). When both TGFβ0 and IL-100

were high (zone 2), TNFα was unresponsive to LPS and this un-
responsiveness was insensitive to changes in IL-100. In contrast,
zone 3 was characterized by negative gradients at all time points,
due to the moderately high levels of both TGFβ0 and IL-100. In
zone 4, the presence of negative gradients, temporally followed
by positive gradients, resulted from the combined effects of re-
duced TNFα response amplitude and decrease in response kinet-
ics (Fig 5D,E). To further evaluate the effects of initial conditions
on the network response, we performed a Lyapunov exponent
analysis (see Supplement, “Lyapunov exponent analysis"). This
analysis showed that regions of TGFβ0 – IL-100 space with the
highest sensitivities to initial conditions corresponded to the neg-
ative gradients observed with low TNFα0 in figure 5A (Supple-
mentary Fig S8). This suggests that ∇T NF |IL100

is indicative of
global network sensitivity under such conditions. Overall, these
results show that the cytokine network is sensitive to initial anti-
inflammatory conditions. For low TNFα levels, a single negative
TNFα gradient with respect to initial IL-10 expression temporally
precedes the instantiation of a seperatrix defined by adjacent neg-
ative and positive gradients in TGFβ0 – IL-100 space.

TGFβ and IL-10 exert divergent effects on the adaptation of

TNFα to LPS

The preceding analyses identified TGFβ and IL-10 as critical reg-
ulators of TNFα and established that the effects of IL-10 on TNFα

are instantiated before those of TGFβ . We next examined the rel-
ative effects of TGFβ and IL-10 on TNFα adaptation to sustained
LPS stimulation. The relative effects of TGFβ and IL-10 were iso-
lated by simulating the KO of each cytokine (i.e., TGFβ KO and
IL-10 KO). We simulated the responses to sustained LPS stimuli,
over a concentration range, in wildtype (WT) and KO phenotypes
(Fig 6A-C). We computed adaptation based on the relative levels
of the peak TNFα response and the TNFα level at t = 3 days of
LPS stimulation (termed steady state response, Fig 6D):

Adaptation = 1−

(

T NFαsteadystate

T NFαpeak

)

(8)

For the WT phenotype, the degree of TNFα adaptation exhib-
ited a sigmoidal dose-response profile (Fig 6E). For IL-10 KO,
we observed increased adaptation (left-shifted adaptation curve),
whereas TGFβ KO produced a reduction in adaptation (right-
shifted adaptation curve) (Fig 6E). These results suggest that IL-
10 reduces adaptation whereas TGFβ enhances adaptation. Both
KO phenotypes produced relatively shallow dose-response adap-
tation curves in comparison to the WT phenotype. Further analy-
ses showed that although KO of both TGFβ and IL-10 resulted in

increased TNFα peak response levels, albeit to different degrees
(Fig 6F), the removal of TGFβ increased TNFα steady state val-
ues to a greater extent than observed for IL-10 KO (Fig 6G). These
findings suggest that TGFβ controls adaptation by reducing both
the peak and steady state TNFα responses to LPS. In contrast, IL-
10 reduces the TNFα peak but does not affect the steady state,
and thus IL-10 reduces adaptation.

To further characterize the relative effects of TGFβ and IL-10
on the TNFα response to LPS, we assessed the time from stimu-
lus initiation to peak response (tt p) and area under the expres-
sion curve (AUC) for the three phenotypic conditions. We found
that TGFβ KO increased tt p while IL-10 KO decreased tt p (Fig
6H). This suggests that TGFβ reduces tt p and thereby speeds up
the peak TNFα response to LPS, whereas IL-10 delays the peak
response. We examined the cumulative amounts of TNFα pro-
duced following the initiation of LPS stimulation by computing
the TNFα integrals (AUCs) over time. The results showed that KO
of either TGFβ or IL-10 resulted in AUC increases. The TGFβ KO
phenotype resulted in a greater TNFα expression increase than
that for IL-10 elimination at lower LPS levels, but the KO AUCs
converged as LPS was increased. Similar findings for the effects
of anti-inflammatory occlusion were obtained for the DDE model
(Fig S9). These results suggest that TGFβ occlusion may result in
particularly harmful inflammatory effects at low levels of inflam-
matory stimulation, whereas the effects of IL-10 elimination may
be exacerbated as a function of stimulus intensity.

Because TGFβ appeared to enhance adaptation, we examined
the TGFβ amplitude following an LPS stimulus in WT and IL-10
KO phenotypes (Fig S10A). The TNFα peak was smaller for the
WT phenotype in comparison to IL-10 KO. However, peak TNFα

expression was positively related to TGFβ in both phenotypes.
This analysis showed that TGFβ was activated in proportion to
the degree of LPS-induced TNFα activation, which was attenu-
ated by IL-10. Similarly, IL-10 expression was positively related
to TNFα for WT and TGFβ phenotypes (Fig S10B). Collectively,
our data demonstrate that LPS-activated TNFα levels determine
the amount of TGFβ produced. In turn, TGFβ determines the de-
gree of tolerance. In contrast, IL-10 reduces the TNFα response
and consequently the amount of TGFβ produced following the
LPS stimulus. Overall, these novel simulation results indicate that
anti-inflammatory cytokines TGFβ and IL-10, which both provide
feedback inhibition to TNFα, have surprisingly disparate effects
on TNFα, related to temporal differences in expression and feed-
back regulation.

IL-10 attenuates TNFα adaptation to LPS in murine

macrophages

To experimentally test the hypothesis that IL-10 suppresses adap-
tation of the TNFα response to LPS, we compared the LPS re-
sponses of macrophages isolated from WT and IL-10 KO mice. We
evaluated TNFα expression using qPCR at six and 18 hours after
the initiation of continuously applied LPS (100 ng/mL). We quan-
tified the TNFα response to LPS by computing −∆∆Ct values (Fig
7A, see Methods). To compare the LPS responses in WT versus
IL-10 KO macrophages, we performed a two factor ANOVA to de-
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model showed that TGFβ and IL-10 are prominent feedback
inhibitors of TNFα. Consistent with these analyses, TNFα has
been implicated as a regulator of neuroinflammation in central
infections77,78 and traumatic injuries2 as well as neurological,
neurodegenerative, and psychiatric diseases75,79. Assessment
of TNFα sensitivity to the initial state of the network showed
that the initial levels of TGFβ and IL-10 can exert opposing
influences on TNFα. Increases in the initial levels of TGFβ could
only lead to reductions of the TNFα response to LPS regardless
of the initial IL-10 and TNFα levels. However, increases in the
initial levels of IL-10 could elicit TNFα peak reductions and
temporal shifts. These results indicate the instance of a seperatrix
depending on the initial states of TGFβ and IL-10. Based on our
topological analysis of the network, and sensitivity analyses of
the mathematical model, we focused our study on the roles of
TGFβ and IL-10 in regulating TNFα dynamics. While we did not
explicitly examine the contributions of IL-1β , IL-6, and CCL5 to
network behavior in our simulations, their presence in the model
shaped the network interactions we studied.

To further assess the functional implications of cytokine
interaction dynamics, we studied the contributions of TGFβ

and IL-10 to TNFα expression in the physiological context of
adaptation to LPS. Surprisingly, TGFβ and IL-10 were found to
have opposing effects on adaptation to LPS. These divergent
effects appear to be related to the differences in the kinetics of
the feedback inhibition. Experimental data from macrophages
and microglia show that that IL-10 activation precedes that of
TGFβ 31–33,90. IL-10 controls the amount of TGFβ produced by
providing relatively fast negative feedback to TNFα and thereby
coordinating its level of activation. In turn, TGFβ regulates the
sustained level of TNFα. Based on our modeling predictions,
we experimentally tested the hypothesis that IL-10 KO results in
enhanced TNFα adaptation to sustained LPS in macrophages.
Our data supported the mechanisms proposed based on our
modeling work, thereby demonstrating that IL-10 occlusion
enhances adaptation to LPS. However, we note that our model
predicts a relatively augmented TNFα in the IL-10 condition.
This was not observed in our experiment, however, we believe
this is because we may not have sampled at the time of the peak
response. Furthermore, the LPS response kinetics are likely to be
different between WT and IL-10 KO conditions. Experiments are
currently underway to address these possibilities. Nevertheless,
our experimental results are consistent with enhanced adaptation
following prolonged LPS exposure, whereas instance of peak
modulation will be addressed in future experiments.

While recent evidence has shown microglia, under homeostatic
conditions, express a unique gene profile40,114, microglia and
peripherally derived macrophages share the majority of genes
involved in the inflammatory response. In a functional context,
LPS tolerance of the TNFα to sequentially applied LPS doses has
been observed in both macrophages115 and microglia86. Our
model validation results were consistent with these findings.
Furthermore, TGFβ was shown to mediate LPS tolerance in
both macrophages115 and microglia87, and our model reca-
pitulated these results. Importantly, there is a wealth of data
demonstrating that macrophages and microglia engage similar

interactions amongst TNFα, TGF, and IL-1087,89,90,115,116.
Therefore, we believe the use of macrophages is highly relevant
in this context and validates our unexpected finding that IL-10
reduces TNFα adaptation. This interpretation is consistent with
the common use of bone marrow-derived cells as models of
neuroinflammation, given the experimental accessibility of these
cells6,117,118. Furthermore, given the issues raised above model-
ing issues related to the sloppiness and inidentifiability of model
parameters, our macrophage results support the generalizability
of our findings to other myeloid cell types. Efforts are currently
focused on modeling and experimentally testing the effects of
IL-10 KO on adaptation and tolerance in microglia in vivo.

Our novel findings that TGFβ and IL-10 exert opposing
effects on adaptation supports and extends the conclusions
of several modeling studies. It has been shown that negative
feedback loops with differential kinetics exert distinguishable
influences in an oscillating network119. In a model of peripheral
immune response to LPS, it was shown that relatively slow
versus fast anti-inflammatory activation led to sepsis120. Faster
anti-inflammatory activation was associated with restoration to
health120. In contrast, we found that the faster IL-10 response
was associated with pro-inflammatory effects via indirect in-
hibition of TGFβ mediated indirectly by TNFα. An important
distinction between our microglial model and peripheral in-
fection models120 is that the peripheral models simulate cell
to cell interactions, whereas our model is microglia-specific.
As such, seemingly pro-inflammatory effects of adjustments to
anti-inflammatory levels in peripheral models occur due to exces-
sive reduction of the capacity of phagocytes to clear pathogens.
This context is distinct from our study of autocrine/paracrine
regulation of microglia via cytokine network dynamics.

Similarly, simulations with a computational model of NFκB
dynamics showed that kinetically distinct negative feedback
inhibitors (A20 and IκBα) exert differential influences on the
TNFα response to LPS stimulation35. A20 KO resulted in an
enhanced TNFα response to LPS. Response adaptation was
increased, as with our finding that IL-10 KO increased adapta-
tion. Further, IκBα KO resulted in an increased A20 response,
analogous to our finding that IL-10 KO resulted in increased
TGFβ expression. However, the increased expression of A20
was insufficient for attenuating the LPS response in the NFκB
model. The A20 anti-inflammatory response adapted rapidly
compared to the sustained activation anti-inflammatory cytokines
in our model, thus highlighting a key difference between the
systems under study. Hence, while a number of previous studies
document phenomena similar to our observations, in the contexts
of multi-cellular interactions or isolated signaling pathways, our
study provides novel insights into the roles of parallel negative
feedback interactions involving cytokine signaling in microglia.

Conclusions

Our simulations and analyses show novel phenomena whereby
TGFβ and IL-10 exert opposing influences on TNFα. While
our focus on LPS response directly pertains to the microglial
endotoxin response, microglial phenotypes associated with
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bacterial infection have been shown to resemble those as-
sociated with neurodegenerative diseases121. In particular,
LPS activates inflammatory signaling through interaction with
toll-like receptor-4, which also activates sterile inflammation in
hypoxic, ischaemic, and traumatic injuries122–126. It is clear that
macrophages and microglia exhibit a plethora of stimulus-specific
phenotypic states127,128, although the mechanisms underlying
regulation of cytokine production share a common network
regulatory basis in disparate inflammatory phenotypes127. Our
study of microglial LPS responses may have broader implications
regarding cytokine network interactions stimulated by other
inflammatory ligands such as beta-amyloid and alpha-synuclein.
Simulations and analysis of our model highlight novel hypothe-
ses that can be addressed through experiments with cultured
microglia using available tools for perturbing and measuring
cytokines. Thus, our model of cytokine signaling in microglia
offers utility in generating mechanistic hypotheses regarding
the therapeutic applications of cytokine perturbations to treat
conditions associated with neuroinflammation.
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O. A. Leach, S. PrÃűmel, D. Punwani, J. H. Felce, S. J. Davis,
R. Gold, F. C. Nielsen, R. M. Siegel, M. Mann, J. I. Bell,
G. McVean and L. Fugger, Nature, 2012, 488, 508–511.

27 S. Mocellin, M. C. Panelli, E. Wang, D. Nagorsen and F. M.
Marincola, Trends in Immunology, 2003, 24, 36–43.

28 T. J. Anastasio, Molecular BioSystems, 2015, 11, 434–453.

29 T. J. Anastasio, Frontiers in Pharmacology, 2015, 6, 116.

30 W. Ma, A. Trusina, H. El-Samad, W. A. Lim and C. Tang, Cell,
2009, 138, 760–773.

1–16 | 13

Page 13 of 16 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



31 C. C. Chao, S. Hu, W. S. Sheng and P. K. Peterson, Develop-

mental Neuroscience, 1995, 17, 97–105.

32 W. S. Sheng, S. Hu, F. H. Kravitz, P. K. Peterson and C. C.
Chao, Clinical and Diagnostic Laboratory Immunology, 1995,
2, 604–608.

33 C. C. Chao, S. Hu, W. S. Sheng, M. Tsang and P. K. Peterson,
Clinical Immunology and Immunopathology, 1995, 77, 358–
365.

34 M. Behar, N. Hao, H. G. Dohlman and T. C. Elston, Biophysi-

cal Journal, 2007, 93, 806–821.

35 G. C. An and J. R. Faeder, Mathematical Biosciences, 2009,
217, 53–63.

36 B. Barzel and A.-L. Barabasi, Nature Physics, 2013, 9, 673–
681.

37 A. M. Minogue, J. P. Barrett and M. A. Lynch, Journal of

Neuroinflammation, 2012, 9, 126.

38 S. C. Hopp, S. Royer, H. M. Brothers, R. M. Kaercher,
H. D’Angelo, I. Bardou and G. L. Wenk, Journal of Neuroim-

munology, 2014, 267, 86–91.

39 Y. Zhang, K. Chen, S. A. Sloan, M. L. Bennett, A. R. Scholze,
S. O’Keeffe, H. P. Phatnani, P. Guarnieri, C. Caneda, N. Rud-
erisch, S. Deng, S. A. Liddelow, C. Zhang, R. Daneman,
T. Maniatis, B. A. Barres and J. Q. Wu, The Journal of Neu-

roscience: The Official Journal of the Society for Neuroscience,
2014, 34, 11929–11947.

40 O. Butovsky, M. P. Jedrychowski, C. S. Moore, R. Cialic, A. J.
Lanser, G. Gabriely, T. Koeglsperger, B. Dake, P. M. Wu, C. E.
Doykan, Z. Fanek, L. Liu, Z. Chen, J. D. Rothstein, R. M.
Ransohoff, S. P. Gygi, J. P. Antel and H. L. Weiner, Nature

Neuroscience, 2014, 17, 131–143.

41 Y. Dong and E. N. Benveniste, Glia, 2001, 36, 180–190.

42 P. W. Sheppard, X. Sun, J. F. Emery, R. G. Giffard and
M. Khammash, BMC Bioinformatics, 2011, 12, 276.

43 I. K. Puri and L. Li, PloS One, 2010, 5, e15176.

44 M. Rodriguez-Fernandez, B. Grosman, T. M. Yuraszeck, B. G.
Helwig, L. R. Leon and F. J. Doyle III, PLoS One, 2013, 8,
e73393.

45 H. H. Yiu, A. L. Graham and R. F. Stengel, PloS One, 2012,
7, e45027.

46 S. Marino, N. A. Cilfone, J. T. Mattila, J. J. Linderman, J. L.
Flynn and D. E. Kirschner, Infection and Immunity, 2015, 83,
324–338.

47 N. A. Cilfone, C. R. Perry, D. E. Kirschner and J. J. Linderman,
PloS One, 2013, 8, e68680.

48 C. Ziraldo, Q. Mi, G. An and Y. Vodovotz, Advances in wound

care, 2013, 2, 527–537.

49 T. T. Nguyen, S. E. Calvano, S. F. Lowry and I. P. An-
droulakis, PLoS One, 2013, 8, e55550.

50 P. W. Sheppard, X. Sun, M. Khammash and R. G. Giffard,
PLoS Computational Biology, 2014, 10, e1003471.

51 S. Maiti, W. Dai, R. Alaniz, J. Hahn and A. Jayaraman, Pro-

cesses, 2014, 3, 1–18.

52 A. B. Caldwell, Z. Cheng, J. D. Vargas, H. A. Birnbaum and
A. Hoffmann, Genes & Development, 2014, 28, 2120–2133.

53 C. Moya, Z. Huang, P. Cheng, A. Jayaraman and J. Hahn,
IET Systems Biology, 2011, 5, 15.

54 S. L. Werner, D. Barken and A. Hoffmann, Science, 2005,
309, 1857–1861.

55 J. M. Correnti, D. Cook, E. Aksamitiene, A. Swarup, B. Ogun-
naike, R. Vadigepalli and J. B. Hoek, The Journal of Physiol-

ogy, 2015, 593, 365–383.

56 M. A. Savageau, Journal of Theoretical Biology, 1969, 25,
370–379.

57 M. Meyer-Hermann, M. T. Figge and R. H. Straub, Arthritis

and Rheumatism, 2009, 60, year.

58 N. V. Valeyev, C. Hundhausen, Y. Umezawa, N. V. Kotov,
G. Williams, A. Clop, C. Ainali, C. Ouzounis, S. Tsoka
and F. O. Nestle, PLoS Computational Biology, 2010, 6,
e1001024.

59 L. A. Furchtgott, C. C. Chow and V. Periwal, Biophysical Jour-

nal, 2009, 96, 3926–3935.

60 M. L. Hines, T. Morse, M. Migliore, N. T. Carnevale and G. M.
Shepherd, Journal of Computational Neuroscience, 2004, 17,
7–11.

61 G. M. Miller, B. A. Ogunnaike, J. S. Schwaber and R. Vadi-
gepalli, BMC Systems Biology, 2010, 4, 171.

62 A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cari-
boni, D. Gatelli, M. Saisana and S. Tarantola, Global Sensi-

tivity Analysis. The Primer, Wiley-Interscience, Hoboken, NJ,
2008.

63 S. Tarantola, W. Becker and D. Zeitz, Computer Physics Com-

munications, 2012, 183, 1061–1072.

64 J. Yang, Environmental Modelling & Software, 2011, 26, 444–
457.

65 E. E. Longbrake, W. Lai, D. P. Ankeny and P. G. Popovich,
Journal of Neurochemistry, 2007, 102, 1083–1094.

66 K. J. Livak and T. D. Schmittgen, Methods (San Diego, Calif.),
2001, 25, 402–408.

67 J. Tellinghuisen, Methods in Cell Biology, Academic Press,
2008, vol. 84, pp. 737–780.

68 R Development Core Team, R: A Language and Environment

for Statistical Computing, R Foundation for Statistical Com-
puting, Vienna, Austria, 2008.

69 C. C. Chao, S. Hu, K. Close, C. S. Choi, T. W. Molitor, W. J.
Novick and P. K. Peterson, The Journal of Infectious Diseases,
1992, 166, 847–853.

70 D. Agarwal, R. B. Dange, M. K. Raizada and J. Francis,
British Journal of Pharmacology, 2013, 169, 860–874.

71 J. Zubcevic, H. Waki, M. K. Raizada and J. F. R. Paton, Hy-

pertension, 2011, 57, 1026–1033.

72 K. L. H. Wu, S. H. H. Chan and J. Y. H. Chan, Journal of

Neuroinflammation, 2012, 9, 212.

73 M. T. Heneka, M. P. Kummer and E. Latz, Nature Reviews

Immunology, 2014, 14, 463–477.

74 N. P. Whitney, T. M. Eidem, H. Peng, Y. Huang and J. C.
Zheng, Journal of Neurochemistry, 2009, 108, 1343–1359.

75 M. K. McCoy and M. G. Tansey, Journal of Neuroinflamma-

tion, 2008, 5, 45.

14 | 1–16

Page 14 of 16Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



76 C. C. Chao, S. Hu, W. S. Sheng, M. Tsang and P. K. Peterson,
Clinical Immunology and Immunopathology, 1995, 77, 358–
365.

77 K. J. Szretter, M. A. Samuel, S. Gilfillan, A. Fuchs,
M. Colonna and M. S. Diamond, Journal of Virology, 2009,
83, 9329–9338.

78 C.-J. Chen, Y.-C. Ou, C.-Y. Chang, H.-C. Pan, S.-L. Liao, S.-Y.
Chen, S.-L. Raung and C.-Y. Lai, Glia, 2012, 60, 487–501.

79 K. M. Park and W. J. Bowers, Cellular Signalling, 2010, 22,
977–983.

80 L. Vitkovic, J. P. Konsman, J. Bockaert, R. Dantzer, V. Hom-
burger and C. Jacque, Molecular Psychiatry, 2000, 5, 604–
615.

81 S. Cambier, S. Gline, D. Mu, R. Collins, J. Araya, G. Dolganov,
S. Einheber, N. Boudreau and S. L. Nishimura, The American

Journal of Pathology, 2005, 166, 1883–1894.

82 T. E. Morgan, I. Rozovsky, D. K. Sarkar, C. S. Young-Chan,
N. R. Nichols, N. J. Laping and C. E. Finch, Neuroscience,
2000, 101, 313–321.

83 P. Norgaard, M. Spang-Thomsen and H. S. Poulsen, British

Journal of Cancer, 1996, 73, 1037–1043.

84 M. E. Joyce, A. B. Roberts, M. B. Sporn and M. E. Bolander,
The Journal of Cell Biology, 1990, 110, 2195–2207.

85 E. Van Obberghen-Schilling, N. S. Roche, K. C. Flanders,
M. B. Sporn and A. B. Roberts, The Journal of Biological

Chemistry, 1988, 263, 7741–7746.

86 M. A. Ajmone-Cat, A. Nicolini and L. Minghetti, Journal of

Neurochemistry, 2003, 87, 1193–1203.

87 Y. Le, P. Iribarren, W. Gong, Y. Cui, X. Zhang and J. M. Wang,
Journal of Immunology (Baltimore, Md.: 1950), 2004, 173,
962–968.

88 P. A. Lodge and S. Sriram, Journal of Leukocyte Biology,
1996, 60, year.

89 C. Bogdan and C. Nathan, Annals of the New York Academy

of Sciences, 1993, 685, 713–739.

90 C. Bogdan, J. Paik, Y. Vodovotz and C. Nathan, Journal of

Biological Chemistry, 1992, 267, 23301–23308.

91 N. Azhar, C. Ziraldo, D. Barclay, D. A. Rudnick, R. H. Squires,
Y. Vodovotz and for the Pediatric Acute Liver Failure Study
Group, PLoS One, 2013, 8, e78202.

92 P. Zoppoli, S. Morganella and M. Ceccarelli, BMC Bioinfor-

matics, 2010, 11, 154.

93 K. A. Janes and D. A. Lauffenburger, Current Opinion in

Chemical Biology, 2006, 10, 73–80.

94 B. N. Kholodenko, A. Kiyatkin, F. J. Bruggeman, E. Sontag,
H. V. Westerhoff and J. B. Hoek, Proceedings of the National

Academy of Sciences of the United States of America, 2002, 99,
12841–12846.

95 H. Shao, Y. He, K. C. P. Li and X. Zhou, Molecular BioSystems,
2013, 9, year.

96 J. C. J. Ray, J. Wang, J. Chan and D. E. Kirschner, Journal of

Theoretical Biology, 2008, 252, 24–38.

97 J. S. Bezbradica, R. K. Rosenstein, R. A. DeMarco, I. Brodsky
and R. Medzhitov, Nature Immunology, 2014, 15, 333–342.

98 J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Sam-
aga, D. A. Lauffenburger, S. Klamt and P. K. Sorger, Molecular

Systems Biology, 2009, 5, 331.

99 C. S. Cheng, K. E. Feldman, J. Lee, S. Verma, D.-B. Huang,
K. Huynh, M. Chang, J. V. Ponomarenko, S.-C. Sun, C. A.
Benedict, G. Ghosh and A. Hoffmann, Science Signaling,
2011, 4, ra11.

100 M. K. Morris, J. Saez-Rodriguez, D. C. Clarke, P. K. Sorger
and D. A. Lauffenburger, PLoS Computational Biology, 2011,
7, year.

101 P. M. Villiger, A. B. Kusari, P. ten Dijke and M. Lotz, Journal

of Immunology (Baltimore, Md.: 1950), 1993, 151, 3337–
3344.

102 V. A. Vincent, F. J. Tilders and A. M. Van Dam, Mediators of

Inflammation, 1998, 7, 239–255.

103 Y. Vodovotz, L. Chesler, H. Chong, S. J. Kim, J. T. Simpson,
W. DeGraff, G. W. Cox, A. B. Roberts, D. A. Wink and M. H.
Barcellos-Hoff, Cancer Research, 1999, 59, 2142–2149.

104 Y. Vodovotz, C. Bogdan, J. Paik, Q. W. Xie and C. Nathan,
The Journal of Experimental Medicine, 1993, 178, 605–613.

105 E. Klipp, W. Liebermeister, C. Wierling, A. Kowald,
H. Lehrach and R. Herwig, Systems Biology, John Wiley &
Sons, 2011.

106 R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown,
C. R. Myers and J. P. Sethna, PLoS Computational Biology,
2007, 3, 1871–1878.

107 H. W. Engl, C. Flamm, P. KÃijgler, J. Lu, S. MÃijller and
P. Schuster, Inverse Problems, 2009, 25, 123014.

108 A. Tarantola, Natue Physics, 2006, 2, 492–494.

109 W. Dai, L. Bansal, J. Hahn and D. Word, AIChE Journal,
2014, 60, 181–192.

110 A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand and
J. Timmer, Bioinformatics (Oxford, England), 2014, 30,
1440–1448.

111 B. B. Machta, R. Chachra, M. K. Transtrum and J. P. Sethna,
Science (New York, N.Y.), 2013, 342, 604–607.

112 S. Daun, J. Rubin, Y. Vodovotz, A. Roy, R. Parker and G. Cler-
mont, Journal of Theoretical Biology, 2008, 253, 843–853.

113 S. Cai, P. Zhou and Z. Liu, Cognitive Neurodynamics, 2013,
7, 417–429.

114 S. E. Hickman, N. D. Kingery, T. K. Ohsumi, M. L. Borowsky,
L.-c. Wang, T. K. Means and J. El Khoury, Nature Neuro-

science, 2013, 16, 1896–1905.

115 H. Pan, E. Ding, M. Hu, A. S. Lagoo, M. B. Datto and
S. A. Lagoo-Deenadayalan, Journal of immunology (Balti-

more, Md.: 1950), 2010, 184, 5502–5509.

116 Y. Naiki, K. S. Michelsen, W. Zhang, S. Chen, T. M. Doherty
and M. Arditi, The Journal of Biological Chemistry, 2005,
280, 5491–5495.

117 E. J. F. Vereyken, P. D. A. M. Heijnen, W. Baron, E. H. E.
de Vries, C. D. Dijkstra and C. E. Teunissen, Journal of Neu-

roinflammation, 2011, 8, 58.

118 W. Wang, D. Hu and H. Xiong, Glia, 2008, 56, 241–246.

119 A. Hoffmann, A. Levchenko, M. L. Scott and D. Baltimore,

1–16 | 15

Page 15 of 16 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Science (New York, N.Y.), 2002, 298, 1241–1245.

120 A. Reynolds, J. Rubin, G. Clermont, J. Day, Y. Vodovotz and
G. Bard Ermentrout, Journal of Theoretical Biology, 2006,
242, 220–236.

121 S. Amor, F. Puentes, D. Baker and P. van der Valk, Immunol-

ogy, 2010, 129, 154–169.

122 M. T. Bell, F. Puskas, V. A. Agoston, J. C. Cleveland, K. A.
Freeman, F. Gamboni, P. S. Herson, X. Meng, P. D. Smith,
M. J. Weyant, D. A. Fullerton and T. B. Reece, Circulation,
2013, 128, S152–156.

123 U. Kilic, E. Kilic, C. M. Matter, C. L. Bassetti and D. M. Her-
mann, Neurobiology of Disease, 2008, 31, 33–40.

124 S.-C. Tang, T. V. Arumugam, X. Xu, A. Cheng, M. R. Mughal,
D. G. Jo, J. D. Lathia, D. A. Siler, S. Chigurupati, X. Ouyang,
T. Magnus, S. Camandola and M. P. Mattson, Proceedings

of the National Academy of Sciences of the United States of

America, 2007, 104, 13798–13803.

125 J. R. Caso, J. M. Pradillo, O. Hurtado, P. Lorenzo, M. A. Moro
and I. Lizasoain, Circulation, 2007, 115, 1599–1608.

126 K. A. Kigerl, W. Lai, S. Rivest, R. P. Hart, A. R. Satoskar and
P. G. Popovich, Journal of Neurochemistry, 2007, 102, 37–50.

127 J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs,
I. Quester, D. De Nardo, T. D. Gohel, M. Emde, L. Schmi-
dleithner, H. Ganesan, A. Nino-Castro, M. R. Mallmann,
L. Labzin, H. Theis, M. Kraut, M. Beyer, E. Latz, T. C. Free-
man, T. Ulas and J. L. Schultze, Immunity, 2014, 40, 274–
288.

128 V. H. Perry, C. Cunningham and C. Holmes, Nature Reviews

Immunology, 2007, 7, 161–167.

16 | 1–16

Page 16 of 16Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


