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Abstract 

Systems-biology inspired identification of drug targets and machine learning-based screening of 

small molecules which modulate their activity have the potential to revolutionize modern drug 

discovery by complementing conventional methods.  

To utilize the effectiveness of such pipeline, we first analyzed the dysregulated gene pairs 

between control and tumor samples and then implemented an ensemble-based feature selection 

approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic 

exploration. Based on the structural information of known inhibitors of CXCR4—one of the best 

targets identified in this study—a feature selection was implemented for the identification of 

optimal structural features (molecular descriptor) based on which a classification model was 

generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally 

utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. 

Application of our methodology may assist effective selection of the best targets which 

may have previously been overlooked, that in turn will lead to the development of new oral 

cancer medications. The small molecules identified in this study can be ideal candidates for trials 

as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may 

provide reference for the analysis of other complex human diseases. 

 

Keywords: CXCR4, Feature selection, Logistic regression modeling, Machine learning, Oral 

squamous cell carcinoma, Plant derived molecules  
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1. Introduction 

Early diagnosis of a disease can help to prevent its development and precise prognosis of 

a disease condition can avoid unnecessary treatments. A major focus in cancer research is 

therefore centered on the identification of disease-related genes (also called biomarkers). In the 

context of diseases, biomarkers are very crucial in serving as molecules for therapeutic 

intervention 
1
 
2
 
3
 
4
; these biomarkers can also provide the basis for enhancing the prediction of 

patient-specific prognosis or therapeutic response 
5
 
6
. While huge information is available about 

the identification of genes and developed methodologies can provide an opportunity for the 

selection of highly possible drug targets, it is still challenging to systematically integrate various 

resources to prioritize therapeutic drug targets. The classical approaches (such as linkage, 

candidate gene association, genome-wide association studies, etc.) are time consuming and even 

difficult to perform for identification of genes associated with complex diseases 
7
 
8
. Furthermore, 

the genes identified by above mentioned approaches are usually not functionally related; 

therefore, these approaches offer limited usefulness in identifying specific genes those contribute 

to or are involved in complex diseases. Increasing evidences indicate that altered networks are 

the hallmarks of complex diseases, including cancers 
9
 
10

 
11

 
12

. Instead of performing analysis for 

tens of thousands of gene comparisons, a network-based study limits the analysis to only few 

orders of magnitudes 
13

 ranging from hundreds 
14

 
15

 to even tens 
16

 
17

 
18

 
19

 of relevant genes. 

Considering these utilities, various network based approaches have been implemented to predict 

disease related genes 
19

 
20

; however, most of these approaches still remain limited at the level of 

static regulation between genes rather than changes in the strength of gene-gene correlations 

across biological states. An approach of effective selection of the best targets from a large space 

will in turn lead to the production of only most successful drugs 
21

. However, it is still a 

challenge to find the best druggable targets 
22

 that can affect the complex interaction networks 
23

. 

Therefore, it will be highly helpful to develop and implement a systematic approach that can 

effectively integrate the available large-scale datasets and approaches for prioritizing the possible 

anti-cancer drug targets. Genes and proteins function cooperatively to regulate common 

biological processes by co-regulating each other 
24

; therefore compared to traditional approaches, 

network-centered methodologies help in the better understanding of underlying complex 

interactions among genes. Because of these merits, these methods have been applied to prioritize 
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disease-associated genes in humans 
25

 and even for the identification of tissue-specific genes in 

plant systems 26. 

Complex diseases are generally being caused by multiple aberrancies in the biological 

systems or networks rather than from changes in a single gene 
27

 
28

 
29

. Given that diseases are 

often a consequence of perturbations in the strength of molecular interactions 
25

, approaches that 

focus on gene-gene correlations can be utilized to find drug targets, a method overlooked by 

various analyses that examine differential expressions only. In general, the best subset provides a 

higher accuracy in comparison to the original large dataset 
30

 
31

; this kind of subsets  have been 

proposed for molecular classification of various cancers 
32

 
33

 
34

. Because there may be a large 

number of perturbed (dysregulated) genes across different biological states, the dimensionality 

problem still remain a major challenge. The ability of machine learning algorithms to reduce 

dimensionality and learn from the past examples to detect complex patterns from large data sets 

is particularly well-suited to medical applications;  therefore, these techniques are extensively 

being applied for cancer prognosis and diagnosis 
35

 
36

 
37

 
38

 
39

. Hence, machine learning 

approaches may be implemented to remove non-relevant genes in a supervised manner to find 

representative feature subsets that could satisfy a desired criterion. 

Considering the central protein receptors identified by network-driven approaches, 

several successful attempts have been made to block the identified targets for therapeutic 

intervention 
40

 
41

. In particular, there is a keen interest in inhibiting protein receptors by 

screening small-molecules from databases of natural compounds 
42

 
43

 
44

 
45

 
46

 
47

.  The molecules 

of plant origin possess various potential properties, including anti-diabetic, anti-tuberculosis 
48

, 

and even anti-cancer properties 
49

 
50

 
51

 
52

. Additionally, plant based small-molecules also possess 

none or comparatively lesser side-effects; therefore, there is a growing interest in deriving these 

molecules for large-scale drug discovery. Similar to relevant gene-selection problem in 

genomics, the screening of selected molecules from large compound collections is also a major 

issue in cheminformatics research.  

Because molecular structures can effectively be searched from drug-like libraries by the 

use of unique patterns (e.g., structural descriptors) of known structures 
53

, choosing appropriate 

structural patterns that could discriminate between molecules is the first and foremost priority. 

Furthermore, machine learning algorithms can solve the purpose by selecting only most relevant 

patterns in the structural dataset. In addition to their successful implementation in clinical 
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research for identification of genes, use of machine learning methods in cheminformatics  

research is growing in the last decades 
54

 
55

 
56

 
57

 
58

. These methods had earlier been implemented 

for molecular structures classification problems 
59

 
60

 
61

 
62

 
58

 
63

 
56

 
64

 and also for screening of the 

molecules for therapeutic use 
65

 
66

. These machine learning algorithms enable models to learn 

from data of known molecules (using molecular chemistry and structural information) and can 

successfully predict unknowns. Hence, using the recognized patterns of inhibitor datasets, the 

screening of similar compounds from large small-molecule databases may lead to large-scale 

identification of novel molecules for therapeutic intervention. 

Oral cancer is one of the most common cancer worldwide with oral squamous cell 

carcinoma (OSCC) being the most common form which accounts for ~96% of oral cavity 

cancers 
67. Taking the analysis of high throughput data on OSCC as an example, herein a 

computational framework has been implemented which constitutes the following major steps: (1) 

prioritization of OSCC genes by identification of potentially dysregulated gene pairs and feature 

(gene) selection by logistic regression modeling, and (2) construction of a CXCR4 (one of the 

most important drug target identified for OSCC) inhibitor-based classification model followed 

by screening of potent molecules from a repository of plant derived molecules (PDMs). To the 

best of our knowledge, in addition to prioritization of OSCC drug targets using ensemble 

methods, we also developed a classification model on the basis of known CXCR4 inhibitors. The 

small molecules identified in the analysis can be ideal candidates for trials as potential novel 

anti-oral cancer agents. 

 

2. Materials and Methods 

2.1. Identification of candidate genes in oral squamous cell carcinoma (OSCC) 

The R (http://www.r-project.org/) software package Variability Analysis in Networks (VAN) 
68

 

was used for the identification of potentially dysregulated modules (comprising of a hub and all 

its interaction partners) in relation to OSCC disease phenotype. For this purpose, the gene 

expression dataset was analyzed in the context of protein-protein interactions (PPI) network. The 

gene expression profile of OSCC (comprising 355 tumor and 131 normal samples) was obtained 

from our previous study 
69

 while PPI data was compiled from various publicly available 

authoritative resources (Table 1). Detailed information of data preprocessing is provided in 

Supporting Information (Additional file 1: Supplementary Methods). During the analysis, a 

Page 5 of 47 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



6 
 

threshold value of 30 was selected for defining a gene hub, and a total of 1000 permutations were 

performed to determine the Benjamimi-Hochberg (FDR) 
70

 adjusted p-value. The genes which 

had an FDR adjusted p-value less than 0.05 (p<0.05) were considered. The dysregulated healthy 

and cancerous networks were visualized by importing data into Cytoscape software package, 

version 3.0.1 
71

. 

2.2. Disease enrichment analysis of the candidate genes 

The known cancer genes that are common to the candidate disease genes were used to evaluate 

the disease significance of obtained hub genes. The genes specific to OSCC were obtained from 

specialized databases which includes Head and Neck and Oral Cancer Database (HNOCDB) 
72

, 

The Oral Cancer Gene Database (OrCGDB) 
73

, and Oral Cancer Gene Database (Version II) 
74

 

(all accessed in March, 2015). To broaden the scope of our study, a list of well curated and 

validated cancer genes (which are causally implicated in cancer) was obtained from the 

Catalogue of Somatic Mutations in Cancer (COSMIC) database 
75

 (accessed in Feb, 2015). The 

enrichment of candidate hub genes was estimated by comparing them to known cancer related 

genes using a hypergeometric test that is computed as follows: 

  

𝑃(𝑋 = 𝑘) =
(
𝐾
𝑘
) (
𝑁 − 𝐾
𝑛 − 𝑘

)

(
𝑁
𝑛)

 

 

where 𝑁, 𝐾 𝑛 and, 𝑘 represent total number of gene expression profiles, number of known 

cancer associated genes, number of genes obtained in a sample, and number of candidate disease 

genes actually drawn in the experiment, respectively. 𝑃 is the statistical enrichment significance 

of the test. 

Using an existing method 
76

, the random sampling was also performed to test the probability, 

where same number of known cancer genes was randomly picked in order to estimate whether 

these known cancer genes included in the previous results were statistically significant. Detailed 

information of method is provided in Supporting Information (Additional file 1: Supplementary 

Methods). 

2.3. Functional enrichment analysis of the candidate genes 
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To obtain statistical enrichment of hub genes associated with specific biological processes and 

pathways annotated, gene ontology (GO) and pathway enrichment analysis were performed 

using ReactomePA 
77

 and GOstats 
78

 packages, respectively. To assess statistical enrichment, 

FDR-corrected hyper-geometric test p-values 
79

 were computed and overrepresented categories 

with enrichment p-values less than 0.001 (p<0.001) were considered as significant. The universe 

genes were defined as those which were present in the relevant background databases. 

2.4. Selection of target genes by ensemble based feature selection method 

For reducing the dimensionality in feature space, as a hybrid feature selection method, feature 

selection with random forest (RF) 
80

 was combined with elastic net logistic regression 
81

, where 

both approaches were implemented using R libraries “randomForest” 
80

 and “glmnet” 81. To 

obtain a stable gene list, the feature selection procedure was performed for 1000 bootstraps (on 

~60% of expression dataset). The genes that were present in more than a frequency threshold of 

800 (f>800) iterations were finally selected. A similar procedure for feature selection was carried 

out for both RF and elastic net methods, and the overlapping genes (features) were considered 

candidate “oral cancer genes”. 

To confirm whether the identified oral cancer genes are disease biomarkers and could 

discriminate between healthy and tumor samples, four popular state-of-the-art supervised 

classification methods—conditional inference trees (party
82

), random forest and bagging 

ensemble using conditional inference trees (party
82

), bagging (ipred 
83

), and support vector 

machine (SVM; e1071 
84

)—were implemented. The classification models were constructed on 

the basis of 80% training dataset while evaluation was performed on the remaining 20% testing 

dataset. The classification power of each model was assessed using area under the receiver 

operating characteristic (ROC) and overall predictive accuracy in the ROCR software package 
85

. 

In addition, leave-one-out cross-validation (LOOCV) strategy was also employed taking out one 

sample from the entire training data sets for test while keeping the remaining samples for 

training in each of 𝑁 rounds, where 𝑁 is the number of entire training data sets. 

2.5. Collection of CXCR4 inhibitors and selection of best molecular descriptors 

CXC chemokine receptor 4 (CXCR4) is one of the important drug target identified in this 

analysis and is amenable to inhibition by small molecules; therefore, it was systematically 

probed for screening novel inhibitory small-molecules from a repository of PDMs.  
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All known CXCR4 agonists, along with their inhibitory concentration (IC50), were collected 

from published data in the literature (Table 2), and their three-dimensional (3D) structures were 

drawn by means of Marvin Sketch 6.3 (ChemAxon, Budapest, Hungary) software. All molecules 

were subjected to geometry optimization using 500 steps of steepest descent method with 

MMFF94 force field 
86

. The compound were assigned as inhibitors/active molecules if their IC50 

(50% inhibition) values were less than 0.05 µM otherwise non-inhibitors (IC50≥0.05 µM); this 

resulted in a final data set which comprise of 81 inhibitors and 59 non-inhibitors.  

A total of 1,444 one-dimensional (1D) and two-dimensional (2D) molecular descriptors were 

calculated for each molecule by the means of PaDEL-Descriptor software program 
87

. As a 

preprocessing step, descriptors with more than 80% zero values and too small standard deviation 

values (<3%) were eliminated. Furthermore, Pearson correlation analysis (r) was employed 

(using “corrplot” library 
88

) and the redundant/similar descriptors with correlation greater than 

0.90 (r>0.90) were also removed. Similar to the selection of highly significant genes in relation 

to biological phenotype (section 2.4), frequency-based approach was used for obtaining the most 

relevant descriptors as the representative features of molecules. The statistical significance 

between average values of inhibitors and non-inhibitors descriptors was computed via Student’s 

t-test. Multiple testing corrections were performed using the Benjamini & Hochberg method 
70

 

for calculation of FDR adjusted p-value (q-value), and features with significant difference were 

retained (FDR adjusted p-values<0.05). 

2.6. Construction of a classification model and screening of plant derived molecules 

Random forest and bagging ensemble methods have been implemented utilizing conditional 

inference trees as base learners. In the section, a combination of two different classifiers, random 

forest and bagging, was used to create a classification model for best descriptors by the means of 

party 
82

 software package. The classification model was constructed using 80% training data set 

and tested for classification/prediction performance on rest of the 20% testing dataset. To 

validate the robustness, a 5-fold cross-validation scheme was employed, where training and 

testing were carried out five times in such a way that each time one set was used for testing and 

the remaining (n-1) sets for training. The best feature descriptors selected from each model were 

used for training the whole dataset to generate the final classification model. The sensitivity, 

specificity, overall predictive accuracy, and Matthew’s correlation coefficient (MCC) were 

calculated for each test dataset in our 5-fold cross validation to test the performance of each 
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model. The classification model constructed using the whole dataset was also validated on an 

external independent data set which comprise of 39 active compounds against CXCR4 obtained 

from DUD-E website (http://dude.docking.org/) 
89

. 

 The CXCR4-centered molecular descriptor-based classifier model developed was used for 

classifying molecules and screening of drug-relevant compounds from PDMs retrieved from two 

major Himalayan medicinal plant databases: SerpentinaDB 
90

 and Phytochemica  
91

. The R 

ChemmineR 
92

 software package was used to cluster significant molecules into their discrete 

similarity groups. Furthermore, a maximum common substructure search was performed using 

the flexible common substructure algorithm 
93

 to identify potentially representative scaffolds in 

the clustered molecules.  

2.7. ADME/T prediction and molecular docking studies 

Absorption, distribution, metabolism, and excretion/toxicity (ADME/T) profiles of the top 

scored molecules were assessed from their respective databases (SerpentinaDB 
90

 and 

Phytochemica  
91

), where computational prediction of pharmacokinetic properties were 

performed using ADMET descriptors in Discovery Studio v 4.0 (Accelrys, San Diego, USA). 

These molecules were also checked for their physicochemical properties by FAF-Drugs3 
94

 web-

server. 

Furthermore, to obtain insights into structural interactions of the screened molecules, 

computational molecular docking studies were performed. The x-ray crystal structure of human 

chemokine CXCR4 receptor in complex with isothiourea derivative (IT1t) inhibitor 
95

 (PDB ID: 

3OE6; resolution: 3.20) was retrieved from the Protein Data Bank (PDB) 
96

. The molecule (also 

called ligand) and receptor preparations for docking were performed by means of the  Autodock 

Tools 1.5.4 software package 
97

 using our previously established protocol 
43

. For software 

standardization, IT1t from co-crystallized complex was first extracted and then re-docked to its 

corresponding binding site (active site) using AutoDock Vina v 1.1.2 package 
98

. For selecting 

the best PDMs, the bound IT1t and other non-protein molecules were removed from protein 

structure and molecules were docked into the active site. The active site was defined on the basis 

of bound IT1t inhibitor in crystal structure of CXCR4. Molecular interactions between protein 

and ligands were predicted using LigPlot
+
 v 1.4.3 software 

99
 and molecular rendering was 

performed by means of the  PyMOL software (PyMOL Molecular Graphics System, Version 
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1.5.0.1, Schrödinger, LLC). All computations were carried out on a 12-core HPZ600 workstation 

running Ubuntu 12.04 operating system. 

 

3. Results and Discussion 

The computational procedure implemented in this work is divided into two major steps: (1) 

prioritization of OSCC genes by identification of potentially dysregulated gene pairs and feature 

(gene) selection by logistic regression modeling, and (2) construction and validation of a CXCR4 

centered molecular descriptor-based classification model, followed by screening of potent 

inhibitory molecules from a compiled repository of PDMs. 

3.1. Identification of network-level perturbations in healthy and tumor samples 

It was assumed that those correlated gene pairs that potentially perturbed between health and 

cancer conditions possibly present the most significant genes associated to a disease. In this 

work, the genes that simultaneously possess low probability values (FDR adjusted p-value<0.05) 

and high log-fold change (2-fold higher or lower differential expression) were selected as 

signature genes on the basis of our earlier study 
69

 which identified 1,652 genes (1,052 over-

expressed and 600 under-expressed) differentially expressed in OSCC tumor samples compared 

to their healthy counterparts (Additional file 2; Supplementary Table 1 and Supplementary Table 

2). We selected DEGs because the combination of p-value and fold change criterion typically 

results in more biologically meaningful sets of genes 
100

 
101

 
102

. Principal component analysis 

(PCA) statistical test is a technique for visualizing high dimensional data that reduces the 

dimensionality of multivariate data while retaining most of the variance, thus making data 

analysis and interpretation easy 
103

. To visualize the overall expression patterns, we performed 

PCA on all DEGs used in this study to examine data in a two-dimensional plane. A clear 

separation between OSCC and normal groups was observed (Figure 1) with few outliers; this 

result indicates that normal and cancerous tissues had unique distinguishable expression profiles 

marked by different colors. 

The hubs—proteins involved in many interactions—are thought to be candidate drivers 

and are also frequently observed among existing cancer therapeutic targets 
104

. Therefore, 

identification of perturbed modules—hubs and all its interaction partners—are important for 

understanding the regulatory networks in a disease progression. Of all the total DEGs evaluated, 

48 hub genes (in the respective modules) showed significant differences (p-value<0.05; FDR) in 
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the average gene expression correlation with respect to their interaction partners in healthy and 

cancerous state; therefore, they were potentially represented as dysregulated network markers in 

healthy and tumor tissues (Figure 2). This figure indicates a disruption in the coordination of 

gene expression among hubs and their interaction partners in normal (Figure 2A) and cancerous 

(Figure 2B) networks assigned by the changes in edge (connection) color. The significant 

changes in tumor samples indicate that genes with strongly altered connections can play a major 

role in cancer. 

3.2. The candidate hub genes are significantly enriched in oral cancer 

Among the 48 hub genes identified, 12 genes—ANXA1 
105

, COL1A2 
106

, CXCR4 
107

, EGFR 
108

, 

FOS 
109

, ICAM1 
110

, IL6 
111

, MMP9 
112

, SERPINE1 
113

, STAT1 
114

, STAT3 
115

, and TGFB1 
116

—

are well known predictive biomarkers or OSCC drug targets. There were a total 11 genes that 

were common between identified 48 hub genes and 547 COSMIC-obtained cancer genes. Of the 

whole background dataset of 1,652 genes analyzed, there were only 77 genes whose somatic 

mutations are implicated in cancer. To investigate whether these 11 genes could have obtained 

randomly, their enrichment was evaluated by hypergeometric test. A significant p-value 

(p=3.5×10
-6

) against 10
5 
random simulations (average p-value: 2.1×10

-1
) was

 
obtained; this result 

indicated that identified hub
 
genes are enriched among known cancer related genes (rather than 

generated by chance).  Similarly, there were 12 common genes identified between obtained hub 

genes in this study and 488 OSCC-specific genes (which were retrieved from HNOCDB, 

OrCGDB, and Oral Cancer Gene Database [Version II]). Of the whole background dataset of 

1,652 genes analyzed, there were only 110 genes that were related to oral cancer. A significant p-

value (p=1.6×10
-5

) was obtained against random simulations (average p-value: 1.7×10
-1

); this 

observation is also an indicative of significant enrichment of hub genes among known OSCC 

genes. 

Hub genes are thought to be candidate driver genes of a set of genes; therefore, 

elucidation of hub genes associated GO terms and pathways provide insight into the altered 

mechanisms in a diseased condition. The resulting GO term list returned by GOstats 
78

 was large 

and highly redundant, and was therefore difficult to analyze. REViGO web server 

(http://revigo.irb.hr/) 
117

 was implemented to summarize this long list. The terms with SimRel 

semantic similarity 
118

 of 0.5 were clustered to obtain a single representative term for each of the 
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identified clusters; this GO term summarization identified a total of 65 representative terms 

(Table 3.3). 

ReVIGO GO summarization indicated that highly non-redundant representative terms 

with dispensability score ≤0.05 included representative terms associated to immune system 

process 
119

 (GO: GO:0002376, p=1.01×10
-7

), nitric oxide metabolic process 
120

 (GO:0046209, 

p= 5.64×10
-5

), positive regulation of cellular component movement 
121

 (GO:0051272, p= 

9.50×10
-19

), response to transforming growth factor beta 
122

 (GO:0071559, p= 1.34×10
-12

), and 

leukocyte cell-cell adhesion 
123

 (GO:0007159, p= 1.72×10
-7

). The identified GO categories were 

significantly over-represented relative to their frequency in a randomized sample of expressed 

transcripts. Literature analysis revealed that the majority of these significantly enriched BP terms 

were related to molecular mechanisms associated with cancer associated processes. Other 

significant representative GO BP terms are summarized in supplementary table (Additional file 

2, Supplementary Table 3). Most of these identified GO terms seem to be particularly interesting 

with respect to their well known role in cancer. 

To further clarify the functional mechanism at molecular level, pathway enrichment 

analysis was performed on the basis of Reactome pathway database 
124

. Pathway over-

representation analysis presented syndecan interactions (ID:3000170; p=2.23×10
-10

) 
125

, 

extracellular matrix organization (ID:1474244; p=2.23×10
-10

) 
126

 
127

, integrin cell surface 

interactions (ID:216083; p=2.19×10
-9

) 
128

, hemostasis (ID:109582; p=2.28×10
-9

) 
129

, and ECM 

proteoglycans (ID:3000178; p=9.63×10
-9

) 
127

 as the top most important pathways over-

represented in hub genes. These over-represented pathways are known to mediate various cancer 

associated processes which include cell growth and development 
125

, cell adhesion 
128

, drug 

resistance 
126

 
127

, and homeostasis 
129

. Overall, these analyses altogether suggested that the hub 

genes mediate perturbations in various biological processes and pathways in the cancerous state. 

3.3. Identification of oral cancer targets using ensemble-based feature selection 

Some of the hub genes selected may be irrelevant to the trait of interest; therefore, only the 

subset of informative genes was probed further. Generally, hybrid feature selection approaches 

are effective in identification of the key genes that are associated with disease diagnosis or 

prognosis 
39

 
130

 
131

; therefore, a practice of considering overlapped feature lists provides a 

promising approach 
39

. As an ensemble approach, we considered the overlapped genes that were 

obtained in both feature selection methods (elastic net and RF) to obtain a more reliable subset of 
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genes. This combined criterion of feature selection reduced the feature vector space from 48 

hubs to five genes—ICAM1 (intercellular adhesion molecule 1), ITGB1 (integrin, β 1), CXCR4 

(CXC chemokine receptor 4), PTK2 (protein tyrosine kinase 2), and COL1A2 (collagen, type I, α 

2)—which were presumed to be highly related to OSCC. A detailed and systematic literature 

search inferred that the selected genes play major roles in oral cancer development and 

progression (ICAM1
132

 
133

 
134

 
135

 
136

 
137

 
138

, ITGB1 
139

, CXCR4 
140

 
141

 
142

 
143

 
144

 
145

 
146

 
147

 
148

 
149

 
150

 

151
 
152

 
153

, PTK2 
154

 
155

, and COL1A2 
156

 
157

 
158

 
159

 
160

 
161

). A study by Usami et al. 
162

 found 

ICAM1 to play an important role in oral cancer progression angiogenesis, tumor invasion, and 

lymph node metastasis, cell adhesion. In addition, expression of ICAM1 is also found to be 

higher in oral tongue squamous cell carcinoma as compared to normal tongue tissue 
163

. 

CXCL12/CXCR4 axis has been proposed to play a prominent role from early steps of oral 

malignant transformation to the progress of oral carcinogenesis 
143

.  Furthermore, 

CXCL12/CXCR4 signaling in OSCC cells is also thought to be involved in invasion or micro-

metastasis at the primary site and lymph node metastasis 
152

. PTK2 (also called focal  adhesion 

kinase [FAK]) is a candidate gene that most likely drives the 8q24.3 amplification which in turn 

results in over-expression of PTK2 mRNA and protein in OSCC cells 
164

. Additionally, the 

expression level of focal adhesion kinase expression is known to be increased in invasive and 

pre-invasive oral cancers 
155

. COL1A2 is found to be among the list of genes that are over-

expressed in oral carcinoma 
165

 
166

 
167

 including its over-expression in head and neck squamous 

cell carcinoma (HNSCC) 
156

. Empirical studies that define the role of ITGB1in OSCC are scarce; 

however, it is known that a small non-coding micro-RNA down-regulate the expression of 

ITGB1, which in turn suppresses OSCC 
139

. Somewhat similar to our approach but with different 

perspectives, Zhongyu et al. 
167

 performed a meta-analysis by integrated 4 public microarray 

OSCC datasets. Comparable to our findings, COL1A2 was identified as one of the up-regulated 

genes in the OSCC tissues relative to controls. In a study performed by Bundela et al. involving 

two OSCC expression datasets 
168

, PTK2 is found to be up-regulated. These genes were also 

associated with the processes that are well known to be involved in cancers such as cellular 

component movement, immune response, and cell adhesion (Additional file 2; Supplementary 

Table 3). Because empirical studies that represent the direct role of ITGB1 and PTK2 genes in 

oral cancer are limited, precise role of these genes in OSCC is not well established. 
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 A pair-wise scatter plot for these 5 genes revealed that these were 

correlated, where healthy samples have lower expression values (red squares) compared to the 

tumor samples (blue circles) (Figure 3). Because our predicted anti-oral cancer genes could 

successfully distinguish tumor samples from normal controls, they are thought to be related to 

OSCC. Owing to the good correlation among these genes, classification models were developed 

using four popular state-of-the-art supervised classification methods to assess discriminative 

ability of candidate genes between healthy and tumor samples. The conditional inference trees, 

random forest and bagging ensemble, bagging, and SVM provided overall predictive accuracies 

(Q) of 83%, 87%, 84%, and 87%, respectively, with an average of 85.25%. Furthermore, AUCs 

of 0.84, 0.91, 0.87, and 0.89 were obtained for conditional inference trees, random forest and 

bagging ensemble, bagging, and SVM, respectively. As seen from the figure (Figure 4), all 

classifiers performed equally well during discrimination of tumor samples from the normal ones. 

The AUC values were beyond 0.50 in all classification methods; these results indicate that all of 

the classification algorithms performed better than random discrimination. The LOOCV 

accuracy of 85.80% also indicated an unbiased assessment and stability of genes selected. Taken 

all together, these observations indicate that the ensemble-based feature selection approach were 

able to capture more informative and compact set of genes which have the capability to 

discriminate between healthy and tumor samples; therefore, the identified five genes—ICAM1, 

ITGB1, CXCR4, PTK2, and COL1A2—were considered candidate “oral cancer genes”.  

3.4. CXC chemokine receptor 4 (CXCR4) as an important drug target in oral cancer 

Considering the importance of central protein receptors, several attempts have been made to 

block them for therapeutic intervention 
40

 
41

 with an ultimate aim to interfere with downstream 

signaling  molecules. Because CXCR4 is both druggable 
169

 
170

 and highly relevant to oral cancer 

143
 
144

 
171

  
153

, there has been considerable interest in the clinical potential of CXCR4 inhibitors 

172
. However, CXCR4 antagonists are reported with some side effects 

173
 
174

 
175

; therefore, there is 

a strong need to discover novel molecules, of diverse structural and chemical features, with 

potential therapeutic value and lesser side effects. Several studies have assessed the potential 

anti-cancer properties of natural compounds 
49

 
50

 
51

 
52

, and these molecules provide specific 

scaffolds that make them comparable to trade drugs 
176

. Overall, based on the known reports of 

CXCR4 in oral cancer and effectiveness of natural compounds towards diseases, CXCR4 was 

prospected for molecules of the plant origin. 
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3.5. Selection of optimal molecular descriptors of CXCR4 inhibitors 

Molecular feature selection methods are capable of improving the prediction accuracies and 

selection of meaningful features in cheminformatics research 
58

 
61

. A total of 1,444 1D and 2D 

molecular descriptors—also referred to as features—were calculated for each CXCR4 antagonists 

molecule. After removing redundant descriptors, performing feature selection, and considering 

those descriptors that presented significant difference in their values (p-value), the feature 

vectors space was reduced from 1,444 molecular descriptors to 10 significant ones. These 10 

descriptors—maxHBint9, MPC9, minHBint5, VR3_Dt, SdssC, GATS6s, AATSC0c, VC-5, 

VR1_Dt, and SHBint7—can be broadly divided into five classes on the basis of their properties: 

atom type electro-topological state descriptors, path counts, detour matrix, chi cluster, and 

autocorrelation descriptors (Table 3). These descriptors are important for describing electro-

topological state 
177

, connectivity-framework, and topological distances 
178

 of chemical 

compounds. 

3.6. Construction of a descriptor-based classification model and screening of novel plant 

derived molecules 

The RF and bagging ensemble method was employed to build a classifier model on the basis of 

10 optimized molecular descriptors. During this procedure, we employed the same method as 

previously defined for gene classification problem (section 2.4) except that training and testing 

were carried out by 5-fold cross-validation procedure. The performance results of varying 

training-testing combinations did not present major differences in the performance parameters. 

The assessment parameters computed from each subset were averaged across all five subsets, 

achieving a final sensitivity, specificity, overall accuracy and MCC of 76%, 86%, 81%, and 0.63, 

respectively; this good predictive accuracy indicate that the selected molecular descriptors were 

able to discriminate CXCR4 inhibitor from non-inhibitors. The technical details of these 

performance measures are provided in Supporting Information (Additional file 1: Supplementary 

Methods). 

There are no hard and fast rules regarding the selection of best prediction model; 

however, the run that provides the highest prediction accuracy for training set may be 

considered. But, such kind of approach can be misleading because a model with the highest 

prediction accuracy may not necessarily produce the highest accuracy on the other test datasets 

due to overfitting. Therefore, for each of the five models, best combination of features was 

Page 15 of 47 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



16 
 

selected by accessing their variable importance values by assessing the conditional variable 

importance. The variables are considered important if their importance value are above the 

absolute values of lowest negative-scoring variable; this assumption is based on the rationale that 

the importance of irrelevant variables varies randomly around zero 
179

. In our study, an ensemble 

of all significant variables was considered to generate the final classification model which finally 

comprised of all ten molecular descriptors.  Furthermore, to avoid any bias in the prediction, an 

independent validation set was also used for evaluation of the classification model. The 

validation dataset comprise of 21 inhibitors and 18 non-inhibitors categorized according to their 

IC50 values obtained from CHEMBL (https://www.ebi.ac.uk/chembl/) chemical structure 

database. We obtained 61% (12/21) sensitivity, 71% (12/18) specificity, 67%  (24/39) accuracy, 

and a MCC value of 0.36 on the external data set; this result also indicate usefulness of a 

reasonably good classification model in the screening of unknown molecules as inhibitors of 

CXCR4. 

The SerpentinaDB and Phytochemica databases are comprehensive repositories of 

molecules (with immense therapeutic properties) compiled by our group that are present in 

medicinal plants of the Himalayan mountain range. A total of 84, 574, 75, 56, 80 and 142 

molecules were obtained from plants Atropa belladonna, Catharanthus roseus, Heliotropium 

indicum, Picrorhiza kurroa, Podophyllum hexandrum, and Rauvolfia serpentina, respectively, 

making a composite total of 1,011 molecules. The molecular descriptor-based classifier model 

was used to classify molecules and prioritize pharmacologically relevant molecules from a 

repository of PDMs; this was performed for probing of novel potential plant-based CXCR4 

inhibitors. The molecules that were present in more than the selected threshold of confidence 

score (>0.75) were considered as significant CXCR4 inhibitors; this resulted in a hit list of 17 

possible potent inhibitors (Table 4). Most of the hits obtained (~76%) are elected from C. roseus 

dataset indicating the potential of this plant to be of pharmacological relevance. 

The similar property principle states that structurally similar molecules tend to have 

common biological properties 
180

. All 17 hit molecules identified were assessed for structural 

diversity in order to group molecules with similar biological properties on the basis of similar 

scaffolds. To assess the diversity and unique molecular scaffolds (those were highly prevalent in 

identified hits), we used the following procedure: the set of molecules was first clustered in to 

their discrete groups—based on Tanimoto similarity measure 
181

—and then we identified 
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maximum common substructures—based on subgraph enumeration and subgraph isomorphism 

testing 
93

—in each of the respective cluster. The clustering results indicated that molecules were 

grouped together into three distinct clusters (Figure 5): cluster 1 (CARS0212, CARS0220, 

CARS0609, CARS0616 and CARS0617), cluster 2 (CARS0026, CARS0027, CARS0375, and 

CARS0385), and cluster 3 (CARS0610, HEIN0041 and CARS0465). This apparent separation 

between groups clearly indicates that compounds with similar scaffold were well clustered.  

Furthermore, the common substructures analysis revealed the presence of varying 

structural scaffolds in each of the three independent clusters. Cluster 1 and 3 presented groups of 

molecules with isoprene scaffolds thus representing terpenes/terpenoids as a major chemical 

class; this molecular class has not largely been explored for designing of the CXCR4 inhibitors. 

Cluster 2—the second largest cluster—contained scaffolds which comprised of six-membered 

rings with a nitrogen moiety thus representing indole alkaloids as the major class. Contrary to the 

terpenes/terpenoids, indole alkaloids and their derivatives currently represent  one of the major 

class of CXCR4 inhibitors 
172

. A representative member of each of the cluster is shown in a 

figure (Figure 6). Furthermore, because the crystal structure of CXCR4 is available 
95

, these 

identified molecules were also assessed for steric and electrostatic complementarity with the 

binding pocket. 

3.7. Screening through pharmacokinetic properties (ADME/T) and interaction studies 

In the direction of analyzing novel chemical entities, most of the drugs fails at early or late stages 

of drug discovery pipeline due to unwanted pharmacokinetics or toxicity problems
182

 
183

. In view 

of these, as a post-docking filter, the prioritized molecules were first assessed for in-silico 

ADME/T properties (Table 5) aimed at discarding those molecules which were either potentially 

toxic, exhibited poor ADME/T properties, or possessed non-drug like properties. By means of 

the Discovery studio package, the prediction of pharmacokinetic properties was performed using 

ADME/T descriptors, where descriptors perform prediction on the basis of chemical structure of 

the molecules. The module uses six mathematical models to quantitatively predict molecular 

properties by set of rules/keys summarized in supplementary data (Additional file 2: 

Supplementary Table 4). The following six ADME/T characteristics of molecules were 

considered in our studies: (i) ADMET solubility level (predicts the solubility of each compound 

in water), (ii) ADMET BBB (blood brain barrier penetration) level (predicts the BBB penetration 

of each compound), (iii) ADMET absorption level (predicts the absorption of compound ), (iv) 
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ADMET hepatotoxicity (predicts the occurrence of dose-dependent human hepatotoxicity), (v) 

ADMET CYP2D6 binding (predicts the cytochrome P450 2D6 enzyme inhibition), and (vi) 

plasma protein binding (PPB, predicts whether or not a compound is likely to be highly bound to 

blood carrier proteins). Additional information of these pharmacokinetic properties is presented 

in detail elsewhere 
184

. Furthermore, the molecules were also was assessed for “drug-likeness” 

according to the default specifications of FAF-Drugs3. On the basis of above criteria, a total of 

eight drug-like molecules (Table 5) passed out the ADME/T filter and were subjected for 

subsequent binding studies with CXCR4 receptor using molecular docking. 

 The accuracy of a docking algorithm is usually measured by the root mean square 

deviation (RMSD) between experimentally observed heavy atom positions of the ligand and 

those predicted by the algorithm, which is usually in the range of 1.5–2 Å 
185

. Before performing 

actual interaction studies, docking protocol was first validated by comparing the native 

experimental conformation of the bound ligand (IT1t) in the crystal complex (PDB ID: 3OE6) 

with that of its computationally obtained binding conformation. For this, the coordinates of 

bound ligand IT1t were extracted from the complex and re-docked into the inhibitor binding site. 

The binding site comprises of residues Asp97, Cys186, and Glu288,
 
which were reported to be 

involved in making critical inhibitory protein-ligand interactions in the IT1t-CXCR4 complex 

95
.The backbone atom RMSD between the experimental conformation and best IT1t pose (on the 

basis of lowest docked energy/binding affinity) was 1.9 Å; this result confirms the quality of 

docking protocol and its suitability for predicting reliable binding modes of prioritized 

molecules. 

Docking studies were carried out with eight pharmacologically viable molecules in order 

to find out their optimal conformations in the binding pocket of CXCR4. After molecular 

docking studies, a total of three lead molecules (Figure 7) were finally selected on the basis of 

interactions with critical residues (Asp97, Cys186, and Glu288) at the ligand binding site and 

best binding affinity values, where binding affinity is the sum of total intermolecular energy, 

total internal energy, and torsional free energy minus the energy of unbound system 
98

. The 

predicted binding energy (kcal/mol) indicates the strength of ligand binding to the protein 

receptor, and the more negative is this energy, the stronger is the binding. Each of these 3 

molecules, in their best binding poses, possessed binding affinities of -5.3, -7.2, and -5.1 for 

CARS610 (Linalool), CARS617 (α-Eudesmol), and HEIN0041 (beta-linalool), respectively. 
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Importantly, these molecules were making interactions (hydrogen bonding) with residues known 

to be critical for CXCR4 inhibition (Figure 7). In addition, these molecules were also making 

hydrophobic contacts with other residues whose validity and exact role need to be validated 

empirically. Linalool is known to possess inhibitory effects against breast, colorectal, and liver 

cancer cells 
186

; however, as far as our knowledge, its use in oral cancer research has not been 

well reported. A Pubmed (http://www.ncbi.nlm.nih.gov/pubmed) database-driven literature 

search for these compounds also ascertained that these lead molecules have not specifically been 

reported for the inhibition of CXCR4 receptor; this confirms the novelty of these compounds and 

their opportunity to be used as novel CXCR4 inhibitors for the treatment for OSCC and other 

human malignancies where precise role of CXCR4 is described 
187

 
188

 
189

 
190

 
169

 
191

 
192

 
193

 
194

 
195

 

196
. 

 

4. Conclusions 

Major challenges in the cancer research include the prioritization of targets and also the 

identification of novel small-molecules that could inhibit the drug targets. Considering both 

aspects simultaneously, herein, an integrated computational pipeline has been established which 

links prioritized oral cancer drug targets with identification of small molecule inhibitors of plant 

origin. The systems-level approach that we have presented for OSCC may allow researchers to 

analyze large volumes of data and discover new potential drug targets in other complex human 

diseases. We expect that the three potential PDMs identified for CXCR4 can be ideal for 

experimental studies as potential novel anti-oral cancer agents. The lead molecules reported 

herein may also provide better insights for designing potential CXCR4 inhibitors with improved 

efficacy and fewer side effects. 

 

Abbreviations: 

CXCR4, CXC chemokine receptor 4; DEGs, Differentially Expressed Genes; GO, Gene 

Ontology; IC, inhibitory concentration; OSCC, Oral Squamous Cell Carcinoma; PDMs, Plant-

derived molecules; RF, Random forest 
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Figure Legends 

Figure 1. Principal component analysis (PCA) plot. PCA plot indicating grouping of healthy and 

tumor samples by their expression profiles into two separate clusters. The X- and Y-axis are 

defined by the first and second principal components, respectively. 

 

Figure 2. Network module visualization. The figure indicating disruption in correlation of gene 

expression among hub genes and their interaction partners in healthy (A) and cancerous (B) 

networks as indicated by the changes in edge color. Both networks are visualized using 

Cytoscape software package and the color scale ranges from red (strong negative correlation) 

through yellow (no correlation) to blue (strong positive correlation). 

 

Figure 3. Classification of normal and tumor samples. A pair-wise scatter plot for identified five 

candidate oral cancer genes—ICAM1, ITGB1, CXCR4, PTK2, and COL1A2— revealing 

correlation among them, with normal tissues having lower expression values (red squares) than 

cancerous tissues (blue circles). 

 

Figure 4. Receiver operating characteristic curve (ROC) plot of oral cancer genes. The ROC plot 

obtained for four classifiers viz., conditional inference trees, random forest and bagging 

ensemble, bagging, and support vector machine. ROC depicts True Positive Rate (sensitivity) 

versus False Positive Rate (1-specificity). The diagonal line in the ROC curve has an area under 

the curve (AUC) value of 0.5, representing the predictive power of a random guess. A smooth 

curve through a set of data points was obtained with locally weighted scatterplot smoothing 

(LOWESS) non-parametric regression method. 

 

Figure 5. Multi-dimensional scaling (MDS) plot of identified hit molecules. MDS plot 

constructed on the basis of Tanimoto index showing a distinct discrimination of molecules into 

individual clusters where green, black and gray color represent cluster 1 (terpenes [CARS0212, 

CARS0220, CARS0609, CARS0616 and CARS0617]),  cluster 2 (indole alkaloids [CARS0026, 

CARS0027, CARS0375, and CARS0385]) and cluster 3 (terpenes [CARS0610, HEIN0041 and 

CARS0465]), respectively. 
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Figure 6. Representative structures of molecules present in each individual cluster. (A) α-

Bisabolol (CARS0212; cluster 1), (B) N, N-dimethyltryptamine (CARS0026; cluster 2), and (C) 

1,8-Cineole (CARS0610; cluster 3). 

 

Figure 7. The best plant-derived molecules (PDMs) as potent CXCR4 inhibitors. 2D structures of 

three lead PDMs identified on the basis of binding affinity and interactions with critical residues: 

(A) CARS610 (Linalool), (B) CARS617 (α-Eudesmol), and (C) HEIN0041 (beta-linalool). 

Lower panel of figure shows the hydrogen bonds between hydroxyl group of lead molecules and 

CXCR4 protein residues which are indicated in cyan color, while residues making hydrophobic 

contacts are represented in surface view. 

Tables 

Table 1. A list of databases, along with release date/version and number of protein-protein 

interactions (PPIs), used in the present study. 

Database Name Release date/Version No. of Human PPI Reference 

DIP Jan 17, 2014 3,100 
197

 

HPRD Apr 13, 2010/Release 9 35,348 
198

 

BIOGRID April 1, 2014/3.2.111 49,958 
199

 

IMEx Consortium Apr 10, 2014 58,250 
200

 

STRING Dec 27, 2013/9.1 1,93,734 
201
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Table 2. The families of CXCR4 inhibitor molecules compiled for the present study. 

Family Number of compounds References 

Cyclic peptides 4 
202

 

Tetrahydroquinoline derivatives 110 
172

 

Indole derivatives 7 
172

 

AMD derivatives 15 
203

 

Macrocyclic polyamines 4 
204
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Table 3. The optimal molecular descriptors selected for CXCR4 centred classification model 

building. 

Descriptor type Descriptor Reference 

Atom type electrotopological 

state descriptors 

maxHBint9; minHBint5; SdssC; SHBint7 
177

 

Autocorrelation GATS6s; AATSC0c 
205

 

Detour matrix VR1_Dt; VR3_Dt 
205

 

Path counts MPC9 
205

 

Chi cluster VC-5 
178
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Table 4. A summary of hit compounds identified form screening/prioritization of plant derived 

molecules (PDMs). 

Molecule ID Confidence 

Score 

Plant Chemical Name Chemical Class 

CARS0575 0.91 C. roseus Secodine Indole alkaloid 

CARS0026 0.89 C. roseus N, N-dimethyltryptamine Indole alkaloid 

CARS0027 0.86 C. roseus Nb-acetyltryptamine Indole alkaloid 

RASE0127 0.78 R. serpentina Suaveoline Indole alkaloid 

CARS0212 0.76 C. roseus α-Bisabolol Monocyclic 

sesquiterpene 

alcohol 

CARS0616 0.76 C. roseus γ-Eudesmol Sesquiterpenoids 

CARS0609 0.76 C. roseus 1,8-Cineole Monoterpenoids 

CARS0220 0.76 C. roseus Manool Diterpenes 

CARS0617 0.76 C. roseus α-Eudesmol Sesquiterpenoids 

CARS0376 0.76 C. roseus N-[(S)-α-

Methylbenzyl]tetrahydro-

γ-carboline 

Indole alkaloid 

CARS0375 0.76 C. roseus N-[(S)-α-Methylbenzyl]-

4-piperidone 

Indole alkaloid 

HEIN0045 0.76 H. indicum Beta-Ionone Terpenes 

CARS0465 0.75 C. roseus (−)-piperitone Monoterpenes 

CARS0385 0.75 C. roseus N-[(S)-1-( l-

Naphthyl)ethyl]-4-

piperidone 

Indole alkaloid 

ATBE0034 0.75 A. belladonna N-methyl pyrroline Heterocyclic 

alkaloids 

HEIN0041 0.75 H. indicum beta-linalool Terpenes 

CARS0610 0.75 C. roseus Linalool Terpene alcohols 

 

Page 38 of 47Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



39 
 

Table 5. The in-silico ADME/T properties of prioritized plant derived molecules (PDMs) 

obtained from descriptor-based classification model. The numerical values indicate the 

pharmacokinetic properties, and the highlighted rows indicate the molecule selected for docking 

studies (NA indicates not available) 

Molecule ID A
*
 B

*
 C

*
 D

*
 E

*
 F

*
 G

*
 H

*
 I

*
 J

*
 K

*
 

ATBE0034 4 4 2 0 1 0 83.13 0.49 0 0 1 

CARS0026 NA NA NA 0 1 0 188.27 2.35 3 1 2 

CARS0027 NA NA NA 0 1 0 202.25 1.62 3 2 3 

CARS0212 2 0 0 0 0 1 222.37 3.79 4 1 1 

CARS0220 2 0 0 0 0 1 290.48 5.72 4 1 1 

CARS0375 NA NA NA 1 0 0 203.28 1.61 2 0 2 

CARS0376 NA NA NA 1 1 0 276.38 3.85 2 1 2 

CARS0385 NA NA NA 1 1 1 253.34 2.86 2 0 2 

CARS0465 3 1 0 0 0 1 152.23 2.18 1 0 1 

CARS0575 NA NA NA 1 0 1 338.44 3.84 7 1 4 

CARS0609 3 1 0 0 1 1 154.25 2.18 0 0 1 

CARS0610 3 1 0 0 0 1 154.25 2.73 4 1 1 

CARS0616 2 0 0 0 1 1 222.37 3.39 1 1 1 

CARS0617 2 1 0 0 0 1 222.37 3.5 1 1 1 

HEIN0041 3 1 0 0 0 1 154.25 3.21 4 1 1 

HEIN0045 2 1 0 0 0 1 192.3 2.91 2 0 1 

RASE0127 NA NA NA 1 1 1 303.4 2.76 1 1 3 
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A
*
-K

* 
represent ADMET solubility level, ADMET blood brain barrier (BBB) level, ADMET absorption level, 

ADMET CYP2D6 (predicted class), ADMET hepatotoxicity (predicted class), ADMET plasma protein binding 

level (PPB; predicted class), molecular weight, logP, rotatable bonds, hydrogen bond donors (HBD), and hydrogen 

bond acceptors (HBA), respectively. 
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Principal component analysis (PCA) plot. PCA plot indicating grouping of healthy and tumor samples by their 
expression profiles into two separate clusters. The X- and Y-axis are defined by the first and second principal 

components, respectively.  
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Network module visualization. The figure indicating disruption in correlation of gene expression among hub 
genes and their interaction partners in healthy (A) and cancerous (B) networks as indicated by the changes 
in edge color. Both networks are visualized using Cytoscape software package and the color scale ranges 
from red (strong negative correlation) through yellow (no correlation) to blue (strong positive correlation).  
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Classification of normal and tumor samples. A pair-wise scatter plot for identified five candidate oral cancer 
genes—ICAM1, ITGB1, CXCR4, PTK2, and COL1A2— revealing correlation among them, with normal tissues 

having lower expression values (red squares) than cancerous tissues (blue circles).  
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Receiver operating characteristic curve (ROC) plot of oral cancer genes. The ROC plot obtained for four 
classifiers viz., conditional inference trees, random forest and bagging ensemble, bagging, and support 

vector machine. ROC depicts True Positive Rate (sensitivity) versus False Positive Rate (1-specificity). The 

diagonal line in the ROC curve has an area under the curve (AUC) value of 0.5, representing the predictive 
power of a random guess. A smooth curve through a set of data points was obtained with locally weighted 

scatterplot smoothing (LOWESS) non-parametric regression method.  
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Multi-dimensional scaling (MDS) plot of identified hit molecules. MDS plot constructed on the basis of 
Tanimoto index showing a distinct discrimination of molecules into individual clusters where green, black and 

gray color represent cluster 1 (terpenes [CARS0212, CARS0220, CARS0609, CARS0616 and 

CARS0617]),  cluster 2 (indole alkaloids [CARS0026, CARS0027, CARS0375, and CARS0385]) and cluster 3 
(terpenes [CARS0610, HEIN0041 and CARS0465]), respectively.  
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Representative structures of molecules present in each individual cluster. (A) α-Bisabolol (CARS0212; 

cluster 1), (B) N, N-dimethyltryptamine (CARS0026; cluster 2), and (C) 1,8-Cineole (CARS0610; cluster 3). 
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The best plant-derived molecules (PDMs) as potent CXCR4 inhibitors. 2D structures of three lead PDMs 
identified on the basis of binding affinity and interactions with critical residues: (A) CARS610 (Linalool), (B) 
CARS617 (α-Eudesmol), and (C) HEIN0041 (beta-linalool). Lower panel of figure shows the hydrogen bonds 

between hydroxyl group of lead molecules and CXCR4 protein residues which are indicated in cyan color, 
while residues making hydrophobic contacts are represented in surface view.  

881x473mm (96 x 96 DPI)  

 

 

Page 47 of 47 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


