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Abstract 

The initiation and development of rheumatoid arthritis (RA) is closely related to 

mutual dysfunction of multiple pathways. Furthermore, some similar molecular 

mechanisms are shared between RA and other immune diseases. Therefore it is vital 

to reveal the molecular mechanism of RA through searching for subpathways of 

immune diseases and investigating the crosstalk effect among subpathways. Here we 

exploited an integrated approach combining both construction of 

subpathway-subpathway interaction network and random walk strategy to prioritize 

RA risk subpathways. Our method can be divided into three parts: (1) acquisition of 

risk genes and identification of risk subpathways of 85 immune diseases by using 

Subpathway-LDS method; (2) construction of a global immune subpathway 

interaction (GISI) network with subpathways identified by Subpathway-LDS; (3) 

optimization of RA risk subpathways by random walk strategy based on GISI network. 

The results showed that our method could effectively identify RA risk subpathways, 

such as MAPK signaling pathway, prostate cancer pathway and chemokine signaling 

pathway. The integrated strategy considering crosstalk between immune subpathways 

significantly improved the effect of risk subpathway identification. With the 

development of GWAS, our method will provide insight into exploring molecular 

mechanisms of immune diseases and might be a promising approach for studying 

other diseases. 

 

Key words: rheumatoid arthritis; immune disease; subpathway; interactive network; 

random walk
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Introduction 

The initiation and progression of diseases are closely related to the dysfunction of 

pathways. It is a huge challenge in functional genomics era to investigate molecular 

mechanisms of complex diseases including immune disease 
1, 2

. However, molecules 

in cells seldom function in isolation, but interact with each other thus forming 

complex cellular pathways of metabolic, regulatory, or protein complexes to perform 

biological functions
3, 4

. Each biological pathway interacting with others is a member 

of complex biological network. Immune system diseases which are complex diseases 

are characterized by imbalance of immune regulation and dysfunction of the immune 

system, thus affecting immune response. Therefore, the independent analysis of one 

single gene or molecule fails to interpret the mechanism of these diseases. Studies 

about pathways of immune diseases and the interaction among different pathways will 

provide new insights for deeply understanding immune diseases. 

The existing data related with immune diseases including (1) gene and SNP data 

and (2) pathway data help to systematically investigate immune disorders. There are 

many databases that store a large number of immune disease genes verified by 

experiments, such as the Online Mendelian Inheritance In Man (OMIM) database 

containing single gene study results for various immune diseases and the Genetic 

Association Database (GAD) storing lots of risk genes of immune disease proved by 

low-throughput experiments and information of other complex diseases. In addition, 

with the increasing number of high-throughput studies, SNPs identified by genome 

wide association studies (GWAS) become available for research, such as data of 

Wellcome Trust Case Control Consortium(WTCCC). In recent years, many biological 

pathways represented with different forms mainly including protein interaction, 

metabolic pathways and signaling pathways have been revealed and stored in pathway 

databases. A protein interaction database generally stores interaction networks of 

proteins. The most popular protein databases are STRING, BIND and HPRD. Despite 

the wide employment in studying human diseases, the protein interaction data is 

undirected which is inconsistent with the real molecule interaction in pathways and 
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has a great impact on the accuracy of result. Fortunately, the tricky problem can be 

settled by metabolic pathways and signaling pathways. Therefore, we chose KEGG, a 

commonly used pathway database with real-time updates containing both metabolic 

pathways and signaling pathways as the source of pathways. 

It is important to develop methods for identifying both risk pathways and local 

regions of pathways. Therefore, many approaches have been developed for searching 

risk pathways closely related with diseases
5-10

. The most widely used method is based 

on enrichment analysis theory which computes the number of risk genes and genes 

from background annotated to a certain pathway respectively then calculate the P 

value used for estimating the significant degree that risk genes annotated to this 

pathway compared with random situation. For instance, PathMAPA
11

and DAVID
12

 

are based on Fisher exact test and adjusted Fisher test respectively, while KOBAS
13

 is 

based on cumulative hypergeometric test. The major defect of these scale-based 

methods is that they are dependent on the choice of threshold which has serious effect 

on the result. Gene set enrichment analysis (GSEA) 
14

is a popular scale-free method 

that is independent of threshold particularly initially designed for gene expression 

profiles. All genes in the list are ranked based on the correlation between their 

expression level and the phenotype by choosing a suitable measure. Given an 

interesting set of genes S, such as genes in a pathway, GSEA aims to determine 

whether genes in S are randomly distributed throughout L or primarily found at one 

end of the list. Compared with scale-based methods, GSEA method performs better in 

identification of risk pathways owing to the contribution of both risk genes and 

non-risk genes classified by a certain measure used for evaluating the association 

degree with diseases. An impact analysis method developed by Draghici
15

 includes 

the classical cumulative hypergeometric statistics but also takes into account other 

crucial factors such as the degree of genes’ expression changes, the type and positions 

in the given pathways and interactions between genes, etc. Given that the occurrence 

and development of cancers is closely related to multiple pathways and interactions 

among them rather than a single pathway, Pham et al. 
16

proposed a latent pathway 
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identification analysis (LPIA) which addressed crosstalk between different pathways 

and constructed a pathway-pathway interaction network. In recent years, with the 

development of high-throughput experimental technologies and biology databases, 

several pathway analysis methods combined with GWAS came about. For instance, 

Wang et al
17

 developed a pathway-based approach for analysis of GWA studies, which 

modified the classical GSEA algorithm to prioritize risk pathways. They calculated a 

test statistic value such as χ
2
 statistic in case-control research for each SNP , took the 

maximum statistic for all SNPs located near a gene (<500kb) as the significance of 

the gene and sorted the genes according to their statistics. Then a enrichment score for 

a particular gene set was computed analogous to GSEA method. Subsequently,  some 

other methods
18, 19

 based on or modified by this approach for analyzing GWA data 

appeared, these pathway-based approaches typically ranked all the genes by their 

significance statistic value or p value and then decided whether a particular group of 

genes was enriched at one end of the ranked list more than that of random situation. 

Although it works well for these methods in finding risk pathways associated with 

complex diseases, these methods can only identify entire pathways; however, even the 

smallest pathway still contains at least tens to hundreds of genes. Even though these 

pathways are indeed associated with diseases, they are not precise enough. Therefore, 

it is essential to improve accuracy level by developing novel methods for searching 

for subpathways that are the local regions of an entire pathway. Many studies suggest 

that the initiation and progression of diseases are highly associated with abnormalities 

in the mutual dysfunction of multiple pathways 
2, 3

. Hence identification of risk 

subpathways of immune diseases achieves more precise pathway result owing to the 

larger proportion of key genes contained in subpathways than that of entire pathway, 

and the subpathway-subpathway network performs better in reflecting interactions 

among different pathways.  

Here we exploited an integrated approach to prioritize risk subpahtways of RA 

combining both identification of subpathways of immune diseases and optimization of 

RA risk pathways by using random walk strategy based on subpathway-subpathway 

Page 5 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 5 

interaction network. Our method can be divided into the following three parts: (1) 

identification of risk subpathways of 85 immune diseases including rheumatoid 

arthritis (RA) by using Subpathway-LDS method previously developed by our group; 

(2) construction of global immune subpathway interaction (GISI) network; (3) 

optimization of RA risk subpathways by random walk strategy based on GISI network. 

The advantage of this method is that subpathway-subpathway network of immune 

diseases are treated as background and used to optimize RA subpathways found by 

Subpathway-LDS method.  RA, as we all know, is one of autoimmune diseases 

belonging to immune diseases according to Medical Subject Headings (MeSH) 

category, sharing similar molecular mechanisms with other autoimmune diseases or 

other immune diseases. The evaluation of risk level of RA subpathways will be 

improved by taking full advantage of interaction information in network.  

 

Results 

Significant subpathways identifiedy by Subpathway-LDS 

3909 risk genes were achieved after mapping risk SNPs to genome and 236 

subpathways associated with RA were identified by Subpathway-LDS method. The 

number of risk subpathways reached 44 when the P-value threshold of cumulative 

hypergeometric test was 0.01, and increased to 85 while the threshold was 0.05. In 

addition, 704 risk subpathways of immune diseases were found by Subpathway-LDS. 

In order to evaluate the power of Subpathway-LDS, we observed the top ten 

subpathways of whole subpathway list in ascending order of P-values (Table1). For 

instance, the focal adhesion pathway (p = 6.94E-09 ) ranking first at the whole list 

contained 173 genes, including 64 genes annotated by risk SNPs. Research showed 

that focal adhesion pathway could be a target pathway for treating RA
20

. Genes in 

focal adhesion pathway functioned as the bridge between endothelial cells and 

extracellular matrix. Dysfunction of this pathway is closely related to the pathogenesis 

of RA
21

. ErbB, a member of epidermal growth factor receptor(EGFR), is a 

cell-membrane receptor coded by oncogene erbB-2. Immunoreactivity for ErbB2 was 
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found by Hallbeck et al. 
22

 in synovial membrane especially for RA patients. The 

increased expression of ErbB in synovial fluid of RA patients may lead to an 

abnormal growth pattern, indicating the ErbB signaling pathway was related to RA. In 

addition, we found that there are three ECM-receptor interaction subpathways 

including RA-path:04512_9, RA-path:04512_6 nd RA-path:04512_10 in the top ten 

risk subpathways of RA. Although there are little evidence suggesting the direct 

relationship between ECM-receptor interaction and RA, ECM-receptor interaction 

can be involved in immune regulation and further affect immune response. The 

extracellular matrix (ECM) is composed of both structural and functional 

macromolecules and plays a vital role in tissue and organ morphogenesis and in the 

maintenance of cell and tissue structure and function. Interactions of Cell–cell and 

cell–ECM are critical in various developmental processes, such as proliferation, 

differentiation, and migration of cells. ECM proteins influence cellular functions thus 

forming a complex feedback mechanism. Versican, an extracellular matrix (ECM) 

proteoglycan interacts with cells by binding to integrin receptors or non-integrin 

receptors and to other ECM components associated with the cell surface. By binding 

to hyaluronan, versican influences phenotypes of T lymphocyte and partly affects the 

ability of synthesizing and secreting cytokines that influence the immune response
23

.  

Versican is an important ECM molecule that is critical for inflammation and might be 

a potential therapeutic target for immune diseases. These results show that the risk 

subpathways identified by Subpathway-LDS are mainly associated with RA or other 

immune diseases and inflammatory diseases. 

Global immune subpathway interaction (GISI) network  

We constructed a global immune subpathway interaction (GISI) network, in which 

nodes were risk subpathways of immune diseases and edges represented interaction 

among subpathways and P-value of Fisher exact test was treated as the weight of 

edges in the network (Figure 1A). There are 701 nodes and 30228 edges in the 

network. The average clustering coefficient is 0.822 (distribution of clustering 

coefficient see Fig 1C), indicating that nodes in GISI network are highly clustered. 
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Although the diameter of GISI network is 11, the distribution of shortest path length 

(Figure 1D) shows that distance between most nodes is short, suggesting that most 

nodes in the network are connected directly. Then we found an interesting result that 

the node degree distribution did not follow power-law distribution and the majority of 

nodes in the network had high degree, which differed from most of the biology 

network (Figure 1A). The average degree of the network reaches 86 (distribution of 

degree see Figure 1B), which means a subpathway node in the network averagely 

connects 86 other nodes, indicating tight interaction. Nodes connected with a certain 

node were divided into two classes, one was the nodes belonging to the same disease 

with the node we considered, and others were those belonging to the other diseases.  

For each of the 701 nodes, we calculated the number of two kinds of nodes and the 

ratio of them, represented by Nps, Npd and Rpd (Rpd= Npd/(Npd+ Nps)) and found 

that there were 86.9% (609/701) whose Rpd>=0.80. We further analyzed the global 

crosstalk between a certain disease and all the other immune diseases in our network. 

The interaction edges in the network connecting two nodes fell into two types which 

referred to edges connecting two nodes pertaining to the same disease and different 

diseases respectively. For each of the 62 disease, we computed the number of two 

kinds of interactions and the percentage of the second one, denoted by Nds, Ndd and 

Rdd (Ndd/ (Ndd+ Nds)) respectively. Rdd ranges from 0.932 to 1, showing that for 

each of the disease in the network, the proportion of interaction with other different 

diseases is above 90%. 

  The above analysis demonstrates that the average degree of global immune 

interaction network is high which means that there exists closely tight interaction 

between subpathways. For subpathways that belong to a same disease, if they share 

some common genes, they are likely to be merged as a single subpathway, while for 

different diseases which belong to the same category such as immune diseases, the 

subpathways that have some common genes will be regarded as different 

subpathways and kept for further analysis. Therefore, the interaction degree between 

each disease’s subpathways and all the other diseases’ subpathways is higher than that 
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 8 

of the same disease. Besides, the higher interaction degree between subpathways of 

RA and the other subpathways of other immune diseases also indicates that RA share 

similar genetic mechanism with other immune diseases, thus our network could 

provide abundant information for the identification of risk subpathway of RA. 

Compared with the conventional method, the subpathway interaction network of 

immune diseases takes much more factors into account, thus guaranteeing better 

results when applied to identification of RA risk subpathways. 

A new large network including 878 nodes and 40067 interactive edges came about 

after adding relevant subpathways of RA to the immune network, in which blue nodes 

represent RA subpathways, gray nodes represent subpathways of other immune 

diseases, and red nodes denote the top ten RA subpathways with high random walk 

scores (Figure 2).The reason why they score high is that there is strong crosstalk 

effect between red nodes and their neighbors. 

RA risk subpathways optimized by random walk strategy  

For each of the 236 RA subpathways, the P-value and random walk score were 

calculated by Subpathway-LDS and random walk algorithm respectively. Table 2 lists 

the top ten RA subpathways with high random walk values. To evaluate the 

effectiveness of immune network in identifying RA risk subpathways, we observed 

the relationship between P-values and random walk scores (Figure 3). 85 significant 

RA subpathways (p<0.05) were found using Subpathway-LDS method, of which 

87.1% (74/85) had scores above average score of all the RA subpathways. The result 

indicates that majority of the risk subpathways found by Subpathway-LDS method 

score higher than those non-risk subpathways while using our optimization method. 

On account of the high reliability of Subpathway-LDS, the results optimized by 

random walk strategy are highly credible. Mitogen-activated protein kinase (MAPK) 

signaling pathway and prostate cancer pathway are the most typical examples. The p 

values of MAPK signaling pathway and prostate cancer pathway are 2.36E-06 and 

0.0038 respectively, indicating that both of them might be related with RA. In 

addition to the low p values, they got high random walk scores and ranked top ten in 
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the whole list, proving that our method performs well in prioritizing risk subpathways. 

MAPK signaling pathway, known as a target pathway for treating RA, was reported to 

be associated with pathology of RA
24

. Interleukin-1β (IL-1β), one of the inflammatory 

cytokines, plays an important role in the development of RA, meanwhile it is an 

inhibitor for MAPK signaling pathway
25

. Inhibition of MAPK signaling pathway 

prevent fibroblast-like synoviocyte (FLS) cells from growing. A research showed that 

about 1/3 genes of FLS were regulated by MAPK signaling pathway , indicating the 

possibilities for being treated as target pathway of RA drugs. Serum concentrations of 

Chromogranin A (CgA) that is a crucial neuroendocrine tumor marker can reflect the 

activity of neuroendocrine and evaluate the progress of prostate tumor. The treatment 

for RA increases the serum concentrations of CgA, which illustrates that RA is related 

with prostate cancer 
26

. A recent study showed that Dickkopt-1（DKK-1）, an inhibitor 

for Wnt pathway, which was critical for prostate cancer bone metastasis, may be 

involved in the remodeling process of RA
27

. SR31747A currently being evaluated in 

phase IIb clinical effectiveness trials for prostate cancer treatment is an agent with 

immunomodulatory and antiproliferative activities. The molecule can prevent 

lymphocytes of human and mouse from proliferating, modulate the expression of pro- 

inflammatory and anti-inflammatory cytokines, and was shown to protect animals 

against acute and chronic inflammatory conditions, such as RA
28

.   

It is worth noting that though some subpathways do not meet the threshold of 

P-value, they get high random walk score, such as Jak-STAT signaling pathway 

(P=0.179, see Figure 4), purine metabolism pathway (P=0.071), natural killer cell 

mediated cytotoxicity pathway (p=0.0564, see Figure 5) and chemokine signaling 

pathway (P=0.105). As a typical subpathway of RA, Jak-STAT signaling pathway has 

been widely used to study the disease and treated as a target pathway of treatment 

drugs. Several cytokines such as Tumor Necrosis Factor (TNF), and certain 

Interleukin are critical for the development of RA. A study reported that Interleukin-2 

worked by activating JAK-STAT signaling pathway and played crucial roles in 

leukomonocyte development, thus further affecting the immune response after organ 
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transplantation
29

. Some researchers proved the relationship between Jak-STAT 

signaling pathway and RA because the JAK inhibitors functions well in the clinical 

treatment of RA. Given the importance of Jak-STAT pathway in the pathogenesis of 

RA, many researches concentrated on the biological agents targeting JAKs and 

demonstrated that JAK inhibitors would serve as the most promising new agents for 

treatment of RA
30

. One of the most advanced JAK inhibitors in treatment of RA is 

CP-690550(tasocitinib and tofacitinib), Migita et al conducted an experiment to assess 

the effects of CP-690550 on JAK inhibition, and came to the conclusion that 

inhibition of these proinflammatory signaling pathways by CP690550 could be 

important in the treatment of RA
31

. Similarly, purine metabolism pathway was 

involved in immune system
32

 because of adenosine dehydrogenase. Taking 

methotrexate also resulted in reduced activity of purinase 
33

 thus proving purine 

metabolism pathway was closely related with RA. Natural killer (NK) cells are 

lymphocytes of the innate immune system involved in the early defenses against 

allogeneic cells, as well as autologous cells that undergo various forms of stress, 

including infection with bacteria, viruses, or parasites or malignant transformation
34

. 

NK cells work in two primary ways: one is detecting and vitiating transformed cells 

and cells infected by virus, the other is secreting diverse cytokines that are critical for 

the innate and adaptive immune responses
35

. The activation of NK cells is regulated 

by both activating receptors and inhibitory receptors. DAP10 and NKG2D form a 

complex thus activating the immunological competence of NK cells. Although they 

are not risk genes of RA, DAP10 and NKG2D simultaneously appear in the NK cell 

mediated cytotoxicity subpathway (Figure 5) indicating the possibilities of 

relationship between this subpathway and RA. These results show that JAK-STAT 

signaling pathway, purine metabolism pathway and NK cell mediated cytotoxicity 

pathway are highly associated with RA and the random walk strategy works well in 

optimizing potential risk subpathways of RA. 

 Interestingly, besides those pathways that have been proved to be related with RA 

or other immune diseases, we also found some subpathways which had never been 
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reported to be associated with RA, such as chemokine signaling pathway. Despite the 

large p value (p=0.1), chemokine signaling pathway ranked first at the score list. Few 

researches reported the direct relationship between RA and chemokine signaling 

pathway, but a study showed that chemokine signaling pathway was involved in 

activation of CCL2
36

. Some researchers analyzed gene expression in synovium using 

collagen-induced arthritis (CIA) rat model and found that gene expression level of 

CCL2 increased in CIA. The expression of CCL2 decreased after treating CIA rat 

with low intensity laser radiation. Besides, our research team also performed a 

genome-wide haplotype association analysis and gene prioritization for identifying 

risk locus of RA, which ranked all the candidate RA risk genes based on both 

structural similarity and functional similarity, then found that 4 CCL genes appeared 

at the top ten risk gene list of RA
37

. The result shows that this pathway may be 

associated with RA in animal model and genes of CCL family are closely related to 

RA, indicating that the pathway is possibly believed to be a potential novel risk 

subpathway for RA. 

To deeply interpret the reason why those RA subpathways such as MAPK signaling 

pathway (RA-path:04010_1), Jak-STAT signaling pathway (RA-path:04630_1) and 

chemokine signaling pathway (RA-path:04062_1) score higher than other 

subpathways, we constructed sub-networks with first neighbors of these three risk 

subpathways. These three sub-networks contained 240, 164, 293 nodes and 17119, 

5811, 19636 edges respectively. We further classified the subpathway nodes in the 

subnets connected with key nodes including RA-path:04010_1, RA-path:04630_1 and 

RA-path:04062_1 by diseases and calculated the number of subpathways for each 

disease. Then we found that the number of subpathways of some diseases is much 

larger than that of other diseases, such as arthritis, systemic lupus erythematosus, type 

I dibetes and Crohn's Disease, which mostly belonged to autoimmune diseases or 

inflammatory disease (Table 3-5). Owing to the same or similar molecular mechanism 

shared with other autoimmune diseases and inflammatory diseases, RA related risk 

subpathways could get much information from subpathways of those diseases 

Page 12 of 34Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 12 

mentioned above and then get much higher random walk scores than other 

subpathways. This analysis illustrates that subpathways of different immune diseases 

are closely connected by the GISI network which does provide useful information for 

identifying and optimizing risk subpathways.  

In conclusion, it is quite easy to find that to some extent the random walk stratedy 

based on GISI network is superior to those conventional methods based on 

hypergeometric test. Owing to the additional important information provided by 

subpathways of other immune diseases in the network, known and novel risk 

subpathways can be identified by our method. Moreover, some false positive results 

are filtered out by using our method, for example, Gastric Acid Secretion and some 

cancer pathways that are apparently unrelated with RA ranked after their original 

positions while using our novel method. 

Methods 

Firstly, we obtained risk SNPs of RA from WTCCC, determined its risk genes 

according to the positions of risk SNPs and obtained risk genes of other immune 

diseases from GAD. Secondly, we utilized subpathway-LDS algorithm
5
 previously 

developed by our group to identify risk subpathways of the immune diseases 

including RA. Furthermore, a GISI network was constructed using risk immune 

subpathways identified through Subpathway-LDS method. Finally, RA risk 

subpathways identified by Subpathway-LDS was optimized by random walk strategy, 

treating GISI network as background. 

Risk SNPs and genes of RA 

WTCCC is a consortium aiming to conduct genome wide association study and 

collects SNP data associated with several diseases, such as rheumatoid arthritis, 

diabetes mellitus and coronary artery disease. Association studies were performed for 

a certain disease and P values of all SNPs representing significant level were achieved. 

We obtained 10890 RA risk SNPs (P<0.05) from WTCCC and 3909 risk genes by 

mapping SNPs to genes according to physical locations on the chromosome. These 

Page 13 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t

app:ds:diabetes%20mellitus


 13 

risk genes were treated as input data of Subpathway-LDS method for identifying risk 

subpathways of RA. 

Risk genes of immune diseases 

The GAD is the NIH supported public repository of human genetic association studies 

of complex diseases, which contains the complete known gene-phenotype 

associations and includes data of non-mendelian common complex diseases. We used 

phenotype-gene data approved by experiment and reference in GAD for constructing 

network. The whole phenotype-gene relationships were downloaded, and then gene 

ID was unitized with Entrez ID. After filtering, only 2827 unique phenotype-gene 

pairs of 85 immune diseases were left. 

Identification of risk subpathways of immune diseases based on 

Subpathway-LDS method 

We used the Subpathway-LDS method, of which “LDS” means lenient distance 

similarity, to identify the risk subpathways of rheumatoid arthritis (RA) and other 

immune diseases. First, the KEGG pathways were converted to directed graphs; 

second, signatures nodes were located in the directed graphs according to risk genes; 

third, subpathways in which the number of nodes was not less than s were identified 

when the shortest path length between two signature nodes was shorter than n+1; 

fourth, the significance of subpathways was evaluated by hypergeometric tests. The 

subpathways we identified were used for constructing the GISI network and further 

optimizing the risk subpathways of RA. The detailed algorithms were specified as 

follows: 

(Ⅰ) Convert each pathway to a directed graph  

The KGML files from KEGG database were downloaded to obtain the relationships 

of genes in the corresponding pathways. For metabolic pathways and unmetabolic 

pathways, two methods were used during converting pathways to directed graphs. 

Specifically, metabolic pathways used enzymes as node sets of graphs, and generated 

edge sets from biochemical reactions. Two nodes in a directed graph were connected 

by an edge if two enzymes were involved in a continuous biochemical reaction, 
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indicating that they shared common metabolites. An arrow was pointed from one 

enzyme to the other if the product of first enzyme was the substrate of the second one 

and vice versa. Two directed edges showed up when the reactions were reversible. 

Two enzyme nodes will not be connected if the common metabolite they share is the 

substrate or production in first reaction and the same in second reaction. It is a 

remarkable fact that one enzyme node may appear at two or more locations in the 

pathway, involve different biochemical reactions and therefore perform different 

functions. Different from the most majority of other methods, which usually merged 

the enzymes with multiple locations in the pathway, our method kept them as what 

they were. In this way, the directed graphs we got are more similar to the original 

pathways, helping to improve the accuracy of risk subpathways identified by 

Subpathway-LDS method. Directed graphs of unmetabolic pathways used all proteins 

in the pathways as their nodes, and the edges were determined by the interaction 

relationships of genes in the pathways. For instance, a directed edge would be pointed 

from a transcription factor to the corresponding target gene if the transcription factor 

activates the target gene. The progress of converting pathways to directed graphs was 

performed by using the iSubpathwayMiner
38

, which was a tool designed for analyzing 

pathways. 

(Ⅱ) Locate signature nodes within pathways according to risk SNPs 

First, 3903 risk genes of RA were obtained the projection of risk SNPs on the basis of 

their physical positions on the chromosomes. Then risk genes were mapped to 

converted directed graphs and those annotated nodes in the graphs were named by 

signature nodes. For the other 85 immune diseases in GAD, signature nodes were 

obtained by directly mapping risk genes to the pathway graphs. 

(Ⅲ) Identify subpathway regions by using LDS strategy 

For each pathway containing signature nodes, we computed the shortest path length of 

any two signature nodes in the given directed pathway graph. The two signature nodes 

and other non-signature nodes would be added to a same node set, when the shortest 

path length between two signature nodes was shorter than n+1, in which the 
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parameter n indicated the maximum permitted number of non-signature nodes at the 

shortest path between two signature nodes. We then extracted the corresponding 

subgraphs in the directed pathway graph according to the node set we got and filtered 

subpathways of which the number of nodes was less than s. The parameter s was to 

make sure that there were enough nodes in the subgraphs because a subgragh with 

small amount of nodes could not form a biological subpathway. On the other hand, 

flexibility was introduced to this subpathway strategy by adjusting the parameter n. A 

smaller value of n means that only those nodes meeting stricter distance similarities 

will be added to the corresponding subpathway, and thus fewer subpathways will be 

identified and the number of non-signature nodes will reduce compared with larger 

values of n. Here we set the parameters based on the results of a previous research 

performed by our research team
5
. In that study, we computed the shortest distance 

between each disease node and its nearest disease node and found that the distance 

was <5 for 85% disease nodes. Therefore, we set n=5 and s=3. The lenient distance 

similarity in our method means both signature and non-signature nodes may be added 

to a subpathway so long as they meet the criteria of shortest path length. Nodes with 

higher topology centrality, such as degree and betweenness will be more likely to 

show up in the final risk subpathways.  

(Ⅳ)Evaluate the statistical significance of subpathways 

For each subpathway identified by Subpathway-LDS, hypergeometric test, one of the 

most commonly used statistical approaches, was used to calculate the statistical 

significance.The number of risk genes (r) annotated to the subpathway was counted 

and then the probability value that the number of risk genes randomly annotated to the 

subpathway is larger than r is calculated, in which a smaller P-value indicates that the 

risk subpathway is more closely associated with RA or other immune diseases 

compared to higher P-value. The equationⅠrepresents an example calculation of the 

statistical significance of a subpathway, in which m denotes the number of genes in 

human genome serving as the background gene set, n denotes the number of risk 

genes to which risk SNPs map, t and r are the number of genes and risk genes in each 
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pathway, respectively.  
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Construction of global immune subpathway interaction network 

In consideration of the similar molecular mechanisms shared by immune diseases and 

the crosstalk effect between different subpathways, we constructed a global immune 

subpathway interaction (GISI) network as background for prioritizing risk 

subpathways of RA. Firstly we treated risk genes of immune diseases obtained from 

GAD as the input data of Subpathway-LDS and got risk subpthways of 85 immune 

diseases. Then we built the GISI network using these risk subpathways as nodes in the 

network. In the GISI network, nodes are those risk subpathways identified by 

subpathway-LDS approach and edges connecting two nodes represent crosstalk 

between two risk subpathways. Two subpathways will be connected with an edge if 

they share common genes. For each subpathway pair which had common genes, 

Fisher test was performed and the P-value was considered as the weight of edge, in 

which a smaller P-value meant more tight crosstalk. For two different subpathways, 

we respectively counted the number of common genes (represented by a), the number 

of genes that only appeared in subpathway 1(represented by b), the number of genes 

that only appeared in subpathway 2 (represented by c) and the difference between the 

number of backgroud genes and the total number genes in both subpathway 1 and 

subpathway 2 (represented by d). The above 4 numbers were used to calculate the 

p-value according to the formula of Fisher exact test (equationⅡ), where N is the sum 

of a, b, c and d.  

!!!!!

)!()!()!()!(a

dcbaN

dbcadcb
P


                    (Ⅱ) 
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It is worth noting that the threshold setting step was omitted and all the 

subpathways identified by Subpathway-LDS were used as nodes of the network 

owing to the high reliability of the risk genes of immune diseases.  

Prioritization of RA risk subpathways based on random walk strategy 

RA risk subpathways identified by Suppathway-LDS were optimized by random walk 

strategy 
39

 in which the GISI network functions as the background. The random walk 

strategy based on GISI network takes full advantage of information iteratively 

transferred in the network. For each of the RA subpathways, we calculated a stable 

state score to reflect the importance of the risk subpathway. The basic idea of random 

walk strategy is to give corresponding scores for the nodes of network based on their 

topological importance. Nodes located at more important positions of topological 

structure are prone to get higher random walk scores when reaching the steady state 

by multiple iterations. First, equal initial values are assigned for all the nodes in the 

network, for instance the initial value of each node will be 1/n when the total number 

of nodes in the network is n, and then iteration steps are repeated according to the 

following equation Ⅲ. 

 

0t1 )W-(1 PPPt γγ                     (Ⅲ) 

In this equation, P
0
 denotes the initial value vector of all nodes in the network, P

t
 and 

P
t+1

 denotes value vectors at time t and t+1 respectively, W is an adjacency matrix 

with n×n elements determined by the number of common genes shared by two 

subpathways, and γis a constant and was set to 0.7 in our study. The iteration repeats 

until the D-value between P
t
 and P

t+1
 is lower than a certain threshold (1e-10), 

suggesting that network is reaching the stable state. Since the score value of a certain 

node at time t+1 equals to the sum of scores transferred from other nodes at time t and 

its own initial value at time t
0
, a RA subpathway node will score higher suggesting 

higher risk degree if it shares more genes and nodes connected with this subpathway 
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simultaneously share more genes with their neighbors. Since the score value of a 

subpathway at time t+1 is calculated through adding the score values transferred from 

other subpathways at time t and the its own initial value at time t
0
, a RA subpathway 

will get higher score if it shares more genes with other subpathways and nodes 

connected with this subpathway simultaneously share more genes with their neighbors, 

suggesting that this RA subpathway is in an important position in the global immune 

network and tend to be a risk subpathway of RA. Sorted by score values in ascending 

order, subpathways at the top of list are the optimized risk RA subpathways. 

Discussion 

The initiation and development of RA which is a complex disease are closely related 

to mutual dysfunction of multiple pathways. Multiple pathways constitute a complex 

biological network by pathway-pathway crosstalk. Therefore the independent analysis 

of one single gene or molecule fails to interpret the mechanism of these diseases. Here 

we exploited an integrated approach to prioritize RA risk subpahtways combining 

both construction of subpathway-subpathway interaction network and random walk 

strategy.  

   Compared with conventional pathway identification method based on enrichment 

analysis, Subpathway-LDS method searches for subpathways instead of entire 

pathways so that the accuracy of result can be largely increased. On the other hand, 

flexibility was introduced to this subpathway strategy by adjusting the parameter n 

(the maximum permitted number of non-signature nodes at the shortest path between 

two signature nodes) and s (the minimum permitted number of nodes in a 

subpathway). Here we set n=5 and s=3 aiming to achieve both comprehensive and 

accurate results.  

   Risk subpathways of immune diseases were identified by Subpathway-LDS and 

then a GISI network of immune diseases was constructed serving as a background to 

optimize the RA risk subpathways identified by Subpathway-LDS. In this study, we 

fully considered the crosstalk effect between a subpathway and another because RA 
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shared similar molecular mechanisms with other immune diseases. We chose risk 

genes of immune diseases in GAD rather than risk genes obtained from WTCCC data 

as the input data of Subpathway-LDS method for identifying risk subpathways 

because GAD contains comprehensive risk genes of much more immune diseases and 

results in GAD are validated by low-throughput experiments. By far GAD is one of 

the most reliable disease association database which not only includes abundant 

disease-gene information and but also provides corresponding literature support. In 

this study, we used the WTCCC data (genome wide association study) to identify the 

risk RA subpathways. Therefore, it is more appropriate to construct background 

immune subpathway interaction network with GAD then other databases. KEGG was 

chosen as the source of pathway data because KEGG is the most commonly used and 

pathway database which provides free available data. The pathway data of KEGG are 

well organized and directed, which is appropriate for identifying risk subpathways 

with the subpathway-LDS approach. 

The topological property analysis demonstrates that the average degree of global 

immune interaction network is high which means that majority of subpathways in the 

network closely interact with others suggesting that subpathways of other immune 

disease do provide useful information for identification and optimization of RA risk 

subpathways. Random walk strategy based on subpathway network was utilized to 

prioritize risk subpathways of RA. A stable state score was calculated to reflect the 

importance of the nodes in the network by iteratively transferring information. For the 

GISI network, the nodes with topological importance are prone to be the risk 

subpathways of immune diseases. The random walk algorithm is often used to 

identify significant nodes including genes (proteins) and pathways which are 

composed of genes (proteins) of the network. In recent years, the random walk 

strategy has been widely used in the prediction of risk genes of diseases. For instance, 

Ko¨hler et al.
40

 applied the random walk approach for prioritization of candidate 

genes of diseases and achieved better results than previous methods. Besides, our 

research team has applied the random walk algorithm to predict of survival time of 
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cancer patients
41

, to prioritize candidate disease metabolites
42

, to identify risk 

pathways
43

or the cross-talk among different pathways
44

. 

   Each RA subpathway obtained by Subpathway-LDS gets a score for evaluating 

risk level after being optimized by random walk strategy based on subpathway 

network of immune diseases. The risk RA subpathways optimized by random walk 

strategy fall into 4 types: (1) majority of the RA risk subpathways found by 

Subpathway-LDS method including MAPK signaling pathway and prostate cancer 

pathway score higher than those non-risk subpathways while using our optimization 

method; (2) although some subpathways do not meet the threshold of P-value, they 

get high rank while exploiting random walk strategy, such as Jak-STAT signaling 

pathway (P=0.179), purine metabolism pathway (P=0.071) and chemokine signaling 

pathway (P=0.105); (3) chemokine signaling pathway tends to be a potential novel 

risk subpathway of RA; (4) some false positive results are filtered out by using our 

method such as Gastric Acid Secretion and some cancer pathways.  

   For the top ten RA risk sub-pathways optimized by random walk strategy based 

on GISI network, we compared the random walk scores and the corresponding P 

values of hypergeometric test (Table 2). We found that five of the ten RA 

subpathways got P values larger than 0.05 meaning that these 5 subpathways 

(Jak-STAT signaling pathway, purine metabolism pathway, natural killer cell mediated 

cytotoxicity pathway, chemokine signaling pathway and retinol metabolism pathway) 

could not be identified by hypergeometric test. However, some of these subpathways 

that do not meet threshold of P value have been reported to be associated with RA or 

immune response. For instance, Jak-STAT signaling pathway, a typical subpathway of 

RA, has been used for the treatment of RA. The purine metabolism pathway, natural 

killer cell mediated cytotoxicity pathway have also been proved to be associated with 

immune reponses indicating that they are possible related with RA. In addition, some 

subpathways that has never been reported to be associated with RA were also 

identified by the random walk strategy. For instance, the chemokine signaling 

pathway ranked first at the score list, but its p value was larger than 0.05. Few 
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researches reported the direct relationship between RA and chemokine signaling 

pathway, but through analyzing the previous results associated with chemokine 

signaling pathway, we infered it might be a potential risk subpathway of RA. In 

conclusion, through comparison with the traditional hypergeometric test, the random 

walk strategy performs well in the prioritization of RA risk subpathways. 

Compared with conventional methods based on hypergeometric test, we took into 

account the crosstalk between subpathways and constructed a global immune network 

with risk subpathways identified through Subpathway-LDS method. Subpathways in 

the network interact with each other and provide useful information for other 

subpathways, so that the risk subpathways prioritized by our method might be more 

subtle and reliable. Due to the limited amount of disease-related gene data, the GISI 

network is still not perfect in identifying risk subpathways of immune diseases. 

However, with the development of GWAS, our method will provide novel insight into 

exploring molecular mechanisms of immune diseases and might be a promising 

approach for studying other diseases. 
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Figure Legends 

Figure 1. The global immune disease subpathway crosstalk network and fundamental 

topological properties. (A) The subpathway crosstalk network of 85 immune diseases. The circle 

nodes correspond to subpathways of immune diseases. Two subpathways are connected by an 

edge if they share common genes. These subpathways are obtained by Subpathway-LDS method, 

using gene-phenotype associations of GAD. The topological properties including number of nodes 

and edges, average clustering coefficient, network diameter and average degree are shown right to 

the network. (B) Degree distribution of nodes. The X-axis and Y-axis refer to degree of nodes and 

numbers of nodes with certain degree respectively. (C)Clustering coefficient distribution of nodes. 

The Y-axis and X-axis refer to clustering coefficient and number of nodes with certain clustering 

coefficient respectively. (D) Distribution of shortest path length of the network. The X-axis 

denotes path length and the Y-axis denotes frequency of nodes in the network. 
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Figure 2. The global immune subpathway interaction network after adding subpathways of 

rheumatoid arthritis (GISI-RA network). The left side of the figure is the new immune network 

after adding subpathways of RA, in which the red nodes refer to the top ten risk subpathways of 

RA, the blue nodes refer to other subpathways of RA and the left gray nodes are subpathways of 

other immune diseases in the network. The right side is an amplification of the local region of 

network. Some important subpathways are marked with arrows and red texts.  

Figure 3. Correlation scatter plot between random walk values and p-values of 

hypergeometric tests of the subpathways of rheumatoid arthritis identified by 

Subpathway-LDS method. The nodes denote subpathways of rheumatoid arthritis. The X-axis 

refer to the p-values of hypergeometric tests of the RA subpathways identified by 

Subpathway-LDS method through negative logarithmic transformation and Y-axis refer to 1000 

times of rand walk scores. 

Figure 4. Jak-STAT signaling pathway where the risk genes of rheumatoid arthritis were 

annotated. Nodes near asterisk symbol belong to the key subpathway region (RA-path:04630_1) 

identified by Subpathway-LDS. Enzymes (rectangular nodes) annotated by risk genes are showed 

with red node labels and borders. 

Figure 5. Natural killer cell mediated cytotoxicity pathway where the risk genes of 

rheumatoid arthritis were annotated. Nodes near asterisk symbol belong to the key subpathway 

region (RA-path:04650_1) identified by Subpathway-LDS. Enzymes (rectangular nodes) mapped 

by risk genes are shown with red node labels and borders. 

Supplementary Figure S1. MAPK signaling pathway where the risk genes of rheumatoid 

arthritis were annotated. Nodes near asterisk symbol belong to the key subpathway region 

(RA-path:04010_1) identified by iSubpathwayMiner. Enzymes (rectangular nodes) mapped by 

risk genes are shown with red node labels and borders. 

Supplementary Figure S2. Prostate cancer pathway where the risk genes of rheumatoid arthritis 

were annotated. Nodes near asterisk symbol belong to the key subpathway region 

(RA-path:05215_1) identified by iSubpathwayMiner. Enzymes (rectangular nodes) mapped by 

risk genes are shown with red node labels and borders. 

Supplementary Figure S3. Chemokine signaling pathway where the risk genes of rheumatoid 
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arthritis were annotated. Nodes near asterisk symbol belong to the key subpathway region 

(RA-path:04062_1) identified by iSubpathwayMiner. Enzymes (rectangular nodes) mapped by 

risk genes are shown with red node labels and borders. 
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Tables 

Table 1.The top ten rheumatoid arthritis risk sub-pathways identified by Subpathway-LDS. 

Subpathway Id Pathway Name 

Gene number 

annotated 

Gene Number in 

pathways 

P value 

RA-path:04510_1 Focal adhesion 64 173 6.94E-09 

RA-path:04010_1 

MAPK signaling 

pathway 

60 183 2.36E-06 

RA-path:05414_2 Dilated cardiomyopathy 19 35 7.20E-06 

RA-path:04540_1 Gap junction 27 62 9.50E-06 

RA-path:04270_6 

Vascular smooth muscle 

contraction 

16 27 1.24E-05 

RA-path:04512_9 

ECM-receptor 

interaction 

19 37 1.94E-05 

RA-path:04012_1 ErbB signaling pathway 26 61 2.25E-05 

RA-path:04020_1 

Calcium signaling 

pathway 

50 154 2.34E-05 

RA-path:04512_6 

ECM-receptor 

interaction 

18 35 3.39E-05 

RA-path:04512_10 

ECM-receptor 

interaction 

16 31 0.00010344 

  

 

 

 

 

 

 

 

Page 27 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 27 

Table 2. The top ten rheumatoid arthritis risk sub-pathways optimized by random walk strategy 

based on immune disease sub-pathway crosstalk network. 

Subpathway ID Pathway name 
Gene 

number 
P value Score 

RA-path:04062_

1 
Chemokine signaling pathway 37 0.1053 

0.001

9 

RA-path:04630_

1 
Jak-STAT signaling pathway 19 0.1791 

0.001

7 

RA-path:05200_

3 
Pathways in cancer 51 0.0003 

0.001

7 

RA-path:00830_

1 
Retinol metabolism 6 0.8188 

0.001

6 

RA-path:04650_

1 

Natural killer cell mediated 

cytotoxicity 
18 0.0564 

0.001

6 

RA-path:04722_

1 
Neurotrophin signaling pathway 28 0.0006 

0.001

5 

RA-path:00230_

1 
Purine metabolism 31 0.0707 

0.001

5 

RA-path:04010_

1 
MAPK signaling pathway 60 

2.36E-0

6 

0.001

5 

RA-path:05215_

1 
Prostate cancer 21 0.0038 

0.001

4 

RA-path:04020_

1 
Calcium signaling pathway 50 

2.34E-0

5 

0.001

4 

 

Table 3. The top ten first neighbors of MAPK signaling pathway ranked in ascending order of 

Fisher p values used for evaluating the significan of overlap genes shared by two different 

subpathways. 

No.  Subpathway ID P values of Fisher tests 

1 lupus-erythematosus-path:04010_3 1.13E-44 

2 arthritis-path:04010_1 4.84E-44 

3 Crohn's-disease-path:04010_1 2.08E-43 

4 periodontitis-path:05218_1 1.31E-34 

5 arthritis-path:05218_2 9.12E-34 

6 chronic-obstructive-pulmonary-disease-path:04010_2 2.50E-29 

7 rheumatic-disease-path:04010_1 6.66E-28 

8 sclerosis-path:04010_1 1.04E-27 

9 Boeck's-sarcoid-path:04010_1 2.85E-26 

10 diabetes-type-I-path:04010_2 1.20E-25 

 

Page 28 of 34Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 28 

Table 4. The top ten first neighbors of Jak-STAT signaling pathway ranked in ascending order of 

Fisher p values used for evaluating the significance of overlap genes shared by two different 

subpathways. 

No.  Subpathway ID P values of Fisher tests 

1 diabetes-type-I-path:04630_1 1.39E-127 

2 Graves'-disease-path:04630_1 1.39E-127 

3 allergic-diseases-path:04630_1 2.61E-120 

4 asthma-path:04630_1 2.61E-120 

5 atopic-dermatitis-path:04630_1 2.61E-120 

6 atopy-path:04630_1 2.61E-120 

7 Crohn's-disease-path:04630_1 2.61E-120 

8 immune-globulin-path:04630_1 2.61E-120 

9 arthritis-path:04630_1 1.53E-118 

10 lupus-erythematosus-path:04630_1 1.53E-118 

 

Table 5. The top ten first neighbors of chemokine signaling pathway ranked in ascending order of 

Fisher p values used for evaluating the significance of overlap genes shared by two different 

subpathways. 

No.  Subpathway ID P values of Fisher 

tests 

1 Crohn's-disease-path:04062_1 4.08E-185 

2 diabetes-type-I-path:04062_1 4.08E-185 

3 asthma-path:04062_1 4.36E-157 

4 arthritis-path:04062_1 2.74E-152 

5 rheumatic-disease-path:04062_1 2.74E-152 

6 organ-transplant-path:04062_1 5.64E-143 

7 chronic-obstructive-pulmonary-disease-path:04062_1 2.74E-139 

8 pancreatitis-path:04062_1 2.74E-139 

9 periodontitis-path:04062_1 8.49E-134 

10 atopic-dermatitis-path:04062_1 3.66E-121 
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Figure 1. The global immune disease subpathway crosstalk network and fundamental topological properties. 
(A) The subpathway crosstalk network of 85 immune diseases. The circle nodes correspond to subpathways 

of immune diseases. Two subpathways are connected by an edge if they share common genes. These 

subpathways are obtained by Subpathway-LDS method, using gene-phenotype associations of GAD. The 
topological properties including number of nodes and edges, average clustering coefficient, network 

diameter and average degree are shown right to the network. (B) Degree distribution of nodes. The X-axis 
and Y-axis refer to degree of nodes and numbers of nodes with certain degree respectively. (C)Clustering 
coefficient distribution of nodes. The Y-axis and X-axis refer to clustering coefficient and number of nodes 
with certain clustering coefficient respectively. (D) Distribution of shortest path length of the network. The 

X-axis denotes path length and the Y-axis denotes frequency of nodes in the network.  
236x158mm (300 x 300 DPI)  
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Figure 2. The new immune network after adding subpathways of rheumatoid arthritis. The left side of the 
figure is the new immune network after adding subpathways of RA, in which the red nodes refer to the top 
ten risk subpathways of RA, the blue nodes refer to other subpathways of RA and the left gray nodes are 

subpathways of other immune diseases in the network. The right side is an amplification of the local region 
of network. Some important subpathways are marked with arrows and red texts.  

255x171mm (300 x 300 DPI)  
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Figure 3. Correlation scatter plot between random walk values and p-values of Fisher exact test. The nodes 
denote subpathways of rheumatoid arthritis. The X-axis refer to the p-value through negative logarithmic 

transformation and Y-axis refer to 1000 times of rand walk scores.  

181x167mm (300 x 300 DPI)  
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Figure 4. Jak-STAT signaling pathway where the risk genes of rheumatoid arthritis were annotated. Nodes 
near asterisk symbol belong to the key subpathway region (RA-path:04630_1) identified by Subpathway-
LDS. Enzymes (rectangular nodes) annotated by risk genes are showed with red node labels and borders.  

215x157mm (300 x 300 DPI)  
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Figure 5. Natural killer cell mediated cytotoxicity pathway where the risk genes of rheumatoid arthritis were 
annotated. Nodes near asterisk symbol belong to the key subpathway region (RA-path:04650_1) identified 
by Subpathway-LDS. Enzymes (rectangular nodes) mapped by risk genes are shown with red node labels 

and borders.  
289x205mm (300 x 300 DPI)  
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