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In Caenorhabditis elegans large number of @tein-Rotein InteractiongPPIs) are identified by different experiments. How-
ever, a comprehensive weighted PPI network, which is eisédat signaling pathway inference, is not yet availablethis
model organism. Therefore, we firstly construct an intégeaPPl network inC. eleganawith 12951 interactions involving
5039 proteins from seven molecular interaction databaslesn, a_Rliability Score based on arBbabilistic Gaphical Model
(RSPGM) is proposed to assess PPls. It assumes the randobenominteractions between two proteins comes from the
Bernoulli Distribution to avoid multi-links. The main pareeter of RSPGM score contains a few latent variables whiohbea
considered as several common properties between two psodélidations on high-confidence yeast datasets sholRBRGM
provides more accurate evaluation than other approachdsha PPIs in the reconstructed PPI network have higheodpicdl
relevance than that in the original network in terms of gem®logy, gene expression, essentiality and the predictidmown
protein complexes. Furthermore, this weighted integedi?| network irC. eleganss employed on inferring interaction path
of the canonical Wnf-catenin pathway as well. Most genes on the inferred intema@ath have been validated to be Wnt*
pathway components. Therefore, RSPGM is essential andtigédor evaluating PPIs and inferring interaction patimafy,

the PPI network with RSPGM scores can be queried and vigshtin a user interactive website, which is freely available 2
http://rspgm.bionetworks.tk/.

1 Introduction essary to infer pathway by computational methods basec. ~1
molecular interaction data.

Signaling pathway is an essential process in living organis several computational methods have been proposed c r
m, receiving extracellular or cytoplasmic signal and thégt  pathway inference recenfly’. Most of them require a weight-
gering downstream signal transduction, which modulatesge ed molecular interaction network, called background netwo
expression and cell function. The knowledge of differentki 55 an input of the algorithm. The background network is gen-
s of pathways can reveal biological function or provide sug-erally constructed from PPIs and PDIs data. Most pathway i
gestion of disease therahy ference methods are performed on yeast because of the &. wii-
Unfortunately, although several pathways have been studgpility of its weighted PPI networks currenf§. However, in
ied extensively, the structure and function of most pattevay Caenorhabditis eleganiC. elegany there is still not a com-
are not well understood. Because signaling pathway is comprehensive weighted PPI network availabl&herefore, it is
plicated involving different molecules contacting withcha necessary to construct a PPI networlCoklegansand assign
other via_Potein-Rotein InteractiongPPIs) or_Potein-DNA the reliability score for each PPI.
InteractiongPDls), it is time-consuming to detect molecular  pyqtein_protein Interactions can be identified via high

regulatory relationships through biological experimest&h  y4,ghnut and small-scale experimental techniques orése o

as gene knockout or RNAI. Therefore, it is possible and NeCyicted from computational methods by using different ty| e

s of data, such as sequence, expression and binding data, or

t  Electronic  Supplementary Information  (ESI)  available: three-dimensional structural d&th Several different popu-

hitp://rspgm.bionetworks.tk/. See DOI: 10.1039/b000600 lar biological databases have collected abundant PP@. of
Department of Electronic and Engineering, City UniversifyHong Kong, . .

Hong Kong. elegans such as_Rtabase ofriteracting_oteins (DIP),

b School of Automation, China University of Geosciences, anuh Biological General_Repository for_hteraction_[atasets (Bi-

China. Fax: +852 3442 0562; Tel: +852 3442 4889; E-mail: oGRID)!!, IntAct Molecular Interaction Database (IntAc-

zhuyuan7@mail2.sysu.edu.cn; zhuyuan2015@yeah.net t)12, Molecular Ineraction database (MINT§, WormBasé*
CDepartment of Biology, Faculty of Science, Hong Kong Bapfisiversity, = - . ! . '
Hong Kong. Worm Interactome version 8 (W18} and GeneOrienteé?.
1 These authors contributed equally to this work. However, none of them contains the relative comprehensi. :
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PPIs information. For instance, the interaction betwmen-6  output argument fronfO, +) to (0,1). By using this map-
andemb-9is recorded in BioGRID, IntAct and MINT, while ping function, 0< rjj < 1 ensures that it makes sense when
the interaction betweerag-landodr-7 can only be retrieved considering it as a parameter of the Bernoulli Distributiom
in GeneOrienteer and WormBase. Therefore, construction ahe one hand, and it normalizes the reliability scores on t'ie
a comprehensive PPI network databas€ ofleganss urgent  other hand.
and necessary.

Many computational methods have been developed to a2 A probabilistic graphical model
sess the reliability of the data. These methods can be approx ) _
imately divided as three classes: (1) Multiple data integra!n this method, a PPI network is represented by an unci
tion based method4-18 (2) Network topology based meth- rected graptG(V,E), i.e. vertex set including each proteir
0ds%-25 (3) Model based method&28 Multiple data inte- @S & Verte = {vi, vz, ,a}, and edge se = {(v;,vj) |
gration based methods work effectively but much more rely orfhere is an interaction between proteiandvj, 1 <i,j < n}.
the prior knowledge of individual protein. Network topojog 1he Symmetric adjacent matrix is denotedVals= (wj) €
based methods and model based methods are the most stdte- » Wherew;j = 1 if (vi,vj) € E elsew;j = 0. The prob-
of-the-art evaluation approaches, recently. _rolibilistic abilistic graphical model can be described by the jointliike
Graphical Mbdel (PGM) has been established to describe phood function over all variables as below.
PI networks in terms of a random process that generates the _
networkg?3C.  Several works demonstrated that PGMs can PW.SB.D) = PWISD)P(SBPDIYPE), (2)
be widely applied to discover protein compt&2'32 explore  whereS= (s,) € R"™Mis the propensity matri) = (d;) € R"
biology networké® and assess PPI§ etc. Motivated by the s the protein linkage ability vector of afl proteins involving
wide applications of PGMs in PPI network analysis, this pa-in the PPI network.B = (B;) € R™ is the parameter vector
per further explores its potential in assessing new estadli  of S, P(W|S D) is the probability of generating interaction

integrative and comprehensive PPI networlCoklegans wij between proteimnand proteinj in a PPl network. As it is
shown abovewi; is binary (0 or 1), which is supposed to fol-
2 Methods low the Bernoulli Distribution with parametes; = rjj. Sim-

ilar to2728 we also assume that eash comes from an ex-
Similar to Zhuet al’s previous work’, we assume that there Ponential distribution with rate paramefg. Considering the
are several latent properties between two interactingeprst ~ Scale-free property of PPI networks, the degree distiaipuaif
These latent properties could be GO annotation terms, gerfé in the PPI network approximates to a power law with a hy-
expression, sequence, location or any other functiongkiph Perparametey. Mathematically, the components of (2) can b :
cal and biochemical properties of the protein. Then, abélia described in detail as follows.
ity score for protein pairs is defined by accumulating protei

propensities on the common latent properties, which can be Wi ~ B(1, pij),
estimated by a probabilistic graphical model. namely,P(W|S, D) presented below is the probability of gen-
erating interactiony;; between protein; andv; in a PPl net-
2.1 Reliability Scorefor Protein Pairs work.
P(W|S D)

Based on our assumptios,= (s,) andsj = (sj;) € R™ are
used to describe protein properties wratent variables for -
proteinv; andvj, respectively. 0< 4,550 < 1 means the o w: o -
propensity of proteins; andv; on the-th latent variable. = 1(1*eXp(*(<d'S’dJSJ>+ep3)) " (exp(—({dis. djs;)) +eps )= ™
Suppose variabled;,d; € R are the ability of proteiry; and

proteinvj generating edges in the network, respectively. Thus,
we obtain the reliability scorg; between protein; and pro-
teinv; as the following form.

1

:"‘T':I =3

Pwils  d)= M o™ (1—p:)1-Wi
(WI]‘S!v |) I]I_I_lp” ( pl])

For proteinv; and latent variablé, draw protein-propensity
score:

S ~ Exp(Br)-
rij = 1—exp(—((dis djsj)) +eps, @ Namely,

where(-,-) denotes the inner product of vectors. eps mean- n m

s the floating-point relative accuracy in MATLAB. High- P(SB) = HHP(Selﬁz) 3)
er (dis,d;s;) indicates that protei; and proteinv; share i=1¢=

more latent properties, and have larger interacting pritibab L e

ty. Functionf(x) = 1—exp(—(x+ ep9g) is used to map the N il:U]lBE exXp(—Pisie)- @

2] 1-8
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Algorithm 1 RSPGM
P(dily) Dd; ", Input: m=500,W, S, D, B, T =300,0 = 0.01.
where,y can be implemented by robust linear regression usingPutput: Reliability score matrixR for PPI network.
robustfit(X, Y, bisquare’,4.68rovided by Matlab command  1: Initialize S with randomn x m matrix, D with the 1,, B

with input with the Oy, initialization.
B B 2: Integrate theC. elegan?PI network, obtain the adjacent
X =—log(D) and Y =IlogP(Dly). (5) matrix\W.
In summary, we can get the objective function as follows. 3: Estimatey by equation (5).
n 4: IterateS, D, B by equation (7), (8), (9), respectively.
SrAnDirElg — 3 wijlog(1—exp(—((dis,djs;) +ep3)) 5. Until Iteration count s larger thah or | ST+ —ST)|| <
D, if=1 o
n m :
+ 5 (1—wj)((dis,djsj) +eps—n Y logB, 6: Repeat step 1-5 50 times, the final result produces th~
'*Jﬁl =1 parameters with the minimum objective function in (6).
+V,21|09di + %BﬁSZa 7. R=1—exp—((D*D!) o (SxS) +epstonegn,n))).
i= il
st. S>0,D>0.

(6)

we integrate PPIs data @f elegangrom seven free available
databases, i.e. DIP, BioGRID, IntAct, MINT, WormBase, WI¢
To solve the non-negative constrained optimization proble and GeneOrienteer. The details are presented in Table 1. *'2
we use the multiplicative updating rules, which show a good

compromise between speed and ease of implementation, to al-

ternately update the model paramet8r® andB. ‘t' denotes  Table 1 The versions and corresponding references of the seven

the transpose of matrix whild;’ denotes the column vector selected databases.

of ones withn length. Similar t6?8 we can obtain the fol-

2.3 Parameter estimation

lowing updating formulae for paramet8rD, B, respectively. Database Reference Version
e (D+DY): %S DIP Salwinskiet al.1%, 2004 Celeg2014100"
2 Wij * (D+D)ij +Sj BioGRID Chatr-aryamontrét al.T%, 2013 3.2.119
s o g 12 OP((DxDY;x(SkS)ij+epg) o IntACt Kerrienet al 12 2011 2014-12-18
(DD« S+ 0.5 1, % BY)jy MINT Licataet al.13, 2012 2012-10-29
¥ jWij * (D DY)jj *d; WormBase Harriset al.'4, 2014 WS245
imoni 5
1—exp(—((D = DY);j * (S* S)i; +ep3) WI8 Simoniset al.”, 2009 WI8
d + d 8 -
| i * S-S-DTy/G (8) GeneOrienteer  Zhong and Sternbef§, 2006 v2.25
n
= —_—. 9
& (1h%S) ®)

then filter the PPIs data in terms of four criteria: 1) physica
2.4 Main algorithm interactions which belong to MI:0914 (association) typenir

Molecular Interaction (PSI Ml 2.5); 2) no self-interactor
The main algorithm of the new proposed assessment Qfipops); 3) no repetitive interactions; 4) not containintgi-
Reliability Score based on arbabilistic Gaphical Model  actions whose genes are not protein-coding, e.g. pseudpgr.n
(RSPGM) is presented in Algorithm 1. Whe@y denotes  transposon or miRNA. The statistics of the original and fil-

the column vector of zeros witm length. ©* denotes the  tered databases are discussed in Supplementary 1 Table
Hadamard product of two matrix with the same size. For ex-

ample A= (a;j),B = (bjj) € R™™, thus(AoB);j = ajby;. According to the filter criterion, we construct an integra-
tive protein-protein interaction network &. eleganswhich
contains 5039 nodes involving in 12951 PPIs, shown in Su:
plementary 1 Figure 1. The intersection numbers and overlap
ping rates of any two filtered databases from the seven select
databases are provided in Supplementary 1 Table 2 that she-
Since PPIs data from different molecular interaction dasab low overlapping rate between most any two filtered databas :s
es are distinct, it is necessary to construct a relative cemp This indicates interactions are partially recorded ined#it
hensive PPl network itC. elegandor further study. Here, specific databases.

3 Results

3.1 Databasesto navigate scored PPI network

1-8 |3



Molecular BioSystems Page 4 of 8

PPI Collins PPI Krogans 0.95

0.06

09 —8&—BP 0.055

MF
- \\\\\ 0.05
08 0.045

0.75 0.04

0.7 0.035

0.65 003
O g @ @D O D 4D 4D 2D 2 RO A I
0P 09 @ 05T O 0T o B O e o (o F
R N QO QI @ o e

(@) ®)

DD @ @ @

o0 # 99 9 (05 o
o O 0F o 09 e
S A OO A A e

08

The consistency between RSPGM score and The consisteregdreRSPGM score and
the GO semantic similarity. the sequence similarity.

Fig. 2 The consistency between RSPGM score and the GO
semantic, sequence similarity. The x-axis is the cover&gfeedP Pl
network. The averages of RSPGM score of the corresponding
coverage of the PPI network are presented on the bottom risx-a
(a) The y-axis is the average of the GO semantic similarith Wie
Fig. 1 The PR curves of eleven different methods on the four yeast descending order of RSPGM score by increasing the covesdigs r
datasetsRPlcojiins, PPlkrogans PPlgavin @ndPPlyjjer). The x-axis of the PPIs in three GO domains: CC, MF, BP. (b) The y-axises th
presents the recall while the y-axis shows the precision. average of the sequence semantic similarity with the delsocgn
order of RSPGM score by increasing the coverage ratios dPEts.

o - =
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3.2 Yeast PPl Networks

The yeast PPl networks are download from BioGRID (ver-assume that the random number of interactions between {~ve
sion 3.2.119). Four yeast PPI subnetworks filtered by differ proteins comes from the Bernoulli distribution instead &f E
techniques are used for evaluation. Collins daffsgthort  ponential distribution, which is found to be more suitalde t
for PPlcoiiins), Krogans datasé? (short for PPlkrogand and  evolve the PPI network and avoid multi-links. (2) The newl.:
Gavin dataséf (short forPPlgayin) are detected by TAP-MS  proposed score is scaled into (0,1), which makes sense wt.e
technique. The largest connected components of physical irconsidering it as a parameter of the Bernoulli Distribu o
teractions of these subnetworks are 1002 proteins with 8313 facilitated to compare with other methods. We compare ~-
PPIls, 2527 proteins with 6985 PPIs and 1359 proteins wittSPGM with the state-of-the-art methods that were described
6541 PPIs, respectively. Miller datadé(short forPPlyviier)  in27 and the similar type methods including Interaction Gene™-
is detected by PCA technique, in which the largest connectality (IG1)24, modified IG1 (IG2¥> and RWSP. The param-

ed component of physical interactions with 513 proteins ancter settings of RSPGM and other methods refer to Algorith»
1947 PPIs. SincPlcoiins is high-confidence, we employ it 1 in Section 2 and Section 3.2.22f respectively. To validate

to evaluate the GO similarity and sequence consistency anghe effectiveness of RSPGM, we plot the precision-recét)(P
compare the biological relevance and the accuracy of the precurves for RIGNM, MDS, GGA, CDdist, FSweight, GTOM

diction of known protein complexes for PPI groups. IG1, IG2 and RWS methods on the four yeast datasets. Th~.
results are presented in Fig. 1. As shown, RSPGM perforr-
3.3 Effectiveness validation of the reliability score s better than other methods on the four yeast datasets exce..

PPlkrogans@ndPPlgayin. However, the PR-AUC of RSPGM is
In this section, we first compare RSPGM score with oth-only 0.16 and 0.03 less than RWS BRlk rogansaNdPPlzayin,
er scores obtained using existing methods on the four yeasgéspectively (see Supplementary 1 Table 3). Our newly pr -
datasets by PR curve which presents recall against pracisioposed method is much more appropriate than RIGNM by the-
Secondly, we validate the consistency between the RSPGMry, and the performance is as good as RIGNM by experin zv..
score and GO semantic similarity and sequence similagty, r validation. Therefore, the new reliability score is effeetto
spectively. Moreover, we evaluate the functional releeasic  assess the PPls.
the original and reconstructed PPl networks on severaktype . _— : -
of sources, including gene ontology, gene expression and es 332 _Co_ns?en_cy _val|dat|on_ Accordmg to the guilt-
sentiality analysis. Finally, we investigate and compéue t by-association” principlé®, the interacting proteins should

accuracy of protein complex prediction between origina an fh?‘re the same functllt()nal t:arms and _h'9hef sequsgnce Slidiie
reconstructed PPI network. arity. We use R package “GOSemSim” (mgeneSitiip

calculate the GO semantic similarity between two proteir -
3.3.1 Comparison with other reliability scores There s by Wang’s methotf. We also employ the local BLAST
are two differences between RIGN¥and RSPGM: (1) We method", blastp (BLAST+ version 2.2.30), to calculate the

4| 1-8
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Fig. 3 Gene expression PCC, co-essentiality percentage and three (a) ACC
branches’ GO-based similarity of different PPIs’ groupeegated PPI Collins
from RSPGM forPPlcgjjins : : ;
GGA-After [ ClusterONE
MDS-After ey [CIMINE 1
. . CDdist-After T B
e-value between two proteins. Then the e-value is CONVETtel5g \eioht-After
between 0 and 1 by formul&(x) = exp(—X) to represent se- GTOM3-After )
quence similarity. The more alike the interacting proteiirg GTOM2-After !
the higher the reliability score, GO semantic similarityl ae- RWS-After =S
quence similarity. In order to validate the consistencyveein RIPGM-After —
. . . . . 1- . 1
GO, sequence similarity and reliability score, we ordetts RSPGMBA:‘”
. . . . . efore ey
interacting protein pairs d?Plcqins by RSPGM score in de- ‘ ‘ ‘
scending index, and calculate the average of the correspgpnd 0 0.05 0.1 0.15 0.2

GO semantic similarity and sequence similarity by incnegsi
the coverage ratios of the PPIs. The details are illustrated
Fig. 2. For example, in CC process, the average GO simi-
larity of the top 10% highest RSPGM scores is about 0.914giq 4 The original PPI network (‘Before’) and the reconstructed
The average GO similarity of the top 20% coverage of the Prounterpart (‘After’) ofPPlcjins are evaluated by ClusterONE and
Pls is about 0.906. The average GO similarity of the 30%MINE cluster algorithms for protein complex prediction &rins of

to 100% coverages of the PPI network is from 0.898 to 0.83accuracy and Jaccard value on the MIPS known complexeshg) T
As shown in Fig. 2, the higher the RSPGM score, the high+esults of ACC. (b) The results of Jaccard.

er the GO similarity and sequence similarity. Although the
trend of sequence similarity (Fig. 2(b)) is not strictly noen
tonically decreasing, the highest average sequence siyila

is obtained by top 10% highest RSPGM scores. Above all, ther’el\g:ieo;higecfﬁlcﬁgﬁtsfthgniiferrgsasr;gﬁ S;rgg?ﬂ;y’cs_eeﬁ;) ntim v
RSPGM score meets the “guilt-by-association” principle] a 9 P ' 7

it is a suitable reliability score to assess the PPls percentag_e for PPIs in 'Before’, ‘After’, ‘New’, ‘Removed’
) and ‘Confirmed’ generated from RSPGM &®lcqins. The

3.3.3 Functional relevanceevaluation We evaluatethe results are shown in Fig. 3. Here, we use profiles to che~
functional relevance of the original and reconstructedri®&®  acterize the expression dynamics for 3552 significant derio
works based on several types of sources, including gene otie genes over 36 time points. The raw data are available ur
tology, gene expression and essentiality analysis. Fore&son Gene Expression Omnibus (GEB)with the accession num
nience, the PPIs presented in the original and reconsttucteoer GSE3433%. Additionally, the yeast essential gene list Is
networks are called ‘Before’ and ‘After’ respectively. TRe  retrieved from theéSaccharomyce§enome Databad& The
Pls presented in ‘After’ but not in ‘Before’ are called ‘New’ essentiality score is calculated by the percentage of the nu
The PPIs presented in ‘Before’ but not in ‘After’ are called ber of PPI, in which two proteins have the same essentialiy
‘Removed’. The PPIs presented both in ‘Before’ and ‘After’ (two interacting proteins are in essential list or not ineegsl
are called ‘Confirmed’. We use a PPI network reconstructiorist simultaneously). As shown in Fig. 3, the ‘After’ group-
method similar to Leet al’s approacRC. Namely, the select- s has a higher functional relevance than ‘Before’ group ¢n
ed threshold is used to keep the number of PPIs in the recomene expression, GO similarity and essentiality. Moredier
struction network the same as that in the original network.  ‘Confirmed’ group has almost the highest functional releen

(b) Jaccard

1-8 |5
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score compared with other groups. The functional relevancéarity in our integrativeC. elegansetwork. Therefore, the
score of the ‘Removed’ group is lower than the ‘New’ group. results are consistent with the onesRicins Shown in Fig.
We also evaluate the functional relevance of our method and.
other comparative methods &Plceliins andPPlkrogans The

. ; 3.4.2 Interaction path inference To evaluate the avail-
results are demonstrated in Supplementary 1 Figure 2-5. b

ability of our proposed method on PPl assessment, we apuiy
3.3.4 Protein complex prediction In order to investi- the integrativeC. elegan®PI network with RSPGM reliabil-

gate whether the reconstructed PPI network can improve théy score on interaction path inference. Here, we applyeGitt
performance of prediction of protein complexes, we applyet al's*’ method to define the weight of the possible path for
ClusterONE* and MINE? clustering algorithms to the ‘Be- interaction path inference. The inferred interaction mathid
fore’ and ‘After’ PPI networks generated from different imet b€ viewed as the pathway if adding direction and regulatorv
ods to evaluate the prediction of protein complexes in term&ffect on each interaction.

of accuracy (ACC) (see Fig. 4(a)) and Jaccard coefficiert (se A Well-studiedC. elegangathway, the canonical Wit/

Fig. 4(b)). Here, we select a benchmark complex set fronfatenin pathway, is used as the reference to validate tttena
MIPS46 known protein complexes which includes 1189 pro- Path inference result. This pathway is responsible for mc"
teins in 203 known complexes. The cluster algorithms are imlating expression of specific target genes by effector prote
plemented by the cytoscape default settings. As the figure8-catenin. The canonical Wift/catenin pathway is a sig-
shown, the reconstructed PPI networks can improve the pefal transduction pathway from Wnt ligandsfiecatenin pro-
formance of protein complex prediction according to the ACCtein*®. Here, we inferred the interaction path between onc
and Jaccard metrics. Similar RPlopins, all the calculations — type of Wnt ligands and one type Sfcatenin proteins. This
are implemented oRPlkogansas well (see Supplementary 1 inferred interaction path will be useful for pathway infece.
Figure 6-7).

3.4 Application and evaluation on C. elegans PPI net-
wor k

Wat ligand

0.0018

We assign RSPGM score for each PPI on the new integrative
PPI network ofC. elegango assess the reliability of protein

pairs. The adjacent matrix (503%039) is built according to

12951 PPIs of integrative PPI networks®f elegans Then, .
thisW as long as other settings are applied based on the Al- .-’
gorithm 1 to obtain the reliability score for each PPI. Theada
of PPIs with RSPGM scores is available at our website and in
Supplementary 2. In this subsection, for the new intege&iv
elegansetwork, we firstly validate the consistency between
our RSPGM score and the GO and sequence similarity. Then, () vone ot o compencs
we provide an example to infer interaction path. 253585

C] Wat/ B -catenin pathway compenents

0.0353

Dishevelled

Dishevelled

3.4.1 Consistency validation To investigate the rela-
tionship between the similarity of interacting proteinsldne
assigned reliability scores i@. eleganswe compare GO and Fig. 5 The inferred interaction path between one type of Wnt
sequence similarity with the RSPGM scores respectivelg Thligands and one type @-catenin proteins.
flowchart of calculating GO similarity and sequence sinitjar
is the same as that in Section 3.3.2. The results are shown in Geneegl-20(W08D2.1) produces one type of Wnt liganc s,
Supplementary 1 Figure 8. In the GO process of MF, the avwhile sys-1(T23D8.9) produces g-catenin protein. We in-
erage GO similarity of the 10% coverage of the PPI networkferred interaction path betweegl-20andsys-1 Totally 1415
with the top 10% highest RSPGM scores is about 0.639. Thisandidate paths have been found by settirg 7, which rep-
similarity value decreases dramatically from top 10% to 30%resents the maximum of finding the candidate path length (ae-
coverage of the PPI network. Finally, it drops to about 0.51%ails in Supplementary 3). The inferred interaction patthwi
at the 100% coverage of the PPI network. In BP and CC, theyhe highest path score is shown in Fig. 5. Moreover, for th=
also keep descending but not very significant. For sequenc® genes on the interaction path, 6 of them, 75%, are B¥nt/
similarity, it decreases from 0.065 to 0.035. RSPGM reliabi catenin pathway related genes. These 6 genes have been vAli-
ity score is consistent with GO similarity and sequence sim-dated and comprehensively studied by other literdfuralso,

6] 1-8
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for all 1415 possible candidate paths, they totally incladeé 4 Discussion
genes. Among them, only 17 genes (gene name with symbol
'# in Supplementary 3), about 6%, are WBr¢atenin path-  In this paper, we constructed a PPI networkdnelegansy
way components. In the inferred interaction path, it is ahhig integrating data from seven molecular interaction datedas
rate (75%) of Wnt pathway component, although most geneghis integrative PPI network was subsequently evaluated vv
in the possible candidate paths set are not. Thereforegihe p our newly proposed protein-protein interaction reliapifis-
formance of interaction path inference is relatively aetetby ~ sessment method RSPGM. This weighted PPI network is use
using the reliability score computed from RSPGM algorithm. ful for pathway inference. Also, we built a website for query
ing and visualizing protein-protein interactions with RER®
scores in the. elegan$PI network.
Vou can use In the consistency validation between RSPGM score ai.u
Dawaload Matlab Input sngle gene query | Singl gene = GO similarity, sequence similarity, it shows a significaet d

code of RSPGM or multiple genes query query

Gene symbol name

e scendant trend in yeast data. However, this is not veryfsign'
Integrative C. elegans Protein-Protein Interaction G . icant in currenC. eleganglata. It may be due to the non-full
Network with Reliability Assessment Based on o O . [ 7
siitnerlie butunsning s —>h__g map of protein-protein interactome @. elegansurrently’.

RSPGM algorithm is based on topology of the input netwc
Therefore, an incomplete protein-protein interactome disy
turb the result of RSPGM scoring. In the functional relevanc
validation, the PPI groups in the reconstructed networlegen
ated by RSPGM have higher GO similarity, gene expressio..
PCC and essentiality percentages than that in the origétal i
work, and obtain improved performance for the prediction ¢ f
known protein complexes.

In the interaction path validation, 6 out of 8 genes are re-
lated to the reference Wnt pathway in the example in Se--
tion 3.4.2. The other two genekn-36 (F44B9.6) andztf-2
vvvvvvvv (F13G3.1), have not been shown to be the components of Wnr
pathway. However, in the inferred interaction path, thesPF
scores corresponding to these two genes are very high, (Fig.
5). This indicates that these two genes are hub nodes in *F -
network which may be involved in other biological pathways
Generally, several different pathways can cooperate teqass
particular biological function®. lin-36 gene is the SynMuv B
pathway componeft. It has been validated to interact with
eor-1which belongs to Ras/ERK pathway to cooperate wit™
Wnt pathway?. ztf-2 gene encodes an orthology of humar.
3.5 Website server ovo-like zinc finger 2 (Ovol2) which has been reported to ar:.

as the downstream of Wnt pathwy Therefore, bottin-36
To query and visualize PPl network with RSPGM s- andztf-2are indirectly related to the Wnt pathway, which ir.-
cores, we build a user interactive website, available aPlies that the inferred interaction path in the example iy ve
http://rspgm.bionetworks.tk/. This website is in suppafrt-  close to the Wnf3-catenin pathway.
wo types of query, Sing|e gene query and mu|t|p|e genes query In future Study, WE|ghted PPIs network along with other de
User can type single gene name or multiple gene names in tHa sources, such as PDIs, genetic interactions (Gls) anrd ..
search bar. It will return a subnetwork graph in the webpageturbation data, will be simultaneously considered for patn
shown in Fig. 6. The datails of usage can be found in Suppleinference.
mentary 1 Section XIII.

We use SQLite version 3.8.8.3 to store the data and execut&cknowledgement
SQL query for single gene and multiple genes query. Mojo-
licious version 6.06, a Perl real-time web framework, is em-This work is supported by the Hong Kong Research Grar*-
ployed to build the website. With the help of Cytoscape.jsCouncil (Project HKBU5/CRF/11G) and City University of
version 2.3.11, the network graphs are illustrated in the-we Hong Kong (Project 9610326), the National Science Four
site. dation of China (Project 11401110), the Natural Scienc:

le
°

Fig. 6 The website is designed for querying and visualizing
RSPGM score of PPI subnetwork about single gene or multiple
genes irC. elegans.

1-8 |7



Molecular BioSystems

Foundation of Guangdong Province (Project 2013KJCX0086%8
and the Research Center Foundation of School of Automa-
tion of China University of Geosciences (Wuhan) (Project?®
AU2015CJ008).
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