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 Correlations of MicroRNA:MicroRNA Expression Patterns Reveal 

Insights into MicroRNA Clusters and Global MicroRNA Expression 

Patterns 

S. G. Chaulk,
a
 H. A. Ebhardt

b
 and R. P. Fahlman

a,c 

MicroiRNAs are genome encoded small double stranded RNAs that regulate expression of homologous mRNAs. With 

approximately 2500 human miRNAs and each having  hundreds of potential mRNA targets,  miRNA based gene regulation 

is quite pervasive in both development and disease. While there are numerous studies investigating miRNA:mRNA and 

miRNA:protein target expression correlations, there is relatively few studies of miRNA:miRNA co-expression. Here we 

report on our analysis of miRNA:miRNA co-expression using expression data from the miRNA expression atlas of Landgraf 

et.al.  Our analysis indicates that many, but not all, genomically clustered miRNAs are co-expressed as a single pri-miRNA 

transcript. We have also identified co-expression groups that have similar biological activity. Further, the non-correlative 

miRNAs we have uncovered have been shown to be of utility in establishing miRNA biomarkers and signatures for certain 

tumours and cancers. 

Introduction 

 MicroRNAs (miRNA) are small dsRNAs that regulate protein 

synthesis through the targeting of homologous mRNAs
1
. 

miRNAs are initially expressed as large pri-miRNA transcripts 

that are subsequently processed by Dicer to release the pre-

miRNA hairpin from the primary transcript
2-4

. The pre-miRNA 

hairpin is then processed by Dicer, in the cytoplasm, to 

generate the double-stranded ~22-base-pair mature miRNA 

which along with a homologous mRNA is subsequently 

incorporated into RISC leading to decreased protein 

translation
5, 6

. With over 2500 known human miRNAs, and 

each miRNA having ~300 potential targets
7
, miRNAs are 

pervasive gene regulators, implicated in a broad spectrum of 

disease as well as in cell differentiation and development. In 

cancer, dysregulation of miRNA expression is prevalent, with 

miRNA expression signatures having been proven to be 

effective diagnostic molecules, able to differentiate between 

healthy tissue and tumours, but also able to differentiate 

between tumour subtypes
8-13

. Through an in-situ hybridization 

screen
14

, Sempere et.al. established the miRNA expression 

signature of breast tumours. Perhaps expectedly, the 

oncogeneic miRNA, miR-21 is overexpressed, and the tumour 

suppressive miRNA Let-7, has reduced expression in a number 

of breast tumours.  

 miRBase is a freely available miRNA data repository with 

the current version, miRBase 20, holding 24521 unique 

miRNAs
15, 16

. For each miRNA, miRBase lists all other miRNAs 

within 10 kb of a given miRNA. miRNAs within 10 kb are 

referred to as being genomically clustered, and by extension 

presumed to be co-expressed on the same primary transcript. 

With a 10 kb cut-off, there are 153 human genomic clusters 

containing 465 miRNAs which is approximately 20% of total 

known miRNAs. Except for a few examples, there is little 

supporting experimental data to indicate that these 

genomically clustered miRNAs are in fact co-expressed on the 

same pri-miRNA transcript. In delineation of the stepwise 

miRNA biogenesis pathway, Lee et.al.
17

 were first to 

demonstrate co-expression of multiple miRNAs on the same 

pri-miRNA transcript for the miRNA clusters miR-17~92 and 

miR-23a~24-2. Later work by Ventura et.al.
18

 confirmed the 

co-expression of the miR-17~92 constituent miRNAs and 

showed co-expression of miRNAs from the 106b~25 miRNA 

cluster, a paralogue of miR-17~92. Suh et.al. demonstrated 

two embryonic stem cell specific pri-miRNA clusters, miR-

302b~367 and miR-371~373. Earlier work by Baskerville et.al.
19

 

calculated genomically proximal miRNA:miRNA expression 

correlations for 175 miRNAs across 24 human tissue samples. 

This analysis focused on the co-expression of miRNAs with 

their host mRNA genes. They report miRNA:miRNA expression 

correlations for miRNAs up to 50 kb apart on the same 

chromosome, consistent with the average size of a human 

gene of 55 kb. In another earlier study, Sempere et.al. 
14

, in an 

effort to identify tissue specificity in miRNA expression, did 

notice miRNA:miRNA expression correlation for certain miRNA 

clusters.  

 We report here our miRNA:miRNA expression correlation 

analysis using expression data from the miRNA expression 
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atlas developed by Landgraf et.al.
20

. Our rationale was to 

ascertain whether there are expression patterns between 

miRNAs which would identify novel insights into miRNA 

function and regulation. Our analysis covers the top 169 

expressed miRNAs along with 12 miRNAs from the Epstein Barr 

virus and one miRNA from the human cytomegalovirus 

(HCMV) with expression data taken from 15 human tissue 

samples and 105 human cell lines. Our analysis provides 

compelling evidence that many of the genomically clustered 

miRNAs are indeed co-expressed. While many clustered 

miRNAs appear co-expressed, this is not universally true. For 

non-clustered miRNAs, there are both positive and negative 

expression correlations. Our analysis has uncovered intricate 

miRNA co-expression patterns, and highlights certain 

expression cohorts which we believe will be an important 

consideration when considering miRNA based gene regulation 

and development of disease biomarkers.  

Results and Discussion 

Genomic Clusters 

 As mentioned above, miRBase lists all other miRNAs within 

10 kb of a given miRNA
15, 16, 21

. Thus, a 10 kb cut-off is used as a 

limit to the size of a genomic cluster of miRNAs. As shown in 

Figure 1, a plot of number of clusters versus genomic section 

size plateaus around 1 kb, with an actual depression at 4 kb. 

The decrease in number of clusters with a 4 kb cut-off versus 1 

kb indicates some overlap between clusters has now reduced 

the total number. After ~10 kb the number of clusters grows 

linearly with increasing cluster size limit, as would be expected 

when expanding the genomic search area. Thus, 10 kb seems a 

reasonable cut-off for defining miRNA genomic clusters. With a 

10 kb cut-off, there are 153 genomic clusters containing 465 

miRNAs which is approximately 20% of total known miRNAs. 

The miRNA expression atlas data used in our study contains 

expression data on 203 miRNAs from 34 different clusters
20

. At 

this juncture, we want to explicitly differentiate between 

genomic miRNA clusters (miRNAs within 10 kb as defined by 

miRBase)
21

 and pri-miRNA clusters as miRNAs that are 

genomically clustered and are co-expressed on the same 

primary transcript (pri-miRNA)
17

.  

 
Fig. 1 Genomic clusters. Plot of change in the number of miRNA clusters with 
clusters increasing size limit. The increase in number of clusters plateaus 
between size limits of 2000 to 8000 bases. At 10,000 base size limit and beyond, 
there is log linear growth in the number of clusters with increasing size limit. 

 
Fig. 2 (A) Frequencies of the Pearson Correlation Coefficients of the expression of 
181 different miRNAs with each other in 120 cell lines and tissues. Correlations 
of a miRNA with itself have been omitted. (B) Cloning frequencies of miR-20a 
and miR-17 which are both expressed from the miR-17~92 pri-miRNA cluster. 
The Pearson correlation coefficient for these to miRNAs is 0.8. 

Correlation Analysis of miRNA Expression 

 Using the data from the miRNA expression atlas reported 

by Landgraf et.al.
20

 we calculated the Pearson Correlation 

Coefficients
19

 for the expression of each miRNA with every 

other miRNA across 15 human tissue samples and 105 human 

cell lines. The miRNAs investigated include the top 169 

expressed miRNAs (excluding isoMirs) along with 12 miRNAs 

from the Epstein Barr virus and one miRNA from the human 

cytomegalovirus (hCMV). While a majority of the 33,124 

correlation coefficients (Supplemental Table 2) cluster near 

zero (Figure 2A) a significant occurrence of positive 

correlations are observed which results in an asymmetric 

distribution of the frequency of correlation coefficients. In 

cases where the expression of miRNAs that are physically 

linked, such as those miRNAs on the same pri-miRNA 

transcript, one predicts a high level of correlations between 

these miRNAs when comparing their expression levels from 

these different cells and tissues. An example are miR-17 and 

miR-20a which are both expressed from the miR17~92 cluster 

and exhibit a Pearson correlation coefficient of 0.8 when the 

expression levels from all the different cells and tissues are 

analysed (Figure 2B). 
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 To simultaneously visualize which miRNAs correlate with 

each other, a graphical Circos Plot
22

 was generated which 

highlights both the positive and negative correlations (Figure 

3). The graphically presented data immediately reveals many 

negative correlations with the miR140-5p and -3p miRNAs and 

a cluster of strong positive  correlations between the EBV 

miRNAs which arise from a subset of nine cell lines used in 

compiling the miRNA atlas that express miRNAs from the 

Epstein Barr Virus
23

. In addition to the strong correlations 

between the EBV miRNAs, miR-146a, miR-155 and 193b also 

exhibit positive correlation coefficients with the EBV miRNAs, 

suggesting their expression in these cell lines is in response to 

EBV infection
24

. 

 
Fig. 3 Circos diagram to depict high correlation coefficients between each miRNA:miRNA pair.  ≥ 0.4 in green, ≥ 0.6 in light blue, ≥ 0.8 in dark blue and ≤ -0.2 in 
burgundy. 

 Generally, the positive correlations for clustered miRNAs 

are stronger than correlations for non-clustered miRNAs. miR-

17 of the miR-17~92 cluster has a correlation coefficient of 

0.63, 0.6, 0.8, 0.62 and 0.25 to miRNAs 18a, 19a, 20a, 19b and 

92a-1 respectively (the lower correlation of miR-92a-1 with 

respect to the other clustered miRNAs is consistent with the 

tertiary structure effects on miRNA expression from this 

cluster)
25-27

 (Supplemental Table 2).  

 So with the high correlations between miRNAs of a miRNA 

cluster known to be transcribed as a single poly-cistronic pri-

miRNA we queried the data for correlations between miRNAs 

from other known and putative miRNA clusters that are within 

10 kb of each other.  

 We evaluated whether the strengths of the correlations 

can be used to predict whether genomically clustered miRNAs, 

miRNAs within 10 kb were actually co-expressed on the same 

pri-miRNA transcript, and thereby expand the list of known 

poly-cistronic pri-miRNA clusters. By using a correlation co-

efficient threshold of 0.5, we predict there are 24 poly-

cistronic pri-miRNA clusters (Table 1). However, there are a 

couple of genomically clustered miRNAs with significant 

expression correlations of ≥ 0.4 that fall outside this cut-off. 

For some of these clusters, particularly the let-7 clusters, the 
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expression data for an individual miRNA can be the total of up 

to three different miRNA isoforms (eg. Let7a-1, Let-7a-2, Let-

7a-3), and thus can hide the correlation strength of each 

individual miRNA of the group. Thus we have expanded the 

cluster list to 26 to include those clusters with multi-isoform 

miRNA correlations of 0.4 to 0.6, namely, miR-

23b~27b~3074~24-1 and Let-7a-2~100. Of the 203 miRNAs in 

our analysis, 61 (~30%) are expressed on pri-miRNA clusters.  

 

 Currently there is insufficient available deep sequencing 

RNA data available to verify our predictions regarding the pri-

miRNA clusters. This is a result of the instability of pri-miRNAs 

as a result of co-transcriptional processing very few reads from 

the intervening sequences between pre-miRNA stem loops are 

observed in RNA-Seq datasets. For documented clusters like 

miR-17~92, the data typically only reveals the mature miRNA 

sequences
28

. Recently the issue of pri-miRNA instability has 

been circumvented with investigations of the miR-17~92 

cluster by impairing the activity of the microprocessor in 

cells
29

, but further similar investigations are required to 

address the question of other pri-miRNA clusters. 

 

 To confirm the expression of a panel of pri-miRNA clusters  

we performed RT-PCR analysis (Figure 4). There has been 

some ambiguity in whether the miRNAs from the miR-

23b~27b~24-1 genomic cluster were actually expressed as a 

pri-miRNA cluster. In support of our expression correlation 

data is our RT-PCR assay showing expression of the pri-miR-

23b~27b~24-1 transcript (Figure 4B)
30, 31

. 

  

 

Fig. 4 RT-PCR analysis pri-miRNA clusters. (A) RT-PCR assay of pri-miRNA clusters: miR-

17~92, miR-106b~25, miR-Let-7a-3~Let-7b and miR-98~Let-7f-2. (B) RT-PCR assay of 

pri-miRNA clusters: miR-23b~24-2 and miR-23a~24-2. (C) RT-PCR assay of pri-miRNA 

clusters miR-16-1~15a, miR-15b~16-2. 

 

 

 

Table 1 List of miRNA genomic clusters, with representative miRNA pair 

correlation coefficients (CC) and inter-hairpin distance (IHD). For genomic 

clusters with CC values below 0.4, there are intervening transcriptional start sites 

(ITSS), that suggest the clustered miRNAs are independent transcription units.  

Genomic Cluster miRNA Pair CC IHD ITSS 

17~18a~19a~20a~19b-1~92a-1 17~20a 0.8 700  

106a~18b~20b~19b-2~92a-

2~363 

106a~363 0.7 800  

106b~93~25 106b~25 0.6 331  

301b~130b 301b~130b 0.5 246  

143~145 143~145 0.7 1623  

451a~144~4732 451a~144 0.9 93  

16-1~15a 16-1~15a 0.8 58  

15b~16-2 15b~16-2 0.5 60  

181b-1~181a-1 181b-1~181a-

1 

0.7 62  

181a-2~181b-2 181a-2~181b-

2 

0.7 1159  

182~96~183 182~96 0.7 4200  

192~194-2~6750 192~194-2 0.9 109  

195~497 195~497 0.6 210  

199a-2~214 199a-2~214 0.8 5628  

200b~200a~429 200b~200a 0.9 665  

23a~27a~24-2 23a~24 0.7 211  

23b~27b~3074~24-1 23b~27b 0.7 141  

23b~27b~3074~24-1 23b~24 0.4 1214  

29b-1~29a 29b-1~29a 0.7 649  

29b-2~29c 29b-2~29c 0.7 504  

302b~302c~302a~302d~367 302b~367 0.9 522  

424~503~542~450a-2~450a-

1~450b 

424~503 0.7 216  

Let-7a-3~4763~Let-7b Let-7a~Let-7b 0.7 774  

Let7a-2~100 Let7a-2~100 0.4 5786  

99a~Let-7c 99a~Let-7c 0.5 659  

98~Let-7f-2 98~Let-7f-2 0.5 1051  

Let-7e~125a Let-7e~125a 0.5 390  

99b~Let-7e~125a 99b~Let-7e 0.2 105 yes 

Let7a-1~Let7f-1~Let7d Let7a-1~Let-

7f-1 

0.2 311 yes 

 Let-7a-1~Let-

7d 

0.1 2772 yes 

200c~141 200c~141 0.3 331 yes 

425~191 425~191 0.4 385 yes 

222~221 222~221 0.3 727 yes 

30d~30b 30d~30b 0.2 4269 yes 

30e~30c-1 30e~30c-1 0.3 2838 yes 

     

 

 miR-302b~302c~302a~302d~367 is a pri-miRNA cluster 

that is remarkable in the strength of correlations amongst the 

constituent miRNAs. miR-302b and miR-367, which are ~520 

nucleotides apart, have a correlation coefficient of 0.9 while 

miR-302a and miR-367 at 235 nucleotides apart have a 

correlation coefficient of 0.97 (Supplemental Table 2, and 

Table 1). Further, the miRNAs from this cluster are highly and 

exclusively expressed in the three neuronal tumour cell lines 
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and three testicular germ cell tumour cell lines in the miRNA 

atlas data set. miRNAs from the miR-302b~367 are part of a 

subset of miRNAs that are expressed in embryonic stem cells 

under the regulatory control of the core transcriptional 

machinery involved in determining stem cell fate
32

. 

 From the analysis, poor correlations reveal that there are 

genomically clustered miRNAs that do not appear to be co-

expressed on the same pri-miRNA (Table 1). While there are 

Let-7 miRNAs expressed as part of a pri-miRNA cluster as with 

Let7a-3~Let-7b, there are genomically clustered Let-7 miRNAs 

that appear to not be co-expressed as part of a pri-miRNA 

cluster (Supplemental Table 2, Figure 3). The Let-7 miRNAs 

from the genomic cluster Let-7a-1~Let-f-1~Let7d do not 

display significant expression correlations nor could we detect 

pri- Let-7a-1~Let-f-1~Let7d by RT-PCR (data not shown). 

Likewise, there is no significant correlation between the 

miRNAs from the genomic clusters miR-200c~141, 425~191, 

30d~30b, 30e~30c-1and 222~221. An analysis of these 

genomic loci with the Human Genome Browser reveals that 

there are intervening RNA Polymerase II and other 

transcription factor binding sites (Encode Chip-seq). Given the 

lack of expression correlation and the intervening 

transcriptional start sites, we propose that these miRNAs are 

likely to be transcribed independently. Alternatively, there 

have been several post-transcriptional regulatory mechanisms 

established for miRNA expression
33, 34

. One example is the 

effect of pri-miRNA tertiary structure, which has been shown 

to regulate constituent miRNA expression
25-27

. 

 Through our analysis we have identified 26 miRNA clusters, 

that express 76 different miRNAs in total. The miR-17~92, miR-

106a~363, and the 424~503~542~450a-2~450a-1~450b 

clusters have the most miRNAs per pri-miRNA with six each 

(Table 1). There is a large amount of primary structure 

diversity within these clusters, with the miR-15 and miR-16 

clusters comprising only two miRNAs with a relatively small 

inter-hairpin distance of ~60 nucleotides to the 199a-2~214 

cluster with 5628 nucleotides between the two miRNA 

hairpins in the cluster. The minimum inter-hairpin distance 

appears to be around 50 nucleotides, which is consistent with 

what is known about the secondary structural requirements of 

Drosha processing of pre-miRNA hairpins
35, 36

.  

 

Expression Correlations Organize miRNAs into Functional Groups 
 Expression correlation analysis has not only revealed 

correlations in expression between constituent miRNAs from a 

pri-miRNA cluster, but also between non-genomically 

clustered miRNAs.  

 As with proteins the oncogene and tumour suppressor 

nomenclature has been adapted to describe the role of 

miRNAs involved in cancer
12

. While there are exceptions, the 

bulk of data on the activities of the miR-17~92 cluster miRNAs 

demonstrate the constituent miRNAs function as oncogenes
37-

39
. It has been shown that over-expression of the miRNA 

cluster drives tumourigeneis in several mouse models
38, 39

. 

Similarly, the bulk of cancer studies concerning the role of Let-

7 suggest it is typically a tumour suppressive miRNA
40-42

.  The 

miRNAs from the miR-17~92 cluster show positive correlation 

(≥ 0.4) with 14 miRNAs beyond its genomic locus (Figures 5). 

The correlation pattern is quite complex with miR-378, miR-

106b and miR-25 having correlations with four miR-17~92 

miRNAs (17, 18a, 19a, 20a; 17,18a,19a, 20a; and 17, 18a, 20a, 

92a-1 respectively). The correlation between miR-17~92 and 

the miRNAs from the paralogous cluster miR-106b~93~25 is 

consistent with reported expression patterns in mice
18

.  

Conversely, miRNAs 10a, 186, 196, 301b and 32 only correlate 

with miR-18a (Figure 5A). Thus, there are quite complex 

associations among the 20 unique miRNAs from this 

expression group which suggests multiple levels of regulation 

for the different miRNAs. 

 miR-21 has a very well established oncogenic role in 

cancer
43-45

. In a miRNA expression screen across 540 samples 

from lung, breast, stomach, prostate, colon, and pancreatic 

tumors, miR-21 was found to be over-expressed in all tumour 

types
11

. Interestingly, miR-21 does not significantly correlate 

with the miR-17~92 constituent miRNAs but it does exhibit 

significant positive correlations with a group of miRNAs 

comprising of miRNAs 135b, 140, 151, 193, 194, 221, 24, 27b, 

28, 30b, 32, 320, 324, 33b, 34a, 374, 93 and 96 (Figure 5B). The 

only overlap with the miR-17~92 expression group is miRNAs 

30b, 32 and 93. Thus, our miRNA:miRNA expression 

correlation analysis reveals a second group of highly correlated 

miRNAs that have been attributed an oncogenic function. 

 While the expression group reveal general correlations of 

expression with miR-21, these correlations are not absolute so 

while their correlations in expression are not predicted to 

match those of miR-21 in a variety of clinical biomarker 

investigations
46, 47

. Nonetheless these correlations in 

expression be eventfully prove to have utility in the additional 

stratification and sub-typing of diseases. 

Recently, several studies have reported a tumour suppressive 

role for the miR-143~145 pri-miRNA cluster in several cancers, 

including pancreatic, prostate, renal and colorectal cancer
48-50

. 

In pancreatic cancer, the oncogene KRAS suppresses 

expression of the miR-143~145 cluster through the Ras 

responsive element (RRE) binding protein (RREB1) which 

results in loss of regulation of the MAPK signalling pathway by 

the cluster’s miRNAs. In addition to its well-known role in 

developmental timing
51

, Let-7 also has well established tumour 

suppressive roles in a wide range of cancers including breast, 

prostate and lung cancer. Through our co-expression analysis 

we observe strong correlations between Let-7 (both Let-7b 

and Let-7c) and miR-143~145 (Supplemental Table 2, and 

Figure 5C). Further, in addition to Let-7 correlation with miR-

143~145, we have identified that miRNAs 199a, 214, 22, 368 

(376c), and 574 also correlate with these miRNAs as another 

co-expression group. These correlations predict that these 

expression group miRNAs, if detected, would exhibit similar 

patterns of expression at the let-7 miRNA in studies 

attempting to identify miRNA biomarkers. A recent 

investigation comparing colorectal cancer and normal tissue
52

 

identified a down regulation of both let-7b and let-7c, further 
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investigation of the reported data also reveals the down 

regulation of the miR-143~145 miRNAs. 

 
Fig 5 (A) Circos plot presenting the expression correlations of the miRNAs that 
exhibit positive Pearson correlations with the miR-17~92 cluster. Correlation 
coefficients between each miRNA:miRNA pair.  ≥ 0.4 in green, ≥ 0.6 in light blue, 
≥ 0.8 in dark blue and ≤ -0.2 in burgundy. (B) Circos plot of the expression 
correlations of miRNAs that exhibit positive Pearson correlations with miR-21-5p 
and miR-21-3p. (C) Circos plot of the expression correlations of miRNAs that 
exhibit positive Pearson correlations with Let-7b. 

 

  

  

 There is ample literature showing tumour suppressive roles 

for the miRNAs in this group beyond Let-7 and the miR-

143~145 cluster. miR-199a has a reported tumour suppressive 

roles in several cancers including prostate, ovarian, breast, 

bladder, and liver and its reduced expression correlates with 

histological grade in renal cancer
53

. Consistent with a tumour 

suppressive role, miR-22 is located at 17p13.3, is a site of 

frequent loss of heterozygosity in ovarian, lung, liver and brain 

cancer. Further, miR-22 has been shown to have reduced 

expression in breast and liver cancer, as well as leukemia
54-56

. 

Though not as well established, there are reports of miRNAs 

368 (376c), 214 and 574 also having tumour suppressive 

functions
57, 58

. While Let-7, miR-143 and miR-22 are in the top 

25 expressed miRNAs, 199a, 368 and 574 show high 

expression specificity, particularly in brain, pancreas, ovary, 

testes, and uterus as well as USSC stem cells
20

. Higher 

expression in healthy tissue as opposed to tumour derived cell 

lines is consistent with a tumour suppressive role of this group 

of miRNAs. 

 The above mentioned groups of miRNAs that display 

correlations in their expression patterns is by no means 

complete, but are presented as examples that can be 

extracted from the complete set of data. As demonstrated in 

the frequency of correlations for different miRNA (Figure 6), 

the vast majority of miRNAs exhibit multiple positive 

correlations in expression with other miRNAs so similar 

analysis can be performed virtually any miRNA of interest. As 

revealed in Figure 6, the peak frequency of correlations (>0.35) 

for a given miRNA is 9-12 positive correlations while a maximal 

number of correlations for a miRNA is 28. 

 

 

Fig 6 Frequency plot of the number of correlations (>0.35) for individual miRNAs. 

 

Mechanisms of Expression Correlations 

 For any given pair or group of co-expressed miRNAs, there 

are additional mechanistic routes to co-regulate expression 

beyond transcription on the same pri-miRNA. Regulation 

through transcriptional activation via a mutual transcription 
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factor is one such route. Transcriptional regulation of miRNA 

expression is quite complex with a given transcription factor 

able to regulate several different miRNAs, and each miRNA can 

be regulated by several different transcription factors
59

. Using 

the TransmiR database, a survey of transcription factors 

known to regulate the constituent miRNAs of the three 

expression groups revealed that the miRNAs in these groups 

did not have a transcription factor in common and to 

transcribe all miRNAs within either group would require 

several different transcription factors. 

 For the miR-17~92 expression group consisting of 19 

unique miRNAs, 6 are from the miR-17~92 cluster, while 

another 3 are from the paralogous miR-106b cluster. These 

two clusters and miR-15b are transcriptional targets of 

transcription factor E2F3 while miRNAs 10a, 130b, 142, 301b 

and 32 are transcriptional targets of transcription factor 

EGR1
59, 60

. Thus these two transcription factors have the 

potential to co-regulate 15 of the 19 miRNAs in the miR-17~92 

expression group.    

 In addition to transcriptional regulation, there is post-

transcriptional regulation at every step along the miRNA 

biogenesis pathway
33, 34, 61

. Additionally, mature miRNA 

turnover can proceed through several different mechanisms. 

We performed sequence conservation analysis for the miRNAs 

in each group to search for a common sequence motif for each 

group. A common sequence motif could potentially be utilized 

in post-transcriptional regulation of a group of miRNAs. 

Beyond the GGAG motif in the Let-7 expression group
62

, an 

alignment of the mature miRNA or pre-miRNA sequences of 

either group did not reveal a common sequence motif.  

Negative Correlations of miRNA:miRNA Expression 

 The occurance of positive correlations of expression 

between different miRNAs was predicted as a result of 

multiple mechanisms such as co-transcription as pri-miRNAs 

and via regulation via the same transcription factors, the 

observation of numerous negative correlations was somewhat 

unexpected. While the negative Pearson Correlation 

Coefficients occurred at a much low absolute value than the 

positive correlation coefficients, the frequency for which some 

of the negative correlation coefficients occur for some miRNAs 

was quite striking (Figure 3). As seen in Figure 3, miR-142-5p 

and miR-142-5p exhibit the largest number of negative 

correlations which range from -0.2 to -0.3 range. The high 

occurrence of negative correlations for these miRNAs may 

reflect specific cell differentiation programs as these two 

miRNAs are only observed in high amounts in cells of 

hematopoietic origin (Supplemental Table 1). 

Non-correlating miRNAs 

 miRNAs have been shown to be effective biomarkers in 

classifying different tumours, assessing metastatic potential as 

well as being of prognostic value in predicting patient 

outcomes. miRNAs miR-21 and miRNAs from the miR-17~92 

cluster are frequently listed as miRNAs in tumour biomarkers. 

While they are useful in differentiating the normal tissue and 

cells from tumours, they are too frequently over-expressed in 

many cancers to be useful in di stinguishing between cancers-

lung from colorectal for example
10, 11, 63

. Thus, miRNAs with 

fewer, rather than more, expression correlations may be of 

more utility as a biomarker for a specific cancer or disease 

state. This is a point beginning to emerge regarding many 

miRNAs which cannot be regarded as independent variables
64

. 

While most miRNAs in this study have many expression 

correlations, there are several with no significant correlations. 

miRNAs 148a, 625, 196a-1/2, 205, and 210 do not have 

correlations of ≥ 0.35. Since the miRNAs in this group have few 

to no significant correlations, they may be of higher value as 

differentiating biomarkers. For example, miRNAs 205 and 210 

have been shown to have unique expression profiles in breast 

and other cancers
65-69

 but the induced expression of miR-210 

by hypoxia
70, 71

 challenges the utility of this miRNA as a cancer 

specific biomarkers. miRNAs 196a and 148a have recently 

been established as biomarkers differentiating gastric tumours 

from normal gastric tissue  where miR-196a has increased 

expression and miR-148a has decreased expression in gastric 

tumours
72

.While decreased miR-625 has been shown to 

correlate with tumour metastasis and poor prognosis in 

colorectal cancer
73

. 

Conclusions 

 We have performed a miRNA:miRNA co-expression analysis 

by calculating the correlation coefficients for each 

miRNA:miRNA pair in the miRNA expression atlas compiled by 

Landgraf et.al.
20

 This analysis has many expression correlations 

amongst the miRNAs in the atlas, as well as some anti-

correlations. Around 20% of the human miRNAs in miRBase 

are genomically clustered (within 10 kb of another miRNA). It 

has been generally presumed that genomically clustered 

miRNAs are co-expressed on the same pri-miRNA. We have 

used expression correlations to differentiate between genomic 

clusters and pri-miRNA clusters where the genomically 

clustered miRNAs are actually co-expressed on the same 

transcript. We have found that miRNAs co-expressed on a pri-

miRNA cluster have stronger expression correlations than 

those not co-expressed on a pri-miRNA. We use this criterion 

to provide support for 26 of 33 genomic clusters to be actual 

pri-miRNA clusters. Additionally, we predict that 7 of the 33 

genomic clusters are not pri-miRNA clusters due to the lack of 

strong expression correlations amongst the constituent 

miRNAs.  

 In compiling expression correlations, we found that certain 

miRNAs organized into co-expression groups consistent with 

their proposed biological activity. We found two oncogenic 

expression groups centered on the miR-17~92 cluster and miR-

21. While these expression groups consisted of miRNAs with 

established oncogenic roles in numerous cancers, there was 

very little overlap between the two groups, suggesting there 

are two distinct oncogenic miRNA co-expression groups. 

Likewise, we also found a tumour suppressive co-expression 

group centered on Let-7. The miRNAs of this group have well 

established tumour suppressive roles in various cancers. There 

is an insignificant expression correlation between the miR-21 
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expression group and the Let-7 group. This would suggest that 

only one of these expression groups predominate in the 

miRNA expression landscape at any given time.  

 miRNAs have attracted considerable attention as disease 

biomarkers for defining the disease state, and have 

demonstrated prognostic value in predicting disease onset and 

patient response to treatment. miRNAs like miR-21 and the 

miRNAs from the miR-17~92 cluster are frequently and 

generally over-expressed in tumours. While useful in 

differentiating tumours from healthy tissue, their ubiquitous 

expression in cancer renders them poor biomarkers in terms of 

providing a miRNA expression signature for a particular cancer 

or grading a particular tumour. Thus, miRNAs that are not 

ubiquitously expressed may be of more utility. We have found 

miRNAs that do not have significant (≥ 0.4) expression 

correlations. Interestingly, these non-correlative miRNAs have 

been found to be useful in differentiating certain tumours and 

in breast cancer have shown to be of prognostic value in 

predicting response to drug treatments. 

 In conclusion, to date, our analysis is the largest reported 

miRNA:miRNA co-expression analysis. This analysis has proven 

useful in predicting the co-expression of genomically clustered 

miRNAs, and identifying expression groups of common 

biological activity. miRNAs that show no significant co-

expression correlations are known to be useful biomarkers of 

prognostic value. We believe this analysis will be useful in 

future studies of understanding gene regulation by miRNAs. 

The co-expression groups indicate the likelihood that more 

than one miRNA is up regulated in a given disease state. For 

example, if it is found that miR-21 has increased expression in 

a certain tissue or tumour, then it is likely that another miRNA 

from the miR-21 expression group may also have increased 

expression. Thus, our identification of these expression groups 

may facilitate a more thorough understanding of miRNA based 

gene regulation in a given cell, tissue or tumour. 

Experimental 

Expression data analysis 

 miRNA expression data (cloning frequencies) were taken 

from the miRNA expression atlas of Landgraf et.al. 
20

. Only 

those miRNAs with expression values greater than 50 were 

included in our analysis. Expression correlations were 

calculated for each miRNA:miRNA pair using expression data 

across all 250 samples used in the atlas. Pearson Correlation 

Coefficients were calculated in Excel. Correlation data was 

then used to generate scatter plots (Prism).  For circular 

visualization of the correlation data, Circos v.0.55 was used
22

. 

MicroRNAs were defined as chromosomes and arc drawn 

according to the correlation values: green ≥ 0.4, light blue ≥ 

0.6, dark blue ≥ 0.8 and burgundy ≤ 0.2. 

pri-miRNA RT-PCR assay 

 End point RT-PCR was performed in two steps. cDNA was 

synthesized using 5μg of total RNA template, 50 pmol reverse 

oligo in a 20 μL reaction volume. Prior to the addition of 

reverse transcriptase, reaction buffer, dithiothreitol and 

dNTPs, the RNA and reverse oligonucleotide, in water, were 

thermally denatured for 30 seconds at 95°C, followed by 5 

minutes at 55°C before cooling on ice for 1 minute. After the 

thermal denaturation and renaturation step, reverse 

transcriptase (Invitrogen SuperScript
TM

 III Reverse 

Transcriptase as per manufacturer protocol) and the reaction 

components were added and reverse transcription was carried 

out at 55°C for 60 minutes, followed by denaturation of 

reverse transcriptase for 15 minutes at 75°C. cDNA was then 

amplified by PCR (Truin Science Taq, as per manufacturer’s 

protocol) and cDNAs were resolved by 1% agarose gels and 

visualized by ethidium bromide staining. Total RNA source, and 

forward and reverse oligonucleotides for RT-PCR are listed in 

Supplementary Table 3.  
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