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Abstract  18 

Recent technical advances have made it possible to visualize single molecules inside live cells. 19 

Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, 20 

allowing for a quantitative characterization of molecular properties. Such data sets contain 21 

information on a wide spectrum of important molecular properties, with different aspects 22 

highlighted in different imaging strategies. The time-lapsed acquisition of images provides 23 

information on protein dynamics over long time scales, giving insight into expression dynamics 24 

and localization properties. Rapid burst imaging reveals properties of individual molecules in real-25 

time, informing on their diffusion characteristics, binding dynamics and stoichiometries within 26 

complexes. This richness of information, however, adds significant complexity to analysis 27 

protocols. In general, large datasets of images must be collected and processed in order to 28 

produce statistically robust results and identify rare events. More importantly, as live-cell single-29 

molecule measurements remain on the cutting edge of imaging, few protocols for analysis have 30 

been established and thus analysis strategies often need to be explored for each individual 31 

scenario. Existing analysis packages are geared towards either single-cell imaging data or in vitro 32 

single-molecule data and typically operate with highly specific algorithms developed for particular 33 

situations. Our tool, iSBatch, instead allows users to exploit the inherent flexibility of the popular 34 

open-source package ImageJ, providing a hierarchical framework in which existing plugins or 35 

custom macros may be executed over entire datasets or portions thereof. This strategy affords 36 

users freedom to explore new analysis protocols within large imaging datasets, while maintaining 37 

hierarchical relationships between experiments, samples, fields of view, cells, and individual 38 

molecules. 39 

 40 

 41 

 42 

 43 

 44 
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Introduction 45 

 46 

Fluorescence microscopy has played an enormously important role in our understanding of biology. 47 

By tagging molecules of interest with fluorescent proteins, the dynamics of many cellular systems 48 

have been observed within live cells. However, many important cellular processes are carried out by 49 

proteins that are expressed at very low levels and are therefore undetectable using standard 50 

fluorescence microscopes
1,2

. Proteins that replicate and repair chromosomes in bacteria, for 51 

example, are often expressed at a level of less than 100 molecules per cell3. The recent development 52 

of fluorescence microscopes with single-molecule sensitivity is allowing us to peer into this world for 53 

the first time.  54 

In addition to extending the sensitivity of established wide-field microscopy techniques, single-55 

molecule microscopes allow rapid image sequences to be recorded that reveal the movements of 56 

individual molecules. Single-molecule microscopes can be used to record wide-field video-rate 57 

movies, with exposure times of 10–100 ms for individual images. On this timescale, fluorescent 58 

signals from molecules that diffuse freely within the cytosol of a bacterial cell or within the 59 

organelles of eukaryotic cells,  blur out over the accessible volume in the cell or organelle due to 60 

rapid diffusion rates (D ~ 1–10 μm2/s 4–6). On the other hand, molecules that bind relatively static 61 

structures, such as chromosomal DNA, exhibit a much smaller diffusion constant and thus present as 62 

static foci of diffraction-limited size (~ 300 nm). Similarly, molecules that diffuse slowly, such as 63 

proteins associated with cell membranes, present discrete foci that move along the cell periphery. 64 

Movements of such single-molecule foci can be tracked in order to observe events that lead to a 65 

change in diffusion rate, for example, binding of molecules to DNA or other large structures. At the 66 

same time, intensities of foci in conjunction with photobleaching can be tracked in order to measure 67 

the number of fluorescent molecules giving rise to each focus, allowing the compositions of 68 

molecular complexes to be determined7. 69 

 70 
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These extra layers of information provide fresh insight into the behaviors of molecules within cells, 71 

but also pose a problem for the scientists who study them: in order to obtain sufficient statistics to 72 

generalize observations, data must be recorded for many molecules, within many cells. Single-73 

molecule imaging requires the use of high-magnification, high-numerical aperture objectives
6
, 74 

limiting the size of the field-of-view and thus the number of cells that can be observed 75 

simultaneously. Typically, to discern statistically significant outcomes, hundreds of images must be 76 

recorded for a particular a live-cell single-molecule sample. That sample may contain hundreds of 77 

fields, potentially containing hundreds of time-points, up to thousands of cells of which each contain 78 

a handful of foci. Furthermore, it is often desirable to collect images in two or more fluorescence 79 

colors in order to correlate the behaviors of multiple types of molecules, as well as bright-field or 80 

phase-contrast images to define cell boundaries. These data are highly hierarchical in nature and 81 

efficient analysis is only possible when the hierarchical relationships between the different levels in 82 

the data are maintained during analysis. 83 

A software package for single-molecule analysis in live-cells should meet four basic conditions. 84 

Firstly, it should allow for hierarchical classification of images and regions-of-interest (ROIs): samples 85 

contain fields of view (images), fields of view contain ROIs that capture individual cells (cell ROIs), 86 

and cells contain ROIs that define single-molecule foci (focus ROIs). Secondly, it should allow for 87 

analysis over both long and short time scales, resulting in the generation of different data structures: 88 

in time-lapse datasets there is one cell ROI per time point, whereas in rapid-imaging mode each cell 89 

ROI is typically used to analyze fluorescence signals over many time-points (Fig. 1). Thirdly, and most 90 

importantly, a package for live-cell single-molecule analysis should be highly flexible and allow for 91 

exploration of new analysis techniques. Finally, the source code used in the package be made 92 

available to users so that researchers can fully understand the algorithms they use8. 93 

 Sophisticated packages for both cell analysis and single-molecule analysis are currently available, 94 

however none meet all of the requirements listed above
9
. Commercial packages typically offer out-95 
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of-the-box solutions to a particular set of problems, often involve high licensing fees and utilize 96 

undisclosed source code, limiting the users’ ability to adapt the software or to add their own 97 

customized code. CellProfiler10 (and its extension CellProfiler Analyst11) is a free open-source package 98 

with a robust set of algorithms for analysis of 2D images. CellProfiler excels at automated assignment 99 

of cellular phenotypes, as well as identification of sub-cellular particles. However, with its focus on 100 

high-throughput screening data, the package provides little support for time-resolved studies. 101 

MicrobeTracker12 allows users to conveniently assign outlines for microbial cells within time-lapse 102 

datasets and provides some support for characterization of foci. It is, however, not suitable for 103 

analysis of rapid-imaging data and is not geared towards exploration of new analysis methods. In 104 

addition, while MicrobeTracker itself is free, it runs within an environment that requires a paid 105 

licence (Matlab). Single-molecule packages such as the Mosaic Suite
13

, as well as plugin collections, 106 

such as GDSC ImageJ Plugins14 offer a myriad of analysis methods for single-molecule image 107 

processing, but are intended for in vitro analysis and thus lack the hierarchical classification systems 108 

that are required for the analysis of data derived from cellular systems. A significant advantage of 109 

these packages, however, is that they are extensions of the popular image-analysis platform 110 

ImageJ15,16, which is extremely flexible, supported by a strong user community and a wealth of user-111 

written extensions. Unfortunately, ImageJ is geared towards working with individual files, making 112 

hierarchical analysis strategies difficult to implement. 113 

Flexible software that links analysis routines used in single-molecule imaging with those used in live-114 

cell imaging is required for researchers to keep up with the rapid development of new imaging 115 

techniques. Ideally, one would be able to utilize ImageJ to develop code for new analysis routines, 116 

whilst being able to easily accommodate data structures that are large, hierarchical and multi-117 

dimensional. 118 

We present a free open-source ImageJ plugin, iSBatch, which allows users to use batch processing to 119 

treat files within hierarchical datasets in a straightforward manner. Routines built into ImageJ
15

, 120 
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downloadable plugins and even user-written macros can be executed across any level of the dataset 121 

hierarchy. This strategy dramatically simplifies the often cumbersome tasks of scripting and data 122 

management, allowing users to run scripts over their entire datasets or portions thereof. Our tool 123 

complements existing single-cell and single-molecule analysis packages by allowing cell and focus 124 

ROIs generated in single-cell packages to be applied across hierarchical time-lapse and rapid-imaging 125 

datasets, with complete flexibility in choice of analysis methods. 126 

Results and Discussion 127 

iSBatch is straightforward to use, platform independent, and requires only ImageJ and Java Virtual 128 

Machine, which are freely available. iSBatch provides an interface to explore data in hierarchical 129 

datasets. Its graphical user interface (GUI) provides an intuitive means for controlling the operations 130 

and manipulating datasets of any size. iSBatch incorporates a powerful adapter for the ImageJ macro 131 

interpreter, allowing users to implement existing or newly written macros within the data hierarchy. 132 

Data is stored in an SQL database and displayed in a tree format for manipulation (Fig. 2a). The 133 

database format assists in managing the transfer and back-up of large imaging datasets, which may 134 

contain hundreds or even thousands of images and can be prone to errors when handled manually 135 

17
. A file named ‘iSBatch.zip‘, which contains the plugin, its source code and user manual, is included 136 

in the online Supplementary Material. To help to illustrate the concepts in the following sections of 137 

this report, we also include an example dataset containing three Experiments in the Supplementary 138 

Material. 139 

Data Structure and Graphical User Interface (GUI) 140 

The fundamental unit of iSBatch is the image itself. Each image belongs to a Field of View, 141 

representing the region of the sample that was imaged by the microscope. A collection of Fields of 142 

View is called a Sample, and a collection of Samples is called an Experiment. This hierarchy is 143 

assigned to each image by placing hierarchy parameters alongside the image within an image object. 144 

Image objects may contain an unlimited number of additional parameters. Within iSBatch, image 145 
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objects contain information on the nature of the image, for example identifiers for color channels, 146 

metadata generated during operations, such as peak tables and image projections, as well as ROIs 147 

that designate the positions of cells and foci.  A dedicated dialog guides the import of imaging data 148 

and assures compatibility with iSBatch. There is no specific requirement for file name structure, 149 

however we suggest the inclusion of a useful identifier for the imaging channel (e.g. 514.tif, BF.tif, 150 

GFP.tif). 151 

The general workflow within iSBatch is straightforward (Fig. 2b). In short, the user selects which 152 

subset needs to be processed, chooses the operation to be performed and indicates either to save 153 

results and images to disc or keep it in the database. The graphic user interface is divided into 154 

subpanels containing the navigation tree, file lists, buttons to run built-in functions or custom 155 

macros and a log panel (Fig. 2c). The GUI also has buttons to add images to the data structure, as 156 

well as cell ROIs generated in ImageJ or in MicrobeTracker18.  157 

We have included several operations commonly used in single-molecule analysis within iSBatch, such 158 

as functions to correct images for uneven illumination, find and fit peaks inside or outside of cells, 159 

and basic peak table operations. These operations will be explored in detail in the form of case 160 

studies in the sections below. 161 

Case studies 162 

To demonstrate the applicability of our iSBatch software we present here a case in which the custom 163 

macro interpreter was applied to a dataset, as well as two detailed case studies based on the most 164 

common types of data generated by single-molecule single-cell measurements: rapid-acquisition 165 

movies and time-lapse series. We imaged Escherichia coli cells in which two different subunits of the 166 

replisome were tagged with fluorescent proteins at their carboxy-termini; the ϵ subunit (DnaQ gene) 167 

is tagged with red mKate2 (DnaQ-mKate2) and the τ subunit (DnaX gene) is tagged with yellow YPet 168 

(DnaX-YPet). The E. coli replisomes contain ten different proteins, each at different copy numbers, 169 

including up to three molecules of τ (a component of the clamp loader complex) and three 170 
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molecules of ϵ (proof-reading exonuclease)
3
. Replisome proteins are of particular interest for single-171 

molecule studies3,19 both because of their biological role of importance (replisomes duplicate the 172 

genome prior to cell division)20 and because the replisomal proteins are present at extremely low 173 

levels within cells. A single E. coli cell produces only about 100 molecules of τ per cell and ~250 174 

molecules of ϵ3. 175 

The example data is comprised of a single database containing three experiments, labeled RA_DnaX-176 

YPet, RA_DnaQ-mKate2 and TimeLapse). RA_DnaX-YPet and RA_DnaQ-mKate2 are Rapid Acquisition 177 

(RA) experiments (500 times 34 ms) that each contain three samples recorded at different excitation 178 

laser powers. Each of these samples contains 10 fields of view. TimeLapse contains just one sample 179 

and 10 fields of view (50 ms every 20 min, repeated for 400 minutes). RA_DnaX-YPet includes 134 180 

cell selections, RA_DnaQ-mKate2 contains 107 and TimeLapse contains 10 fully tracked cells. iSBatch 181 

assumes that, if no cell ROIs are provided, the entire image is selected. This scenario is applicable to 182 

analyses that do not rely on cell outlines, such as reconstruction of super-resolution images by PALM 183 

21,22 or STORM 23, or even to the analysis of in vitro single-molecule data. 184 

When loaded into iSBatch, our datasets appear in the operation panel (Fig 2c). Selecting a node 185 

within one of the datasets allows image-processing operations to be executed across all images 186 

falling under that node. For example, when the user selects the node RA_DnaQ in the tree and the 187 

operation flatten, iSBatch guides the user through the steps required for image flattening and 188 

correction for the unevenness of the beam profile (more details found in the User Manual – 189 

Supplementary Materials) within selected images in the RA_DnaQ experiment. Next, iSBatch 190 

assumes that operations will be performed on the resulting flattened images as will be shown in the 191 

following sections. 192 

Custom macro interpreter 193 

The ImageJ support to macros is a powerful tool to execute a sequence of operations in an image. 194 

Traditionally, in order to apply basic ImageJ functions across portions of a dataset, the user has to 195 
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write sequences of steps and functions to navigate through the folders, to identity the required files, 196 

and to save the results. Even small changes in the folder or file structure prevent the code from 197 

running properly and troubleshooting becomes a daunting task. iSBatch, via its custom macro 198 

interpreter, provides the necessary tools to automatize these steps (Fig. 3).  199 

Within our rapid acquisition data, for instance, stacks exported from the microscope contain dark 200 

frames at the beginning of the image series, resulting from a small delay before the opening of the 201 

laser shutter. The custom macro interpreter can be easily used to trim stacks in order to remove 202 

these frames. There are two possibilities of implementation: an experienced user may just write a 203 

macro to trim one image and them use it within the custom macro interpreter; or could take 204 

advantage of ImageJ Macro Recorder – a panel that stores all commands performed by the user 205 

while processing an image– and then simply paste the sequence of steps into the iSBatch custom 206 

macro interpreter. The user then can analyse the images further in a statistical package, like R24. 207 

Rapid-Acquisition Analysis 208 

Rapid-Acquisition experiments usually result in a stack of fluorescence images, containing hundreds 209 

or thousands of individual frames, acquired at rapid frame rates (typically continuous series of 210 

frames, 10-100 ms duration each, with a total duration of seconds), as well as a bright-field image 211 

enabling the identification of cell boundaries in cases of low fluorescence signals. This type of 212 

imaging allows the behaviors of individual molecules to be monitored in real time. It is typically used 213 

to count molecules within foci, to count the total number of molecules in cells, to measure diffusive 214 

behavior and to observe binding kinetics
1,3,7

. 215 

In our datasets, DnaX-YPet and DnaQ-mKate2 frequently are associated with DNA-bound replisomes, 216 

and as a result form immobile foci on the imaging timescale (34 ms). We used iSBatch to detect foci 217 

and measure their integrated intensities using the peak fitter operation in a selected node (Fig. 4a). 218 

The built-in peak fitter fits each peak to a Gaussian profile using least-squares fitting. It takes into 219 

account sources of noise, such as general background noise, and uses a non-symmetric 2D Gaussian, 220 
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so peaks can be later filtered based on their symmetry
25

. The properties of foci in single-molecule 221 

single-cell measurements can vary between experiments, depending on the brightness of the 222 

fluorophore and the amount of background fluorescence arising from cellular auto fluorescence. It is 223 

therefore desirable to be able to explore parameters such as peak-detection thresholds for 224 

individual samples. iSBatch automatically stores peak tables generated from the peak fitter module, 225 

appending the results with the values of key parameters used. In this way, the user can explore 226 

different parameters and plot the resulting peaks lists in an external plotting or statistical analysis 227 

package, for example GNU Octave
26

 or R
24

. In our example data, we see that for both fluorescent 228 

species the intensities of peaks increase with higher excitation power, as expected (Fig. 4b). 229 

Foci containing fewer than about 10 molecules show step-wise photobleaching behavior that can be 230 

used to quantify the number of fluorescent molecules within each focus 
5,27

. Using iSBatch, 231 

trajectories of intensity versus time can be generated for foci using the traces module. This can be 232 

done in two different ways. One option is to produce an average projection of each image stack, 233 

assign focus ROIs in the projected image using peak finder and measure the integrated intensity 234 

under each ROI for each frame of the stack. The second option is to use peak fitter to measure foci 235 

throughout the entire stack of a ‘Field of View’ and then use track to identify foci falling within a 236 

small, user-defined search radius of a focus that appeared in the first frame and produce a time-237 

ordered list of their intensities. As expected, traces for DnaQ-mKate2 show step-wise 238 

photobleaching behavior (Fig. 5). Intensity levels within traces can be automatically assigned using 239 

the changepoint analysis (Fig. 5c, red lines). This algorithm estimates the time point at which the 240 

statistical properties of a sequence change, e.g. photobleaching causing a discrete jump in intensity 241 

followed by a period of constant intensity
28,29

.  242 

As well as quantifying the number of molecules in each focus, the single-molecule intensity 243 

determined within the change-point module can be used to determine the total number of 244 

molecules in each cell. For this, it is necessary to have ROIs defining the cell boundaries. These can 245 
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be generated in ImageJ or imported from MicrobeTracker using the module MicrobeTracker I/O. In 246 

iSBatch, the total fluorescence signal originating from a cell as it photobleaches can be measured by 247 

applying the cell intensity operation to a batch (Fig. 6). Comparing the three DnaQ-mKate2 samples 248 

within the RA_DnaQ experiment (Fig 6a), we observe that DnaQ-mKate2 photobleaches faster at 249 

higher laser excitation intensities, as expected (Fig. 6b). Comparing the OD1 samples between the 250 

RA_DnaX and RA_DnaQ experiments (Fig. 6c), we observed that YPet photobleaches faster than 251 

mKate2 (Fig. 6d), as expected 30,31. Using the cellular concentration operation, the amplitudes of 252 

these decays (representing the total fluorescence of the cell) is divided by the intensity of a single 253 

molecule in order to obtain the number of molecules in that cell and the cellular concentration. For 254 

DnaX-YPet and DnaQ-mKate2 we measure 110 ± 35  and 95 ± 22 molecules per cell respectively. 255 

Based on the mean volume of cells as measured from bright field images (4.6 ± 0.9 fL), these values 256 

correspond to concentrations of approximately 23 and 20 nM for DnaX-YPet and DnaQ-mKate2 257 

respectively. 258 

Rapid-acquisition imaging can also be used to measure the movements of molecules. Single-particle 259 

tracking can be used to measure the diffusional motions of molecules. In iSBatch this operation is 260 

implemented in the tracking module. Here foci within the tables generated by peak fitter are 261 

assigned to trajectories if they fall within a set distance on consecutive frames and, optionally, are 262 

within the same cell ROI (Fig. 7a). These trajectories can be used to build step-size distributions or 263 

mean-square displacement plots that allow for measurement of properties such as diffusion 264 

coefficients. For DnaQ-mKate2, which present long-lived trackable foci, we observe two populations: 265 

one with low diffusion coefficients corresponding to molecules bound to DNA, and one with higher 266 

diffusion coefficients corresponding to freely-diffusing molecules
5
 (Fig. 7b).  267 

Time-Lapse Analysis 268 

Time-lapse datasets consist of image stacks containing equal numbers of bright-field images and 269 

fluorescence images, with individual frames corresponding to measurements at periodically sampled 270 
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time-points. Time-lapse measurements can be used to monitor temporal changes in the expression 271 

level of a protein, the number of foci within cells, or the localization of proteins within cells. With the 272 

availability of automated microscopes, we can monitor hundreds cells in several fields of view over a 273 

period of minutes to days
32

.  274 

Our example dataset, TimeLapse, contains images of cells expressing DnaX-YPet and DnaQ-mKate2 275 

recorded over 400 minutes. Using the module cell intensity, we measured the levels of each 276 

fluorescent protein for ten cells over time. The levels of DnaX and DnaQ remain relatively constant 277 

throughout the measurement (Fig. 8a). Using the number of foci detected by peak finder or peak 278 

fitter, we quantified the number of DnaX-YPet and DnaQ-mKate2 foci observed over time. As 279 

expected, cells periodically changed between zero, one, two and occasionally three foci (Fig. 8b). 280 

Because we imaged in time-lapse mode, movie sequences of individual cells could be synchronized 281 

to the beginning of the cell cycle. This analysis shows that after division, daughter cells contain one 282 

foci on average, then the increases to two foci later in the cell cycle (Fig. 8c). If cell ROIs have been 283 

imported from MicrobeTracker, it is possible to produce maps of focus locations within cells using 284 

the location maps module. MicrobeTracker ROIs consist of high-resolution meshes, allowing the 285 

relative positions of foci to be mapped to their relative cellular coordinates. For DnaX-YPet and 286 

DnaQ-mKate2 cells, one focus was present from 0 to 40 min after birth (Fig. 8c). This focus was 287 

located close to the mid-cell position (Fig. 8d). In contrast, 60 to 120 min after division, cells 288 

exhibited two foci (Fig 8c). These foci were more evenly distributed through the entire cell (Figure 289 

8d). 290 

Materials and Methods 291 

Implementation 292 

Software 293 
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iSBatch is a Java 1.6-based plugin for ImageJ
15

 (version 1.49d) or its distribution Fiji
33

. iSBatch is 294 

designed for quick evaluation of analysis pipelines and visual exploration of datasets. It is distributed 295 

under an open open-source34
 license (GNU General Public License, version 3). iSBatch handles the 296 

data in a hierarchical fashion based on a source folder containing all data and little guidance 297 

provided by the user. Due to memory limitations when handling large datasets, iSBatch alleviates 298 

memory overload by loading only the minimum set of images required for a process.  Garbage 299 

collection is done after each cycle so effective memory limitations are imposed by the amount of 300 

memory available in the system and not by the size of the database. 301 

The software is designed for rapid exploration of large datasets and it includes an internal SQLite 302 

database (http://sqljet.com/) for convenience. All files related to the iSBatch platform, including 303 

source codes and API for developers can be accessed directly from the plugin website 304 

(https://github.com/SingleMolecule/iSBatch).  305 

 306 

General workflow 307 

 308 

In the following subsections, we describe the general workflow and how to use the plugin for 309 

accessing basic cellular information. iSBatch guides the user in the initial configuration steps to 310 

proper categorization of the input data. 311 

Processing and Exploring Data - Custom functions 312 

 313 

iSBatch couples its hierarchical data structure management to an extended version of ImageJ’s 314 

macro interpreter. The user can record the executed operations, e.g. using ImageJ’s built in macro 315 

recorder, and simply copy and paste the code in iSBatch interpreter. After selecting the desired 316 

parameters, the results are displayed, allowing the user to quickly check the results. 317 

Built-in functions 318 
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 319 

Data preprocessing involves image operations as well. Image Flattening is available and follows the 320 

equation 321 

��������� =

������� − 
�������������� − ���������������


�������������� − ���������������
∗ �����
���� 

were ImageRange depends on the image type (8-, 16- or 32-bit), the CameraDarkCount can be 322 

provided either as a constant or an image; BackgroundImage, if not available, can be generated from 323 

all images acquired. Generating the Background image may lead to biased correction if saturated 324 

peaks or high intensity regions are found for long time in the movies. A Gaussian filter with a default 325 

value of four pixels is applied to reduce the influence of bright spots.  326 

Ideally, the background should be an image taken in the same conditions of the experiment prior to 327 

have the sample in the Field Of View.  328 

To allow for fast and accurate detection of peaks, we implemented the fluoroBancrof algorithm
35

. 329 

This algorithm localizes peaks with sub-diffraction limit accuracy without the need of numerical 330 

fitting
36

. All the results will be available in human-readable format like comma-separated-values 331 

(csv).  332 

Acquiring peak tables from the images configures a starting point of a whole new section of analysis 333 

of single molecule data. Change point analysis is used to assign steps to single-molecule traces and 334 

infer stoichiometry of molecules. Cellular ROIS can be either added manually or imported from 335 

MicrobeTracker. In the later, a detailed subdivision of each cell with meshes is available. Therefore, 336 

is possible to localize every peak in relation to the mesh and assign relative positions. With the 337 

cellular parameters, such as cell length, width, area, can be obtained from the imported ROIs and an 338 

artificial cell is created for the peaks to be inserted.  339 

Image Acquisition 340 

Cell Culture 341 
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Derivatives of E. coli K12 MG1655 carrying a chromosomal C-terminal fusions
37

 containing DnaX-YPet 342 

and DnaQ-mKate2 were grown overnight in M9 Minimal medium supplemented with Glycerol 2% 343 

and 10mM thiamine hydrochloride; Cell cultures were diluted to 1:100 and grown from 4 hours at 344 

37
o
C at 1100 rpm prior to the start of the imaging experiment. 345 

Image Acquisition  346 

The images were taken on a home-built single-molecule fluorescence  microscope  consisting  of  a  347 

fully-automated  inverted microscope body (Olympus IX-81) with excitation light provided by 514 nm 348 

and 568 nm Sapphire  lasers  (Coherent) and  equipped with a 1.49 NA 100x objective and a 512 × 349 

512 pixel EM-CCD camera (C9100-13, Hamamatsu).  For imaging we used flow cells derivatized with 350 

3-aminopropyl triethoxy silane (APTES, Sigma) and kept the flow at 10 µl/min. 351 

The datasets are described as follows: 1) Rapid acquisition of DnaX-YPet and DnaQ-mKate2 each 352 

containing 10 Fields of View. A Field of View comprises a reference bright field image and a 353 

fluorescence movie (500 frames each with 34ms interval between acquisitions under different laser 354 

intensities); 2) Time Lapse acquisition of DnaX-YPet and DnaQ-mKate2 containing 10 fields of View 355 

containing a bright field and two fluorescent images of 50 ms for each fluorescent protein. The cycle 356 

time is 20 minutes and the experiment was carried out for 400 minutes. Datasets are available as 357 

supplementary materials S1 and S2; 358 

Conclusion 359 

We present here a fully open-source and community-driven ImageJ plugin for single-molecule 360 

analysis focused on hierarchical data obtained from live-cell single-molecule experiments. The plugin 361 

facilitates data exploration and bookkeeping of datasets with large number of images in multiple 362 

colour channels, including basic pipelines and support for custom macros. We present case studies 363 

that illustrate the ability to carry out analysis in a structured way, minimizing the burden of code 364 

development. With this in mind, we envision that the user will be able to place a larger focus on 365 
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exploration of biological phenomena and new analysis routines. The development of open-source 366 

analysis tools such as the ones presented here allows for a community-based sharing and 367 

development38 of the platforms required to analyse experiments that increasingly grow in complexity 368 

and data richness. Software documentation is included within the Supplementary Material. The 369 

source code is available for download at https://github.com/SingleMolecule/iSBatch.  370 
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  459 

Figure Captions 460 

Figure 1 Schematic design of a single-cell, single-molecule experiment. Panel A – Structure of a 461 

time-lapse experiment. Each time point shows a bright-field (BF) image and its corresponding 462 
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fluorescence channel (in this example 568-nm excitation). The intervals are on the time scale of 463 

minutes. Panel B – Monitoring of cell fluorescence intensity and its relation to total observable 464 

protein concentration and protein number per cell throughout the experiment. Panel C – Structure 465 

of a rapid-acquisition experiment. A single bright-field image is taken prior to subsequent rapid 466 

image acquisition in the fluorescence channel (in this case 568-nm excitation). Panel D – Simulated 467 

data of binding dynamics of a molecule.  468 

Figure 2 iSBatch Structure. Panel A – Schematic representation of data structure (Experiment – E, 469 

Sample – S, Field of View – FoV) and its connections. Panel B – Logic structure of the algorithm; 470 

Panel C – User interface including ImageJ main panel (upper part) and iSBatch interface with the 471 

main commands. 472 

Figure 3 Custom Macro runner. iSBatch contains a custom macro runner that support syntax-473 

highlighting for creating, running and editing existing ImageJ macros and plugin commands from the 474 

MacroRecorder. 475 

Figure 4 Built-in Peak Fitting Operation. Panel A – Selected node highlighting the ‘Experiment’ level. 476 

Panel B – Distribution of detected peak intensities within different ‘Samples’ in the same selected 477 

‘Experiment’ node for DnaQ-mKate2. 478 

Figure 5 Step-wise photobleaching. Panel A – Selected node highlighting a ‘Field of View’ level. 479 

Panel B – Selected cell within a ‘Field of View’ with the boundaries assigned in yellow and a selection 480 

box in red. Panel C – Representative photobleaching trace of a detected focus. Red traces represent 481 

the detected steps by change-point analysis algorithm.  482 

Figure 6 Cellular fluorescence obtained by Rapid Acquisition. Panel A – Selected node highlighting a 483 

‘Experiment’ level Panel B – Cellular fluorescence photobleaching dependent on laser intensity for 484 

DnaQ-mKate2. Panel C – Selected node highlighting two ‘Samples’ selected within different 485 

experiments. Panel D – Comparison of photobleaching properties of YPet and mKate2 when excited 486 

with same laser intensity (180 W/cm²). 487 

Figure 7 Particle tracking within cells. Panel A – DnaQ-mKate2t particles tracked inside a live E. coli 488 

cell. Blue: Confined track indicating protein bound to DNA. Panel B – Analysis of all detected focus 489 

tracks within a ‘Sample’ level, e.g. DnaQ-mKate2 acquired at 180 W/cm².  Left panel shows the peak 490 

lifetime distribution and right panel the calculated diffusion coefficient for the same population. 491 

Figure 8 Built-in Time-Lapse analysis. Panel A – Fluorescence cell intensity over time for DnaX-YPet 492 

and DnaQ-mKate2. Panel B – Number of long-lived immobile peaks per cell, i.e. foci. Panel C – Data 493 

synchronization considering cell division times. Time zero is the first frame after cell division; cell 494 

division time is 100 – 120 min. Panel D – Location maps. A projection of detected peaks in an 495 

artificial, normalized cell. Left: projected cells with one detected focus, distributed towards the 496 

centre of the cell; Right: projected cells with two detected foci, distributed towards the ¼ and ¾ of 497 

the cell. 498 

 499 
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Figure 31 Schematic design of a single-cell, single-molecule experiment. Panel A – Structure of a 503 

time-lapse experiment. Each time point shows a bright-field (BF) image and its corresponding 504 

fluorescence channel (in this example 568-nm excitation). The intervals are on the time scale of 505 

minutes. Panel B – Exemplified cell fluorescence intensity and its relation to total observable protein 506 

concentration and protein number per cell throughout the experiment. Panel C – Structure of a 507 

rapid-acquisition experiment. A single bright-field image is taken prior to subsequent rapid image 508 

acquisition in the fluorescence channel (in this case 568-nm excitation). Panel D – Simulated data of 509 

binding dynamics of a molecule.  510 
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 511 

Figure 42 iSBatch Structure. Panel A – Schematic representation of data structure (Experiment – E, 512 

Sample – S, Field of View – FoV) and its connections. Panel B – Logic structure of the algorithm; 513 

Panel C – User interface including ImageJ main panel (upper part) and iSBatch interface with the 514 

main commands. 515 
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 516 

Figure 3 Custom Macro runner. iSBatch contains a custom macro runner that support syntax-517 

highlighting for creating, running and editing existing ImageJ macros and plugin commands from the 518 

MacroRecorder. 519 

 520 

 521 
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522 
Figure 4 Built-in Peak Fitting Operation. Panel A – Selected node highlighting the ‘Experiment’ level. 523 

Panel B – Distribution of detected peak intensities within different ‘Samples’ in the same selected 524 

‘Experiment’ node for DnaQ-mKate2. 525 

 526 

 527 

Figure 5 Step-wise photobleaching. Panel A – Selected node highlighting a ‘Field of View’ level. Panel 528 

B – Selected cell within a ‘Field of View’ with the boundaries assigned in yellow and a selection box 529 

in red. Panel C – Representative photobleaching trace of a detected focus. Red traces represent the 530 

detected steps by change-point analysis algorithm.  531 

 532 
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 534 

Figure 6 Cellular fluorescence obtained by Rapid Acquisition. Panel A – Selected node highlighting a 535 

‘Experiment’ level Panel B – Dependence of cellular fluorescence photobleaching on laser intensity 536 

for DnaQ-mKate2. Panel C – Selected node highlighting two ‘Samples’ selected within different 537 

experiments. Panel D – Comparison of photobleaching properties of YPet and mKate2 when excited 538 

with same laser intensity (180 W/cm²). 539 

Page 26 of 28Molecular BioSystems



Page 26 of 27 Molecular Biosystems 

 

 

 

 540 

Figure 7 Particle tracking within cells. Panel A – DnaQ-mKate2 particles tracked inside a live E. coli 541 

cell (fluorescence on the left, tracked positions on the right). The confined nature of the track 542 

indicates protein bound to DNA. Panel B – Analysis of all detected focus tracks within a ‘Sample’ 543 

level, e.g. DnaQ-mKate2 acquired at 180 W/cm².  Left panel shows the peak lifetime distribution and 544 

right panel the calculated diffusion coefficient for the same population. 545 

 546 
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Figure 8 Built-in Time-Lapse analysis. Panel A – Fluorescence cell intensity over time for DnaX-YPet 547 

and DnaQ-mKate2. Panel B – Number of long-lived immobile peaks per cell, i.e. foci. Panel C – Data 548 

synchronization considering cell division times. Time zero is the first frame after cell division; cell 549 

division time is 100 – 120 min. Panel D – Location maps. A projection of detected peaks in an 550 

artificial, normalized cell. Left: projected cells with one detected focus, distributed towards the 551 

centre of the cell; Right: projected cells with two detected foci, distributed more towards the ¼ and 552 

¾ positions in the cell. 553 

 554 
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