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ABSTRACT 

 
This article and the companion paper use computational systems modeling to decipher the complex 

coordination of regulatory signals controlling the glycolytic pathway in the dairy bacterium Lactococcus 

lactis.  In this first article, the development of a comprehensive kinetic dynamic model is described. The 

model is based on in vivo NMR data that consist of concentration trends in key glycolytic metabolites and 

cofactors. The model structure and parameter values are identified with a customized optimization 

strategy that uses as its core the method of dynamic flux estimation. For the first time, a dynamic model 

with a single parameter set fits all available glycolytic time course data under anaerobic operation. The 

model captures observations that had not been addressed so far and suggests the existence of regulatory 

effects that had been observed in other species, but not in L. lactis.  The companion paper uses this model 

to analyze details of the dynamic control of glycolysis under aerobic and anaerobic conditions. 
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1 Introduction 

 

The results of most experiments in biology are snapshots that shed light on one or a few aspects 

of a phenomenon of interest. These snapshots are usually singular, sometimes comparative, 

contrasting two different conditions, or increasingly in the form of time series that represent 

cellular responses following a stimulus. The snapshots may be very complicated, for instance, by 

consisting of detailed images, capturing the expression levels of whole genomes, or revealing 

thousands of peaks in a proteomic or metabolomics mass spectrogram. Yet, each snapshot is 

separately frozen in time, and inferring a comprehensive cellular strategy from these data 

requires an additional and genuinely different cognitive process in the form of a conceptual or 

formal model. Particularly well suited for this purpose are dynamic models, which have the 

unparalleled capacity of permitting the weaving of multiple, often heterogeneous data into chains 

of events with which a cell or organism responds to a change in its milieu.  

 

This article and its companion 
1
 describe this process of connecting snapshots into cohesive 

storylines within the context of a complex task that the bacterium Lactococcus lactis must solve. 

Namely, the bacterium has to survive periods of starvation and at the same time be optimally 

positioned to take up substrate once it becomes available again, which is not a trivial matter, as 

we will discuss. Expressed differently, it must reach a “ready-to-respond” state while substrate is 

running out. The goal of these two papers is to decipher through dynamical modeling how the 

cells coordinate a complex control program to ensure this state. The first paper focuses on the 

construction of the model, while the second paper 
1
 utilizes this model to shed light on the 

complex regulatory program, with which the organism controls glycolysis and ensures a viable 

ready-to-respond state. 

Page 3 of 38 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

4 

 

 

The construction of a dynamic model of the type envisioned here has become possible with the 

recent availability of comprehensive time series data that characterize the dynamics of genomic, 

proteomic, metabolic, and physiological responses. Of particular interest for biochemical 

pathway modeling is the availability of relatively dense time profiles of metabolites through 

measurement techniques such as mass spectrometry (MS 
2,3

), nuclear magnetic resonance (NMR 

4
), protein kinase phosphorylation, or mass cytometry (CyTOF 

5
). These data contain valuable, 

but implicit, information about the structure and dynamics of the biological system under study 

and permit the use of top-down modeling approaches. These approaches consist of minimizing 

the residual error between the measured data, i.e., the time profiles, and the assumed model, 

which typically consists of a system of nonlinear ordinary differential equations (ODE) that are 

to be parameterized 
6
.  

 

In an effort to build a kinetic-dynamic model using time-series data, the most challenging steps 

are the identification of suitable mathematical formats for all flux representations and the 

estimation of their unknown kinetic parameters. Central to these tasks is the methodology of 

dynamic flux estimation (DFE) 
7
.  

In contrast to previous models, which captured the dynamics of single datasets (e.g., 
8, 9

), this 

paper describes a single aggregate model that combines three datasets for different input glucose 

concentrations. This single model enables the assessment of several intriguing observations, 

which to date had not been explained convincingly.  
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A particular observation that has been puzzling for a long time is the following: if glucose is 

supplied to the medium in different amounts, one would expect a corresponding increase in the 

peak level of the downstream metabolite fructose-1,6-bisphosphate (FBP). However, the data 

clearly show that the peak concentration is largely independent of the external glucose 

concentrations. Specifically, comparing the different series of experimental results with 

increasing glucose concentrations, the FBP accumulation shows a progressively more noticeable 

plateau, whose duration, but not height, varies with substrate availability (Fig. 1). A previous 

model for aerobic conditions 
9
 was able to fit glycolytic data for a single glucose concentration of 

20 mM, but extrapolating the model toward different glucose inputs, such as 40 or 80 mM, 

predicted almost a doubling or quadrupling of the FBP peak height, which is in obvious contrast 

to the experimental measurements under anaerobic conditions. Here, we analyze the situation in 

detail and extract constraints that the model and its parameters must satisfy to yield a good fit to 

the data. 

Throughout the analysis here and in the companion paper, such sometimes non-intuitive 

observations will be discussed, and the roles of numerous precisely timed regulatory mechanisms 

will be explained through controlled simulations with and without such mechanisms. 

2 Data  

The time series data on which this study is based were collected through in vivo nuclear magnetic 

resonance (NMR) spectroscopy 
10

 from L. lactis cells that were initially starved and then offered 

a pulse of labeled glucose at time zero. These data contain extensive information about the 

structure, dynamics and regulation of the organism’s metabolism, which in this method is 

essentially unadulterated by cell disruption, purification, centrifugation or other harsh 
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experimental methods. The technical aspects of the non-invasive determination of the 

concentrations of the intracellular pools of intermediate metabolites using in vivo NMR (
13

C- and 

31
P-NMR) experiments were thoroughly discussed in 

10-12
. A brief summary of the data follows 

below. 

 

Figure 1: FBP data for three external glucose concentrations under anaerobic conditions. The peak level 

appears to be independent of the available substrate concentrations. One also notes that FBP does not vanish 

completely and instead maintains some residual concentration. Data summarized from 
12, 13

 

 

The measured time series include the external concentrations of glucose and of the end product 

lactate in the medium, along with several of the more abundant intermediate metabolites, namely 

glucose 6-phosphate (G6P), fructose 1,6-bisphosphate (FBP), phosphoenol pyruvate (PEP), 3-

phosphoglycerate (3PGA). The time series reflect three experiments performed with 20, 40, or 

80 mM of glucose input, respectively. Additional time series are available for some ubiquitous 

cofactors, such as NAD
+
 and NADH, which are detectable with somewhat limited detection 

capability due to the required NMR acquisition time 
12

. Finally, the level of NTP was measured 

using 
31

P-NMR.  The datasets used for modeling are summarized in Table 1. 
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Table 1- Overview of data used for modeling 

 

Experiment Condition Technique Metabolites Measured Time 

Interval 

1: 20mM  [6-
13

C] glucose Anaerobic 

pH = 6.5 

13

C-NMR glc, G6P, FBP, 3PGA, 

lac 

30 sec 

2: 40mM  [1-
13

C] glucose 

and [5-
13

C] nicotinate 

Anaerobic 

pH = 6.5 

13

C-NMR 

 
31

P-NMR 

glc, FBP, 3PGA, PEP, 

lac, NAD
+

, NADH 

ATP, P
i
 

2.2 min 

 

2.75 min 

3: 80mM [1-
13

C] glucose 

and [5-
13

C] nicotinate 

Anaerobic 

pH = 6.5 

13

C-NMR 

 
31

P-NMR 

glc, FBP, 3PGA, PEP, 

lac, NAD
+

, NADH 

ATP, P
i
 

2.2 min 

 

2.75 min 

 

In Experiment 1, 20 mM of [6-
13

C] glucose were supplied to the cell suspension, and time series 

of concentrations were recorded for glucose, G6P, FBP, 3PGA, and lactate with a resolution of 

30 seconds. In Experiments 2 and 3, cells were supplied beforehand with labeled [5-
13

C] 

nicotinic acid, a precursor of NADH, thus ensuring this pool to be 100% labeled 
12

. To start the 

in vivo NMR experiments, cells were supplied with 40 and 80 mM of [1-
13

C] glucose, 

respectively, and time series of glucose, FBP, PEP, 3PGA, lactate, NAD
+
 and NADH were 

recorded. The time resolution in these experiments was 2.2 minutes, which was needed to 

accommodate the determination of NAD
+
 and NADH with a reasonable signal-to-noise ratio. In 

a separate, comparable experiment, cellular metabolism was investigated with 
31

P-NMR, which 

allowed the measurement of NTP (mostly ATP), Pi and pH with a time resolution of 2.75 min. 

Usage of [1-
13

C] glucose prevents the determination of G6P in these datasets, due to the 

similarity in chemical shifts of [1-
13

C] glucose and [1-
13

C] G6P. However, some measurements 

of G6P are available from experiments with 20mM [6-
13

C] glucose. Although the data described 
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above exhibit experimental noise and are incomplete, with some metabolites or time points 

missing in each set, they are as good as a modeler can presently hope for.  Duplicates are 

available for Experiments 1 and 2. These replicate datasets have a highly similar behavior to the 

modeled datasets, which shows that the data obtained with these NMR methods are highly 

reproducible. The additional datasets are not used for the modeling for the same reason of 

similarity and the fact that they contain time series data for fewer intermediate metabolites. 

Under the given experimental conditions, cells are not able to synthesize ATP (nor ADP) de 

novo, because they are suspended in phosphate buffer and supplied only with glucose, which 

is insufficient for L. lactis to grow. Once the culture is harvested and washed prior to the NMR 

experiment, the total amount of ATP+ADP remains constant. This fact enables us to infer ADP 

from the ATP data where these are available (for Experiments 2 and 3), which is beneficial for 

the initial parameter estimation. By the same token, the cells do not synthesize proteins and they 

do not alter the expression of their genes.  

In all datasets, the concentrations of 3PGA and PEP are highly covariant, due to the fact that 

these two metabolites can be converted into 2PGA by two enzymatic steps (phosphoglycerate 

mutase and enolase). These reactions are fast and reversible with equilibria that favor 3PGA and 

PEP 
14-16

, thus maintaining 2PGA in a concentration range below the in vivo 
13

C-NMR detection 

level. Since this covariance is maintained even during high glycolytic flux, we decided to 

aggregate these two pools into one dependent variable (X4). Nonetheless, we are still able to 

calculate the concentration of each intermediate from the constant proportionality of ~0.6444 

(3PGA/PEP). 
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The data seem to indicate an apparent absence of PEP and FBP at the beginning of the 

experiment. However, these metabolites are present, but just not labeled initially and therefore 

missed by the NMR detection. The concentrations of these metabolites were measured in a 

control experiment 
11

, supporting the reasonable assumption that the cells re-enter a state of 

starvation at the end of the experiment and that the residual values of now labeled PEP and FBP 

constitute a state that is similar to the state at the beginning of the experiment. This conjecture is 

further supported by a tandem experiment in which glucose was presented twice after periods of 

starvation 
10

. 

3 Model Design 

Generically, a mathematical model of a metabolic system consists of a system of ordinary 

differential equations with three components: (1) a stoichiometric matrix; (2) a vector of fluxes; 

and (3a) the functional forms of these fluxes and (3b) their corresponding parameter values. The 

stoichiometric matrix represents the essentially time-invariant wiring diagram of the pathway 

and shows which fluxes enter or leave each pool. It is often assumed to be known from 

biochemical experimentation, and the results of uncounted such studies are collected in databases 

like KEGG 
17

 and MetaCyc 
18

. Kinetic details and regulatory features are represented by 

parameters that are incorporated in appropriate functional forms representing the fluxes.  

The structure of the pathway at hand is presented in Figure 2. A dynamic model for a similar 

type of experiments with 20 mM external glucose, but under aerobic conditions, was developed 

previously 
9
. We started out with this model attempting to adjust it toward anaerobic conditions 

by including additional regulatory mechanisms from the biochemical literature, accounting for 

ubiquitous metabolites including NAD
+
, NADH, ATP, and ADP as dependent variables, and  
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Figure 2: Model structure of the glycolytic pathway in L. lactis. Of particular importance are the PTS 

mechanism, which uses PEP for the initial phosphorylation of glucose, and several regulatory signals, 

indicated here with dashed arrows. 

 

making other necessary adjustments to the pathway based on biological literature. Unfortunately, 

the final task of parameter estimation did not succeed when the three datasets were to be 
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captured simultaneously. Thorough analysis suggested a revisiting of the assumptions that were 

made originally regarding the pathway regulation and of the subtle, but genuine differences 

between operation under aerobic and anaerobic conditions. The amendments and alterations that 

became necessary will be explained in the following sections. 

 

3.1 Dynamic Flux Estimation 

The numerical characterization of an appropriate metabolic pathway model consists of the 

identification of mathematical formats for all process steps, and the estimation of optimal 

numerical parameter values in these process formulations. The determination of optimal 

representations for the processes in the model is by no means trivial, as no guidelines are 

available, but it is very important, because inadequate representations, even if they fit a target 

dataset, run the risk of error compensation among flux terms and of incurring problems during 

extrapolations 
7, 19, 20

. 

We use for this identification step Dynamic Flux Estimation (DFE) 
7
. In a nutshell, DFE works 

in the following manner. First, the time courses of all metabolites are smoothed, so that slopes 

can be estimated. These slopes are substituted for the derivatives on the left-hand sides of the 

ordinary differential equations (ODEs) at many time points, thereby replacing each ODE with a 

set of algebraic equations. At each time point, the algebraic equations can be solved by matrix 

inversion, with the help of pseudo-inverses, or with auxiliary methods
21-24

. Combining these 

solutions yields graphical or numerical representations of all fluxes, either plotted against time or 

against the variables on which they depend. These representations can secondarily be fitted with 
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functions that might be appropriate, which directly permits an assessment of the appropriateness 

and quality of the chosen functions. 

The main attraction of DFE is the fact that this method does not presuppose a functional form for 

any of the flux representations. This feature allows us to test in an objective manner whether 

particular functions, such as power-laws, Michaelis-Menten rate laws, or Hill functions, are 

capable of appropriately modeling a specific flux, or if other formulations should be considered. 

Importantly, careful analyses of all fluxes in this manner may suggest the existence of regulatory 

signals that had been missing from the assumed pathway structure. Such a suggestion 

corresponds to a novel hypothesis that is in principle testable with lab experiments and may lead 

to biological discoveries. An example is the glucose uptake process, which the companion paper 

1
 discusses in detail. In this case, slopes can directly be obtained through numerical 

differentiation of the uptake profile. The result of the first phase of DFE, which is independent of 

any model assumptions, reveals that this process must be regulated and suggests candidate 

regulators. These insights are used to refine the model construction. 

In addition to its diagnostic capacities, DFE allows for a much more efficient parameter 

estimation strategy in terms of computation costs that are associated with the integration of 

ODEs and with global optimization. Namely, the parameters can be estimated one flux at a time. 

This decoupling is very advantageous, as one uses explicit functions, thereby avoiding—or at 

least reducing—the need to integrate ODEs numerous times, and because there is no risk of error 

compensation among terms or equations.  

The first, model-free phase of DFE requires the estimation of slopes from the metabolic time 

course data. Several methods have been proposed for this purpose (e.g., see discussion in 
25

; as a 
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further alternative, a smoothing algorithm was introduced in 
26

 based on the wavelet transforms 

that ensures conservation of mass. 

Not all processes in the model can be directly assessed with DFE because; for instance, some 

time courses are missing. Nonetheless, DFE provides a beneficial initial step that significantly 

constrains the subsequent parameter estimation.  

Our generic strategy thus is the following. As far as feasible, we use DFE to identify candidates 

for possibly missing regulatory effects. Next, we computationally select reasonable functional 

forms in a process that is ideally guided by biology known from the literature. Then we use DFE 

to obtain starting points for as many parameters as possible. For the remaining parameters, we 

use multi-start and randomized search algorithms, implemented with generous search intervals, 

to make sure that the candidate parameter sets are not unduly restricted. We do not impose limits 

on the rate constants, except that they have to be non-negative, and allow the kinetic orders to 

vary within boundaries of [-3,3], which are considered in the field as rather wide. Once a 

working parameter set is obtained, we use evolutionary and randomized optimization methods, 

followed by local searches, to attain the best parameter set according to the criterion of 

minimizing the sum of squared errors between data and model simulations. Finally, a search in 

the vicinity of the optimal solution will indicate the sloppiness of the solution, and large-scale 

random searches outside the vicinity indicate whether the solution is more or less unique. 

One should note that the model construction process is not always cut and dry. In particular, 

some of the insights obtained in the companion paper fed back into the estimation process, as 

they constrained the parameter space. More generally, the state of the art is at this point not 

advanced enough to permit a fully automated parameter estimation of complex models. 
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3.2 Specific Issues of Parameter Estimation in the Glycolytic Pathway 

Once functional forms for all processes are determined through DFE and appropriate additional 

assumptions and settings, the model is to be fitted per optimization of parameter values. This 

optimization generically calls for minimizing a cost function, calculated as the sum of squared 

differences between the experimental data points and simulated values, summed over all time 

points and metabolites, and over all three data sets simultaneously. Although straightforward in 

principle, this optimization is almost always difficult 
6
. 

In our specific case, several factors render the estimation of system parameters particularly 

challenging. First, the regulatory structure and reaction mechanisms of the model are a priori 

unknown, and their identification is by itself non-trivial, even if aided by DFE. Second, the error 

surface is embedded within a large parameter space of 44 dimensions. This surface is 

complicated, and one has to expect numerous local minima that severely confound steepest 

descent, evolutionary, or randomized optimization techniques that are typically used for 

parameter estimation. Third, datasets for some of the intermediate metabolites are not available, 

due to experimental limitations and, in particular, of the NMR-technique, which include higher 

detection limits for the various metabolites than would be desirable. Also, the 
13

C- and 
31

P-NMR 

experiments were executed separately and therefore both exclude some of the dependent 

variables. Missing data include time series for pyruvate for all three datasets, G6P for Datasets 2 

and 3, and ATP, NAD
+
, and NADH for Dataset 1, as well as F6P, G3P, DHAP, 1,3GBP, 2PGA, 

and ADP for all datasets. Fourth, stiffness and other numerical issues associated with the model 

equations can lead to substantial algorithmic difficulties while integrating the differential 

equations. While these issues may not even be present in the ultimate, optimized model, they are 

Page 14 of 38Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

15 

 

frequently encountered when an estimation algorithm determines inopportune combinations of 

settings during its scanning of a high-dimensional parameter space 
27

. Finally, even if a good fit 

has been determined, one cannot be sure of its uniqueness and must assume that the system 

might have a certain degree of sloppiness 
28-32

. In the present case, incorporating three datasets in 

conjunction with DFE can alleviate the identifiability issues 
30

 and help reveal regulatory 

information about the pathway.  

3.3. Functional Formats of Fluxes: Biochemical Systems Theory 

Biochemical systems theory (BST) is a mathematical and computational framework of ordinary 

differential equations (ODEs), which was originally developed for modeling and simulating 

biochemical pathways but has been widely applied to other biological systems ever since 
33-35

. 

BST is considered “canonical,” which implies that the construction of the system of ODEs, its 

analysis, and its diagnosis follow relatively strict, well-structured guidelines. The power-law 

representation of each reaction is the key ingredient of BST. It constitutes a multi-variate, linear 

approximation in a logarithmic space and expresses a process as a product of power-law 

functions of all variables that directly affect the process 
35, 36

. It has been shown that these power-

law models are highly effective representations of biochemical kinetics 
34, 37

. Power-laws offer 

the flexibility of non-integer kinetic orders, which enable a representation of situations 

commonly found in real biological systems. Additional support for the richness of power-laws in 

presenting complex nonlinear dynamic behavior comes from work showing that essentially any 

set of continuous nonlinear differential equations can be recast equivalently as a power-law 

system 
38

.  
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A generic reaction ��� within the i
th

 equation of a BST model is represented as ��� =

��� ∏ ��
	
����� 	 , � = 1,2, … , �, where the rate constant ��� and the kinetic orders ℎ��� are 

fundamental characteristics. The rate constant describes the turn-over of the process, while the 

kinetic orders quantify the strengths with which reactants and regulators affect the process.  

These parameters need to be estimated to provide a full description of the metabolic pathway 

under study.  

3.4. Details of the Mathematical Representation of the L. lactis Model 

Our default for the functional forms of fluxes in the L. lactis model is a product of power-law 

functions, so that the model is mostly in the generalized mass action (GMA) format within the 

framework of BST. However, we allow for deviations from this format if they are suggested by 

the DFE analysis. The result is presented in Eqs. (1) and (2). In addition to the typical BST 

parameters, namely rate constants and kinetic orders, the equations contain the intracellular and 

extracellular volumes Vin and Vout. The extracellular volume of the bioreactor is 50 ml in all three 

experiments, while the intracellular volume is calculated from the measured biomass 

concentration, MB, in each case, using a conversion value of 2.9 µL/mg of protein for the 

intracellular volume 
39

. Thus, Vin = 0,0029 Vout MB.  The differential equations need to account 

for these volume differences, because the amounts of biomass differ among the experiments. B1 

and B2 in Eqs. (2.h) and (2.i) are temporary buffers. 

��� = − ��
����

− ��
����

																		(1. !) 

��# = ��
��

+ ��
��

	 − �#
��

																		(1. %) 

��& = �#
��

− �&
��

																		(1. ') 
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��( = 2	 �&
��

− ��
��

	 − �(
��

																		(1. )) 

��* = �(
��

+ ��
��

− �*
��

	 − (�+ − �+,)
��

− (�- − �-,)
��

																		(1. .) 

��/ = �*
����

																		(1. 0) 

��+ = �*
��

− 2	 �&
��

+ (�+ − �+,)
��

																		(1. 1) 

��- = − �*
��

+ 2	 �&
��

− (�+ − �+,)
��

																		(1. ℎ) 

��2 = 2	 �&
��

− �#
��

+ 	 �(
��

− �/
��

− ��
��

																		(1. 3) 

���4 = −2	 �&
��

+ �#
��

− 	 �(
��

+ �/
��

+ ��
��

																		(1. 5) 

6�� = 	 (�+ − �+,)
��

− �+7
��

																		(1. �) 

6� # = (�- − �-,)
��

																		(1. 8) 

While power-law functions appear to be adequate for most flux terms, they are in general not 

defined for variables with values of below zero, if they have non-integer exponents. While 

concentrations are obviously non-negative in reality, algorithmic integration methods for ODEs 

work in a step-wise manner, which can result in solution steps crossing zero into the negative 

domain. To avoid this numerical shortcoming, which in MATLAB returns complex numbers, it 

is beneficial to introduce automatic flags that set flux terms equal to zero just before a variable 

becomes zero. The model equations (2.a)-(2.i) below contain such flags in the PTS flux (��) and 

the permease flux (��), both of which remove glucose, which eventually runs out. In MATLAB, 

such flags are easily implemented with the inclusion of a term like (�� > 10;(), which renders a 
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flux to become zero if glucose drops below the concentration of 10;(	�<.  The model was 

numerically integrated with the stiff ODE solver ode15s in MATLAB. Specifically, the fluxes 

are defined as follows: 

�� = ��	<=	��
	>,> ? �(

�( + @A(
B (1 + �()	>,C	�+	>,D E1 − .;� FG H (�� > 10;()									(	IJ.		2!) 

�� = �4		<=	��
	K,>�2

	K,L 		(�� > 10;()							(IJ.		2%) 

�# = �#	<=	�#
	M,M�2

	M,L 									(IJ.		2') 

�& = �&	<=	�&
	N,N�+

	N,D��4
	N,>K 							(IJ.		2)) 

�( = �(	<=	�(
	C,C�#

	C,M��4
	C,>K�&

	C,N 							(IJ.		2.) 

�* = �*	<=	�*
	O,O�-

	O,P�&
	O,N(1 + �()	O,C 							(IJ.		20) 

�/ = �/	<=	�2
	Q,L��

	Q,> 							(IJ.		21) 

�+ = �+	<=	�*
	D,O�-

	D,P , 		�+, = �+,	<=	6�
	DR,>�+

	DR,D  ,    �+7 = �+7	<= 	6�
	DS,>								(IJ.		2ℎ) 

�- = �-	<=	�*
	P,O ,  �-, = �-,	<=	6#

	PR,M 							(IJ.			23) 

A detailed analysis during the second phase of DFE suggested that the PEP: Carbohydrate 

Phosphotransferase System (PTS; ��FT) is a function not only of its substrates glucose and PEP, 

but that it also needs to be regulated by additional effectors. This analysis, which is described in 

detail in the companion paper 
1
, leads to the specific conclusion that NAD

+
 or the redox system 
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are potential activators, that 3PGA is an inhibitor, and that either one or both effectors are 

present. These regulatory terms are included in the model respectively as 	�+
	>,D

 and  (1 +
�();	>,C 		 in Eq. (2.a).  

3.4.1. Modeling the First Two Minutes of Glucose Uptake 

The initial rate of glucose uptake increases in the first two minutes, while the availability of 

substrate, i.e. glucose, decreases. This direct observation is structurally incompatible with any 

function whose rate monotonically increases with substrate availability, which is the case for 

typical Michaelis-Menten, Hill, and power-law functions. The reason is that the glucose 

concentration is the highest at the beginning, which would suggest the highest uptake rate in the 

first minutes.  Galazzo and Bailey 
40

 suggested that G6P could be an inhibitor of this step in 

yeast. But even if this were true in L. lactis, the initial rise could not be explained, because the 

concentration of G6P is initially very small. 

Several options are available to address the initial brief rise in PTS. First, one could attempt to 

identify the true mechanisms leading to the initial increase in glucose uptake, which corresponds 

to the sigmoidal shape of the glucose concentration curve. For instance, one could explain this 

observation with the fact that the experimental set-up causes slight delays, which could affect the 

uptake profile. It has also been argued 
9
 that the cells might recover from starvation with some 

variability, which could be due to cell-to-cell variation in the speed of glucose uptake or slight 

differences in glucose availability to individual cells, or could be caused by the process of 

mixing of glucose throughout the medium or other extraneous factors. Indeed, it was shown with 

simulations that a narrowly distributed uptake profile can directly convert the monotonic trend in 

glucose consumption, as predicted by the model structure, into a sigmoidal trend, as it is 
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observed 
9
. As an alternative, one could try to identify some fitting function without being 

constrained by mechanistic considerations 
41

. One could furthermore use the data directly as 

(“off-line”) inputs instead of representing them functionally in the model 
42

.  Finally, one could 

imagine that insufficient amounts of FBP accumulate during the first two minutes, thereby 

limiting the material flux into the pool of PEP and 3PGA. As a consequence, the initial PEP 

concentration might not be able to produce the high level of v1 that we directly computed through 

numerical differentiation of the glucose consumption profile. This short-term discrepancy can be 

resolved when we account for a small auxiliary permease flux (��), which has been observed in 

this strain of L. lactis 
43

, but was never used in earlier models.  

Given the variety of speculations, we decided on a hybrid option, where we use a black-box 

adjustment function for the first two minutes and dynamically model glucose uptake afterwards, 

starting at t = 2 [min]. Specifically, we multiply a term of the form	E1 − .;U
VH	 to the modeled 

PTS flux. This term, which is borrowed from physics and engineering 
44

, where it typically 

represents a delayed response of a linear time-invariant system to a constant input starting at time 

zero, does not convey biological meaning. It is simply useful since it exponentially approaches 1 

and loses its effect after a short period of time. For instance, at 3T minutes, it is equal to	1 −
.;& = 0.9502. Thus, the term is ineffective for most of the experimental period.  Different time 

constants T were allowed for different experiments. 

3.5 Summary of the Model Design Procedure 

In broad strokes, the modeling strategy employed here consisted of the following main steps: (1) 

Initially, the first phase of DFE was used, which resulted in the identification of a subset of 

fluxes. However, because the stoichiometric matrix is not full rank and some of the 
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measurements were missing, some fluxes could not be identified in this step. (2) For the 

identifiable subset of fluxes, diagnostic methods were utilized in the second phase of DFE to 

ensure the validity of power-law representation as well as the reasonableness of each of the 

hypothesized underlying regulatory mechanisms. This step provided starting points for 

parameters that were used in the later optimization algorithms. (3) Loose boundaries on 

parameter values were imposed and additional constraints were taken into account including 

those resulting from the detailed analysis of the FBP dynamics (see Section 5.2). (4) The 

information from Steps 2 and 3 was used as input to a suite of several global and local 

optimization algorithms, which ultimately led to one parameter set that minimizes the error 

between the experimental measurements and the simulation results. Finally, Monte-Carlo 

methods and randomization schemes were utilized to search the parameter space as thoroughly 

as possible to ensure the optimality of the parameter set and to characterize a compact ensemble 

of close-by, good solutions. While these strategies reduced the chance of other, distinctly 

different solutions, they do not provide a mathematical proof. 

 

5 Results  

5.1 General Features of the Model  

Based on literature information, we established an initial model diagram (Fig. 2), determined 

fluxes with methods of DFE, and subsequently performed parameter estimation. The fully 

parameterized model was diagnosed with standard methods of stability, sensitivity, and 

robustness analysis, and subsequently used for representative simulations. 
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The analysis led to several slight amendments of the original diagram. First, we observed that the 

actually measured total carbon mass decreases over time for all three datasets, with about 7% -

10% of the mass being unaccounted (see Fig. 6A in a later section), in spite of the fact that, 

outside glycolysis, the organism is metabolically inactive under the given conditions 
10

. The loss 

is biologically not very significant, but it is immediately inconsistent with the model structure of 

the initial diagram, where glucose is the only input substrate and lactate is the only output. The 

most reasonable option for remedying this inconsistency is the addition of a minor efflux out of 

one or more metabolite pools. A good candidate is pyruvate, because several reactions may use 

pyruvate as a substrate and thereby be responsible for the diversion of material 
45

. Because some 

of these effluxes potentially affect the NAD
+
/NADH balance, we included two types of leakage 

from pyruvate, one with and one without the consumption of NADH. Optimization determined 

the very low capacities of these fluxes. We also considered alternative locations of leakage, such 

as PEP and G6P, but did not find them beneficial under the given experimental conditions. Other 

amendments are discussed in the following sections.  

The model contains twelve dependent variables. Six represent the main metabolites glucose, 

G6P, FBP, the aggregated pool of 3PGA and PEP, pyruvate, and lactate, four variables represent 

the cofactors ATP, ADP, NAD
+
, and NADH, and the remaining two represent temporary buffers 

46
. The buffers were used for the following reason. When we studied both carbon flow and 

electron flow, we observed a temporal mismatch that required some NADH to be consumed but 

later returned to the pathway. We rationalized this observation with the possibility that one or 

more pools must exist in connection with some glycolytic intermediates that allow NADH to be 

consumed and later returned. These reactions could include processes such as the mannitol-1P 

dehydrogenase or glycerol-3P dehydrogenase steps. The fact that there are several possible pools 
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might explain why no other metabolite was actually measured by the NMR, because if the 

missing mass is distributed among several pools, none would have a concentration high enough 

to be detectable by the NMR. We therefore allowed for two buffers to exist in the model, one out 

of G6P and one out of pyruvate. No parameter set was ever obtained, by optimization, which 

used the buffer out of G6P, which suggested removal of this buffer. The best data consistency 

was always obtained with the two buffers presented, one NADH dependent and one NADH 

independent. These allowed the model to accommodate the carbon-electron temporal mismatch. 

Eq. 1 of the previous section presents ordinary differential equations describing the system 

connectivity, while Eq. 2 shows the functional representations. The model is more complicated 

than earlier models of glycolysis in L. lactis, as it addresses the pathway dynamics under 

anaerobic conditions. In contrast to aerobic conditions, the organism cannot easily recycle NAD
+
 

under anaerobic conditions, and the balance between NAD
+
 and NADH therefore changes 

dynamically. These changes must be expected to affect the dynamics of glycolysis and are 

therefore considered important for the model.  

5.2 Temporarily Steady FBP Peak 

An intriguing observation among the three experiments is that FBP reaches more or less the 

same peak level as long as a certain minimal level of glucose is available to the system (Fig. 1). 

This observation has been puzzling for a long time but can now be explained with a detailed 

analysis of the model structure and the quantitative features of its fluxes. The mathematical and 

biological details of the explanation are discussed below. In a nutshell, the shapes of the peaks 

are driven by saturation of the PTS flux (v1), while the subsequent production flux of FBP (v3) 

operates below saturation and while the FBP concentration results in a v3 flux equal to the 
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saturated PTS flux v1. The proposed relationship between v1 and v3 yields strong mathematical 

constraints that restrict the admissible parameter space. In particular, the analysis reveals that 

glucose must have a low kinetic order in the PTS flux. Interestingly, similar considerations of 

relationships among kinetic Michaelis-Menten parameters have recently helped explain ultra-

sensitivity in cascaded signaling systems 
47

. 

5.2.1. Analysis of FBP Dynamics  

To rationalize the counterintuitive peak dynamics of FBP, let us at first consider a slightly 

simplified scenario where G6P is omitted as an explicit intermediate between glucose (X1) and 

FBP (X2) and where the PTS flux v1 solely depends on X1 and v2 on X2.  The dependence on 

NADH is not of importance here. This simplified diagram is shown in Figure 3A. 

 

Figure 3B visualizes the dynamics of fluxes of accumulation (v1) and consumption (v2) of FBP 

relative to one another for the representative case of Experiment 3 with 80 mM of initial glucose. 

The horizontal top and bottom axes for the two curves are different and color-coded with blue 

(glucose) and black (FBP). In the first phase of the experiment, glucose is abundant and FBP 

accumulates (shown with a curved green upward arrow) while glucose is being consumed at a 

more or less constant rate (shown with the horizontal green arrow indicating that glucose is 

consumed at the same time as FBP accumulates). The intersection of the curves represents a 

temporarily steady state for FBP with a concentration of about 50 mM. At this state, 

accumulation and consumption of FBP are in balance: v1 = v2, while other processes in the 

system are not. As the experiment proceeds, FBP remains constant, whereas glucose is being 

consumed from about 50 mM down to about 10 mM (color-coded with straight orange arrow). 

Since the value of v1 is essentially constant, FBP remains at its temporary plateau during this 
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period. As soon as the glucose concentration drops below about 10 mM, FBP becomes depleted 

while glucose is being used up as the two red arrows indicate. Panel C shows the same three 

phases on a concentration vs. time plot of glucose and FBP for further clarification. 

 

 

Figure 3: (A) Simplified diagram of glucose (X1) conversion into FBP (X2).  Panel (B) depicts the relative 

shapes of v1 and v2 as functions of their substrate concentrations. Colored arrows show different phases of the 

dynamic behavior of FBP. Green: FBP accumulation and decrease in glucose (first 5 minutes); Orange: FBP 

constancy at peak level and further decrease in glucose (~15 minutes for 80 mM glucose); Red: Glucose and 

FBP depletion. Panel (C) shows the same phases on a concentration vs. time plot. The color coding is 

consistent between B and C. 

 

The concepts outlined above were implemented in a simple model. We start by representing the 

flux terms with Michaelis-Menten rate laws. In order to obtain the same peak for different 

amounts of glucose, v1 needs to be saturated and equal to Vmax1 for glucose with a value between 

about 10 to 80 mM for Experiment 1 and between about 5 to 40 mM for Experiment 2. These 

numerical settings permit the temporarily steady state and extended peak for FBP if v2 has a high 

Vmax2 and a low Km2. In fact, these values must be such that for the peak FBP concentration 

(about 50 mM), v2 equals v1 for the appropriate glucose concentrations.  
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These quantitative considerations can be converted into constraints for the model parameters. 

Specifically, the equation    �#(Y6Z = 50) = ��	(5 ≤ 18\']^. ≤ 50)	 mandates the following:  

First, Km1 must be such that v1 is saturated for high glucose values (above about 5mM); this 

ensures a similar FBP peak for all pertinent glucose concentrations in the three experiments. 

Second, the FBP accumulation and consumption fluxes v1 and v2 need to intersect. This requires 

@_# 	 > 	 @_� and  �_`a# > 	 �_`a�, and the values must be set such that  ��	= 	�# when FBP is at 

the observed plateau of about 50 mM. A solution to these constraints is: 

 

�_`a� = 	 �_`a#	.		(FBP	peak	conc. )
@_# + 	 (FBP	peak	conc. )  

 

An additional constraint pertaining to �_`a� can be derived from the speed with which glucose is 

depleted. Taken together, we obtain the following set of conditions: 

 

@_# 	 > 	 @_�		 
�_`a# 	 > 	 �_`a� 

�_`a� = 	 �_`a#	.		(FBP	peak	conc. )
@_# + 	 (FBP	peak	conc. )  

�_`a� 	 ≈ 4 

 

Figure 4A shows the glucose and FBP dynamics resulting from a representative example for 

which the inferred sets of constraints hold. The concentration curves are very similar to the 

measurement data (Fig 1). 
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Figure 4: (A) Computed concentrations of glucose (more or less linear) and FBP (humped) for 20 (red), 40 

(green), and 80 mM (blue) of initial glucose, using the constraints on parameters in a Michaelis-Menten 

formulation with representative values of Vmax1 = 4, Vmax2 = 145, Km1 = 0.5, Km2 = 25 and an external to 

internal volume ratio of 25. (B) Corresponding glucose and FBP trends vs. time for the Michaelis-Menten 

formulation in (A). (C) Plots of flux vs. concentration for the v1 and v2 fluxes in power-law format. v1 has a 

low kinetic order. (D) Corresponding glucose and FBP trends vs. time for the power-law formula in (C). 

Experiment 3 with the highest amount of glucose input results in the most extended FBP peak. 

	

The relationships between fluxes are not dependent on the choice of the Michaelis-Menten 

framework. To reproduce similar conditions for power-law representations, one must simply 
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require a low kinetic order and rate constant for glucose that results in the correct dynamics for 

��. The result is a similar flux value for different glucose concentrations between 5 and 50 mM. 

Furthermore, �# needs to have a higher kinetic order so that the two flux curves intersect. Rate 

constants are calculated such that �� = �# for the peak FBP concentration of about 50 mM.  

Similar to the Michaelis-Menten case, the kinetic order and rate constant for �� need to be set 

such that they satisfy the speed for glucose depletion. Results for a representative, feasible 

parameter set with power-law functions are illustrated with the fluxes in Figure 4C. Figure 4D 

shows the corresponding glucose and FBP concentrations for the three experiments with 

different initial glucose concentrations. 

The question arises of whether the above considerations are affected by the existence of G6P as 

an intermediate between glucose and FBP. The short answer is no. Unfortunately, the [1-
13

C] 

NMR experiments did not permit measurements of G6P for the three experiments. However, it is 

likely that the G6P dynamics is similar to the FBP dynamics, although with a lower peak value 

or a very low saturation threshold as it is observed for Experiment 1 with initial glucose of 20 

mM. 

Supposing that �& is a function of FBP only, we find: (i) at times when FBP is constant, �& is 

constant as well; and (ii) FBP being constant requires that �# = �&. (i) and (ii) are possible in the 

following two scenarios only when G6P and FBP are constant simultaneously, or when �# is 

saturated for the amount of G6P during that time period, and therefore has a very low @_. 

Furthermore, no matter whether G6P is constant or �# has a low @_ (high affinity) for G6P, 

�� = �# = �& must hold at the FBP peak, and �� must thus be saturated for glucose values 
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between about 5 and 50 mM as reasoned before. Thus, the earlier conclusions regarding the FBP 

dynamics hold, whether or not G6P is explicitly presented.  

5.2 Fully Parameterized Model and Model Fits 

Methods of DFE, combined with numerous parameter estimation techniques, led to the following 

set of parameter values, which lead to simultaneous fits for the three available experiments. They 

are displayed below with one row per flux: 

Z = [��			ℎ�,�		ℎ�,(		@A(		ℎ�,+ 	… 

�#		ℎ#,#		ℎ#,2 … 

�&			ℎ&,&	ℎ&,+	ℎ&,�4 … 

�(		ℎ(,(	ℎ(,#	ℎ(,�4	ℎ(,& …		 
�*		ℎ*,*	ℎ*,(		ℎ*,-	ℎ*,& … 

�/		ℎ/,2	ℎ/,� …		 
�4			ℎ4,�	ℎ4,2 …	 
�+		ℎ+,*	ℎ+,- … 

 �+,		ℎ+,,#	ℎ+,,+ 	… 

 �+7		ℎ+7,# 	…	 
�-	ℎ-,2 …	 
�-,		ℎ-,,�	]										           IJ.		3 
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P = [12.5290    0.1422   -0.2547    0.2250    0.6469 ... 

   1.1208    1.9844    0.2742 ... 

   0.2403    1.0079    0.7114    0.0603 ... 

   0.1600    0.6192    0.8661    0.3715    0.7479 ... 

   0.6522    3.0000   -0.5013   0.4867    0.8638 ... 

   0.3432    1.2558    0.4101 ... 

   0.1228    0.1720    0.0252 ... 

   0.3293    1.3664    1.4756 ... 

   0.1504    0.3026    0.1657 ... 

   0.0061    0.0764 ... 

   1.0528    0.4075 ... 

   0.1950    0.5500 ];  					       		IJ.		4 

 

In addition, the model uses the following initial values for the dependent variables and settings:  

�0-4 	 = 	 [80; 	0.1; 	4; 	14.8; 	0.1; 	0.1; 	5.74; 	0.1; 	0.1; 	8.815; 	0.1; 	0.1]; 
�0(4 	 = 	 [40; 	0.1; 	4; 	14.8; 	0.1; 	0.1; 	5.74; 	0.1; 	0.1; 	8.815; 	0.1; 	0.1]; 
�0#4 	 = 	 [20; 	0.1; 	4; 	14.8; 	0.1; 	0.1; 	5.74; 	0.1; 	0.1; 	8.815; 	0.1; 	0.1]; 
<=;#4 = 13.92	�1	tu]v.3w/�8           

<=;(4 = 17.11		�1	tu]v.3w/�8                 

<=;-4 = 19.53		�1	tu]v.3w/�8 

y#4 = 	0.7124	min	              
y(4 = 			0.7450	min	                 
y-4 = 1.6661		min	 

 

Note that all initial conditions are identical, except for the external glucose concentration, the 

measured biomass concentrations in the three experiments (MB), and the time constants (T) 

capturing delayed glucose uptake in the beginning of the experiments. 
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These parameter settings lead to good fits of the data, which are displayed in Panels A-C of Fig. 

5. The capacity of a single parameter set to capture different conditions is important, because it 

significantly increases the predictive power of the model. Furthermore, since this parameter set 

was derived from DFE, its extrapolation reliability is increased, because the risk of error 

compensation among flux terms within the same or in different equations is greatly reduced 
7
. 

 

While the simultaneous fitting with one parameter set is important, one should consider that, in 

reality, natural systems obviously exhibit a certain degree of variability. We therefore allowed 

the parameters in the common set, which fits the three experiments simultaneously, to vary 

slightly in order to account for this variability among the different cell populations. The results 

are shown in Panels D-F of Figure 5. These model instantiations used the following parameter 

sets for the 20, 40, and 80 mM experiment. A parameter-by-parameter comparison demonstrates 

how close the three sets are.  

 

P20 =[14.3646    0.0722   -0.0858    0.1703    0.4805 ... 

    1.0071    1.4924    0.1773 ... 

    0.2032    1.0207    1.0117    0.1416 ... 

    0.1888    0.6645    0.7712    0.6590    0.7766 ... 

    0.5633    3.0000   -0.6826    0.4946    1.0296 ... 

    0.3627    1.1649    0.3731 ... 

    0.0335    0.7391    0.1038 ... 

    0.3761    1.9952    0.9710 ... 

    0.1119    0.5980    0.7281 ... 

    0.0282    0.1696 ... 

    1.1080    0.5652 ... 

    0.1998    0.6500]; , y#4 = 	0.7391	min				      IJ.		5 
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P40 =[11.6912    0.1790  -0.3313    0.3439   0.4664 ... 

0.9740    1.7155    0.4049 ... 

0.2059    0.9700    0.8164    0.1410 ... 

0.1830    0.4572    0.7985    0.4100    0.9091 ... 

0.5838    2.9162   -0.6379    0.3987    0.8822 ... 

0.3335    1.1774    0.3556 ... 

0.0231    0.8343    0.1026 ... 

0.3624    2.0246    1.2299 ... 

0.0702    0.5273    0.5884 ... 

0.0238    0.2526 ... 

1.0248    0.2501 ... 

0.2021    0.6321];  , y(4 = 	0.5990	min					        IJ.		6 

 

P80 =[12.4598    0.1422   -0.2547    0.2250    0.7444  ... 

1.2357    1.9157    0.2879 ... 

0.2403    1.0079    0.7090    0.0603 ... 

0.1600    0.6110    0.8661    0.3715    0.7479 ... 

0.6522    2.9076   -0.5013    0.4635    0.8638 ... 

0.3432    1.2558    0.4101 ... 

0.2000    0.1720    0.0252 ... 

0.3293    1.4836    1.4756 ... 

0.1475    0.3104    0.1740 ... 

0.0061    0.0764 ... 

1.0528    0.4717 ... 

0.1950    0.5500]];  		, y-4 = 	1.5985	min					      IJ.		7 
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Figure 5: Simulation results for glucose, lactate, G6P, FBP and PEP+3PGA, superimposed on the 

corresponding data, for Experiment 1 (Panel A), Experiment 2 (Panel B), and Experiment 3 (Panel C). Note 

the different Y-scales. Accounting for modest variability among cell populations, the parameters in the 

common set of Panels A-C were allowed to vary slightly among experiments. The resulting fits are depicted in 

Panels D, E, and F. 

 

5.3 Simulation Results for Secondary Metabolites 

NAD
+
, NADH, and ATP data are available only for Experiments 2 and 3. The simulation results 

for these metabolites as well as pyruvate are shown in Figures 6B and 6C. Although the fits are 

not as good as those for the main metabolites, they capture the trends and timing. Three aspects 
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are of note. First, these secondary metabolites all have concentrations below 10mM and are often 

close to the detection limit. Second, the ATP measurements had to be performed in a separate 

experiment, as phosphate was labeled, and while an attempt was made to match the experimental 

conditions as closely as possible to the 40 and 80 mM experiments, the data did not come from 

the same experiments. Finally, NADH was not observed until the time point when glucose was 

depleted in these experiments. With these limitations in mind, emphasis with respect to ATP was 

given to the general trend of an increase to high concentrations in the beginning of the 

experiment, remaining high for the duration of experiment until glucose was depleted, then being 

depleted. For NADH, it was important to remain at its high concentration for the duration of time 

after the glucose depletion. Furthermore, no pyruvate was detected in the experiments. 

Consistently, the simulation results are below the detection limit of each experiment, except for 

the first few minutes where unlabeled PEP and 3PGA are converted into unlabeled pyruvate that 

remains undetected in NMR experiments. The simulation results show this spike in the 

beginning; shortly afterwards, pyruvate decreases to below 2 mM for all experiments and stays 

below the detection limit until it approaches zero toward the end of the experiment. 
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Figure 6: (A) Mass balance in mmol of lactate equivalents vs. time, calculated by taking into account the 

appropriate stoichiometry and volume conversions. The mass is plotted for the three datasets. The dots show 

the total carbon mass calculated from the measured data, and the lines show the calculated amounts resulting 

from the simulated model with leakage terms. (B) Data of NAD
+
, NADH and ATP are shown as dots. 

Simulation results for NAD
+
, NADH and ATP are superimposed. No data are available for pyruvate; 

simulation results are shown in dark blue. 

 

7 Conclusions and Future Directions 

A dynamic mathematical model was devised that accounts for the key glycolytic metabolites in 

L. lactis, as well as the dynamics of such cofactors as NAD
+
, NADH, ATP, and ADP. As with 

many modeling studies, the most difficult step of model development was the estimation of 

parameter values. Here, this estimation was based on experimental time series of glycolytic 

intermediates from three experiments with different substrate availability. The technical 

difficulties of the estimation process were directly related to the high dimensionality of the 

parameter space, the enormous complexity of the landscape of residual errors between model and 

data, and the often ignored fact that we do not really know what functions are best suited to 

represent each process within a biological system. To address these issues, a combination of 

mathematical and computational techniques were developed, including a custom-tailored Monte-
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Carlo algorithm, various optimization techniques and, most importantly, methods of dynamic 

flux estimation (DFE), which enabled us to reduce the admissible parameter space and prevent 

flux terms from compensating errors in their representations.   

For the first time, a single model fits all available metabolic time courses reasonably well with 

the same parameter set and also captures the counterintuitive FBP dynamics across the three 

experiments. Because this model reflects three independent datasets, one might expect that it has 

a higher extrapolation potential than earlier models that were based on single datasets. The 

companion paper 
1
 discusses key aspects of the control of the pathway, and explains in detail 

how the organism terminates glycolysis at the end of glucose availability such that it is ready to 

take up now glucose as soon as substrate becomes available again. 
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