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Abstract 

Alterations in the expression of miRNAs have been extensively characterized in several cancers, 

including human colorectal cancer (CRC). Recent publications provide evidence for tissue-specific 

miRNA target recognition. Several computational methods have been developed to predict miRNA 

targets; however, all of these methods assume a general pattern underlying these interactions and 

therefore tolerate reduced prediction accuracy and a significant number of false predictions. The 

motivation underlying the presented work was to unravel the relationship between miRNAs and their 

target mRNAs in CRC. 

We developed a novel computational algorithm for miRNA-target prediction in CRC using a Naïve 

Bayes classifier. The algorithm, which is referred to as CRCmiRTar, was trained with data from 

validated miRNA target interactions in CRC and other cancer entities. Furthermore, we identified a 

set of position-based, sequence, structural, and thermodynamic features that identify CRC-specific 

miRNA target interactions. Evaluation of the algorithm showed a significant improvement of 

performance with respect to AUC, and sensitivity, compared to other widely used algorithms based on 

machine learning. Based on miRNA and gene expression profiles in CRC tissues with similar clinical 

and pathological features, our classifier predicted 204 functional interactions, which involve 11 

miRNAs and 41 mRNAs in this cancer entity. 

While the approach is here validated for CRC, the implementation of disease-specific miRNA target 

prediction algorithms can be easily adopted for other applications too. The identification of disease-

specific miRNA target interactions may also facilitate the identification of potential drug targets. 

Introduction 

In recent years, many publications have highlighted the functional role of microRNAs (miRNA) in 

CRC.
1
 MiRNAs are small non-coding RNA molecules of about ~22 nucleotides in length which have 

critical functions across various biological processes.2 They act by binding to complementary sites in 

the 3′ untranslated region (UTR) of their target genes to either induce degradation of the target 

transcript, or to repress its translation into a protein.
3
 MiRNAomics studies have detected 

dysregulation of miRNAs in the broad spectrum of haematological malignancies and solid tumours, 
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including CRC.4 Experimental detection of miRNA targets is a costly and time-consuming process 

and likewise the experimental investigation of miRNA-induced consequences for signalling pathways 

and cellular function.
5
 An efficient detection of novel miRNA target interactions benefits from 

reliable computational predictions. However, there is still room for improvement with respect to 

specificity in the established generic algorithms. The identification of tissue and disease-specific 

miRNA target genes would ultimately contribute to the understanding of their biological functions. 

Hence, the development of computational methods for miRNA target prediction is fundamental for 

understanding the role of miRNAs in gene regulation. To date various packages available that can 

predict miRNA targets in mammals. Most of these algorithms are based on similar principles for the 

identification of putative target sites in mRNA 3′ UTR sequences, which include: (i) sequence 

complementarity between miRNA and target site (with focus on the seed region), (ii) target site 

conservation in related species, (iii) thermodynamic stability of a miRNA-mRNA duplex, and (iv) site 

accessibility.6 Computational approaches for miRNA target prediction can be classified in two main 

categories: ab-initio methods and machine learning (ML)-based approaches. While ab initio target 

prediction is based on empirical evidence with respect to binding patterns, ML-based approaches 

benefit from statistically derived patterns in sequence, structure and loci. Therefore, ML-based 

approaches where established at the time when a statistically significant number of miRNA-target 

pairs were known. These algorithms are able to reduce the high number of false positive predictions 

of ab-initio methods.7 Though a couple of studies have applied ML methods, the rate of false positive 

predictions is still an issue of concern, which may be due to the tissue and disease specificity in 

miRNA regulation. 

Since no gold standard training dataset exists, the developers of ML-based algorithms have tested 

their methods on different data. Most of these algorithms use data from miRTarbase
8
 and TarBase

9
, 

two databases of experimentally confirmed miRNA target interactions, for training. However, details 

on the miRNA binding sites in their respective targets are often missing in these databases. Therefore, 

different miRNA target prediction algorithms generate differing results, and often researchers tend to 

consider only those predictions that are common among multiple algorithms in order to have an 
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additional layer of confidence on predicted targets.10 Thereby they may however loose valid 

interactions that are not part of the intersection set.  

Recently, Clark et al. demonstrated miRNA targetome diversity across tissue types by analysing 

Argonaute CLIP-Seq data.11 They analyzed 34 Argonaute HITS-CLIP datasets from several human 

and mouse cell types and discovered that many miRNA-target heteroduplexes are non-canonical, i.e. 

their seed region comprises G:U wobble pairs and bulges, while most of the current algorithms 

consider perfect 6mer, 7mer and 8mer seed matches only.11 Hence, the reliable prediction of a 

functional miRNA target in a tissue-specific manner is still a challenging task. Based on the highly 

tissue-specific expression signatures of miRNAs and target transcripts, tissue-specific miRNA 

function has to be considered to improve the analysis of miRNA regulation under specific 

pathological conditions. In a recent publication, Bandyopadhyay et al. reported that all predicted 

miRNA targets using current computational approach are not functional in all tissues or diseases.
12

 In 

fact some binding sites of previously validated targets were not accessible for miRNA binding in 

another tissue because they are occluded by the mRNA secondary structure or masked by RNA 

binding proteins.13, 14 

Fortunately, with a sufficient amount of data on miRNAs and their targets available, it is now possible 

to develop computational methods that can effectively predict disease-specific miRNA targets. 

In this work, we present a reliable model for the prediction of miRNA-target interactions specific to 

CRC. For this purpose we trained a ML-based classifier with data from experimentally validated 

miRNA target sites in CRC cells. ML-based algorithms are data-driven, i.e. the dataset used for 

training has a high impact on the classification performance. Therefore, we applied two strict filters in 

the data selection step to ensure the reliability of our dataset: (i) the data should be experimentally 

validated for CRC; and (ii) the exact binding site should have been identified by luciferase reporter or 

mutagenesis assays. The data consists of sequence, structure, thermodynamic and position-based 

features extracted from the experimental results. These features represent a collection of features used 

in other generic target prediction algorithms including TargetSpy
15

 and MultimiTar
16

 with an 

emphasis on sequence-related features. 
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In addition, we applied two feature selection methods to identify a subset of most relevant features. 

We compared the classification performance of several ML methods (Naïve Bayes (NB), Random 

forest (RF), Artificial Neural Network (ANN), Support Vector Machine (SVM)) based on which we 

decided to establish a NB classifier to unravel the interactions between miRNAs and target mRNAs in 

CRC. This classifier we refer to as CRCmiRTar. Figure 1 shows the workflow implmented here. 

Evaluation of the classifier showed a significant improvement of performance with respect to AUC, 

and sensitivity, compared to other widely used machine learning-based algorithms. Based on miRNA 

and gene expression profiles in patient-derived CRC tissue samples with similar clinical and 

pathological features our classifier predicted 204 functional interactions which involve 11 miRNAs 

and 41 mRNAs in this cancer entity. These results can be accessed in Supplementary Table S1. 

Results and disscusion 

Structural features determine CRC-specificity 

A key step in the identification of miRNA targets is the selection of features that have strong 

predictive power. We applied CFS and ReliefF to identify optimal features for our machine learning 

classifier. The best performing subset that was identified by CFS on the training dataset contains the 

14 features listed in Table 1. The presence of nine structural features among the selected features 

suggests that the structural layout of a putative miRNA-mRNA hybrid is a predominant determinant 

of whether this hybrid is functional in CRC or not. These nine structural features are: (i-iv) frequency 

of base pairs between miRNA and mRNA (A:U, U:A, G:C, and C:G); (v) the number of matches in 

the seed site; (vi) number of matches in the miRNA tail (last eight nucleotides of the miRNA); (vii) 

consecutive base pairings in the miRNA 3′ end (with two non-pairing positions allowed); (viii) 

binding asymmetry (ratio between the number of paired bases in the 3′ vs the 5′ region of the 

miRNA); and (ix) number of bulges of size 6 nt or more in the target site. 

The features (vi-vii) indicate the importance of the 3′ part of the miRNA for the stability of the 

miRNA-mRNA duplex. The frequencies of the (di-) nucleotides UU and CG in the seed and 

frequency of G and C in the target site are some of the sequence-based features that appear in the 

optimal feature set identified by CFS. The two remaining features are position-based features that 
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focus on the matching type in the positions 3, and 7 of the seed region. Compared to the 14 CFS-

selected features, the top 14 ranking features from ReliefF have nine features in common with those 

selected by CFS (see Supplementary Table S2, the common features are in red), the others are: the GC 

dinucleotide frequency in the seed, matching type in positions 2, 4 and 5. Interestingly, the minimum 

free energy (MFE) of the duplex was not identified as important in the feature selection process 

although the energy was previously shown to have an impact target repression efficacy.
17

 The reason 

for this observation is that both the positive and the negative training data contain cases of functional 

miRNA-target interaction, however, some are specific to CRC and others are associated with different 

cancers. Therefore, we conclude that instead of the energy, CRC specificity in miRNA-target 

regulation is mainly based on structural features. 

Naïve Bayes classifier performs best on independent test set 

Before we decided to use a particular approach we compared six machine learning methods: NB, RF, 

ANN, and SVM with linear kernel function and non-linear kernel function. All methods have gone 

through 10-fold cross-validation using (i) the selected features from CFS, and (ii) the 16 top ranked 

features from ReliefF. Grid-based search tools provided by the LibSVM library were used to select 

the optimal values for parameters C and g for SVM from the training datasets. 

Figure 2 shows the performance of the six methods after 10 fold cross validation by computing two 

different performance metrics: (i) area under the receiver operating characteristic curve (AUC) which 

is used to illustrate the specificity-sensitivity trade-off, and (ii) sensitivity. As it can be seen in Figure 

2a, regarding AUC, for both features sets Naïve Bayes shows the best result (���	 = 	0.957), while 

in Figure 2b, in terms of sensitivity, the Naïve Bayes classifier trained with the CFS selected features 

achieves the highest value (��� = 0.93). Therefore, we decided to use the Naïve Bayes algorithm 

trained with the CFS selected features as classifier for the prediction of CRC-specific miRNA-target 

interactions. We name this novel classifier as CRCmiRTar. 

Structural features are important in determining CRC-specificity 
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We analysed the contribution of each type of feature, i.e. position-based, sequence and structural 

features, among the selected features from CFS to the performance of CRCmiRTar. The performance 

of the classifier was evaluated based on the 10-fold cross validation using ROC curves (see Figure 3). 

The plot illustrates the specificity-sensitivity trade-off, i.e. the true positive rate against the false 

positive rate. Using all CFS selected features (rectangular) resulted in an AUC of 95.7%. For 

structural features we observed a slight AUC reduction to 93.6% without any significant effect in 

sensitivity of the classifier (circle). In case of using only sequence features the AUC drops to 67.5% 

(plus). Finally, when considering only position-based features the AUC further decreases to 68.4% 

(triangle). In addition, we evaluated the performance by combining any two types of features, i.e. 

structural and sequence features, structural and position-based features as well as sequence and 

position-based features. We found that the combination of structural and position-based features 

results in the highest value for the area under the ROC curve (AUC= 0.954). These results indicate 

that structural features are important in determining CRC-specificity, however the combination of all, 

the structural, sequence, and position-based features is necessary to achieve an optimal performance 

in the classification of CRC-specific miRNA-target interactions. Table 2 shows the sensitivity and 

specificity of the model for each type of feature and combination of them. As can be seen the 

structural features ensure a high sensitivity of the model, while the sequence features contribute 

towards the high specificity of CRCmiRTar. 

Additionally, to test if the same features would be selected in another cancer; we tested our 

methodology for breast cancer (66 positive samples) and lung cancer (70 positive samples) specific 

miRNA target interactions. The CFS-based feature selection resulted in  largely different sets of 

features (in number as well as in type) that seem to be relevant for these cancer types. This 

emphasizes the necessity to re-perform the whole analysis for each disease individually in order to 

obtain a customized disease-specific set of features that are able to reliably predict miRNA-target 

interactions functional in this disease. We included the comparison in Supplementary Table S3. 
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CRCmiRTar more sensitive than other related tools 

We compared the performance of CRCmiRTar, with MultiMiTar16 and RFMirTarget18 which are both 

recent and well performing algorithms and with miTarget which was the first miRNA target 

prediction method based on a ML approach. MultiMiTar is a SVM based classifier integrated with a 

novel feature selection technique, AMOSA-SVM. In their publication the authors were showing that 

MultiMiTar outperforms many other well-known target prediction methods. RFMirTarget is a recent 

algorithm based on a random forest approach that could outperform MultiMiTar and several other 

well-known classifiers. 

To make a comparison, we re-implemented these algorithms and trained them with the same data as 

was used to train our model. Results of the comparison regarding sensitivity, specificity, and 

Matthew’s correlation coefficient (MCC), which is the quality measure of a binary classification, are 

shown in Table 3. In terms of MCC, CRCmiRTar (��� = 0.726) shows a ~14% and ~6% increase 

compared to miTarget and RFMirTarget, respectively. CRCmiRTar provides the highest sensitivity 

among the four predictors (0.93), which is a ~16% increase to the second best performing classifier, 

MultiMiTar (0.77). The specificity of our model is a little lower than that of the others (0.86). Even 

though the specificity is marginally better for the other tools, their sensitivity is remarkably reduced 

and as a result there is disequilibrium in their performance. Instead, CRCmiRTar provides the most 

balanced result in terms of sensitivity and specificity as compared to the others which is underlined by 

its high AUC value (0.957) compared to MultiMiTar (0.943), RFMirTarget (0.92) and miTarget 

(0.884). In addition, the ROC curves plotted in Fig. 4 confirm the effectiveness of CRCmiRTar in 

discriminating between functional and non-functional miRNA–mRNA interactions in CRC. 

Interestingly, the common features between our model and MultiMiTar as the second best performing 

model show again that sequence and structural features are very important in CRC. About half of the 

features in miTarget and RFMirTarget are related to thermodynamic and position-based features. As 

we have already shown before, these types of features are less suitable for a reliable prediction of 

CRC-specific miRNA targets. This may explain why miTarget and RFMirTarget perform worse in 

terms of sensitivity and the AUC. 
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CRCmiRTar outperformes established algorithms on independent test data 

We investigated the power of our model in predicting experimentally validated CRC-specific 

miRNA/mRNA interactions in comparison with previous algorithms. To this end, we collected 47 wet 

lab validated miRNA/target pairs for CRC from recently published papers and OncomiRDB which are 

not included in our training dataset and used the data to evaluate our method along with six other 

commonly employed miRNA target-prediction methods, including MirTarget2
19

, TargetMiner
20

, 

PicTar21, TargetSpy15, SVMicro22, and TargetScan23. As shown in Table 4, TargetScan and SVMicro 

correctly identified 32 and 27 miRNA/target pairs respectively and thus performed better than any of 

the other previous methods. However, CRCmiRTar could identify 41 miRNA-target pairs, which 

comprises more than 87% of all cases. A reason for this improvement can be the combination of 

features and CRC specific training dataset that we used in CRCmiRTar. An important advantage in 

our model training procedure compared to the strategies in other algorithms is that we consider only 

reliably validated miRNA-target interactions from luciferase reporter assay and site-directed 

mutagenesis experiments. 

CRCmiRTar predicts 220 novel CRC-specific miRNA-target interactions 

Using miRNA and mRNA expression profiles from eight CRC tissues and their corresponding 

adjacent normal tissues we used CRCmiRTar to classify miRNA/mRNA pairs with inversely 

correlating expression profiles. In total, CRCmiRTar classified 223 miRNA/mRNA pairs as 

functional interactions which are comprised of 12 miRNAs and 43 mRNAs. The maximum number of 

predicted targets was 30 for miR-7, and the minimum number was four for miR-224-5p. These 

predictions can be found in Supplementary Table S1. We compared our prediction results with the 

miR2Disease24 and OncomiRDB25 databases and found three of them were already experimentally 

validated (with other methods than luciferase assays or site directed mutatgenesis). All others are 

novel yet uncharacterised miRNA-target interactions. We also searched for the presence of our 

predicted interactions in AGO-CLIP data using the starBase database. In the collective AGO-CLIP 

data we found read counts for ~26.5% of the predicted target sites. However, it has to be noted that 

none of these experiments has been performed in CRC tissue or corresponding cell lines. 
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MiRNA targets are associated with cancer pathways 

To obtain further insight into the biological functions of dysregulated miRNAs and their predicted 

targets in CRC, we used the Database for Annotation, Visualization and Integrated Discovery 

(DAVID, v6.7
26

) for the identification of overrepresentations in gene ontology (GO) terms and 

pathways associated with the miRNA targets. GO and pathway enrichment analysis based on the 43 

differentially expressed mRNAs revealed Wnt signaling as a pathway that is significantly 

overrepresented in this set of genes (� < 0.005) (Supplementary table 4). In this pathway, four genes 

CAMK2D, CHP2, SFRP1, and SFRP2 are downregulated in CRC.36 Interestingly, SFRP1 and SFRP2 

are secreted proteins that act to inhibit Wnt activation via the Frizzled receptor. Our predictions 

indicate that nine and three miRNAs regulate the expression of SFRP1 and SFRP2, respectively and 

are thus responsible for their downregulation in CRC. 

Expression studies have revealed the downregulation of CAMK2D in human tumor cells. Cheng et al. 

deciphered that growth, migration, and proliferation of human endothelial cells were regulated by 

WNT5A in a CAMK2D-dependent way.27 Based on our predictions eight miRNAs are involved in the 

regulation of CAMK2D. Furthermore, GO enrichment analysis detected two angiogenesis related 

terms (vasculature development and blood vessel development) to be overrepresented in dysregulated 

miRNA target genes (RECK, ZFPM2, STAB2, and ARHGAP24). One of these genes, RECK, is 

known as a metastasis/angiogenesis suppressor gene. Our algorithm found that this gene can be 

regulated by four miRNAs. One of these interactions, the regulation of RECK by miR-21-5p, has 

been experimentally validated in CRC.28
 

Methods 

Training data 

For the purpose of building a positive dataset to train our classifier, we reviewed miRNA target 

identification studies related to CRC with an emphasis on experimental data from Luciferase reporter 

assays which is one of the most reliable methods for target identification29. More specifically, just 

those miRNA-mRNA interactions for which the exact binding sites were characterized by site-
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directed mutagenesis were considered in the positive dataset. In this step 100 positive interactions 

could be retrieved, which are described in Supplementary Table S5. Since our approach requires 

information on the exact target sites and this information is not always available for the interactions 

described in miR2Disease and the OncomiRDB we mainly relied on an in-depth literature search. In 

this way we also made sure that the most recent miRNA-mRNA interaction data from CRC is 

included in our dataset.   

We also searched for the presence of our selected miRNA-target interactions in AGO-CLIP data using 

the starBase database.30 In the collective AGO-CLIP data we found read counts for ~70% of the target 

sites in our training set (in ~30% of the cases even more than 1.000 reads). However, it has to be 

noted that none of these experiments has been performed in CRC tissue or corresponding cell lines. 

Two kinds of negative data were collected, one set is composed of validated miRNA-mRNA 

interactions reported in other cancers (non CRC interactions; � = 136) and another set integrates 

tissue-specific negative examples that were also used as training data by TargetMiner.20 For the 

former set we exploited validated miRNA-mRNA interactions from other cancers such as breast and 

lung cancer as reported in the miR2Disease database.
24

 For the uncharacterised binding sites, the 

miRNA sequences were extracted from the miRBase database31, and the target 3′ UTR sequences 

were downloaded from the Ensembl database (www.ensembl.org). To search for all possible 

alignments in each miRNA-mRNA pair, we used a Smith-Waterman local alignment algorithm and 

considered only those alignments with the highest score for further analysis. In the algorithm, a 

scoring scheme in which each G:C pair and A:U earn a score of 5 and 7 respectively, each G:U pair , 

a score of 1 and mismatches a score of -3, was employed. Each gap opening amounts to -8 and a gap 

extension is penalized with a score of -2. From the negative training data we removed those 

interactions which are common between CRC and other cancers in order to obtain an unambiguous 

dataset. We finally gathered 340 samples for the negative training dataset (see Supplementary Table 

S6). The dataset was split into (i) 85% for training and cross-validation, and (ii) 15% as a test set for 

independent evaluation. 

Feature extraction from miRNA–mRNA interactions 
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We started our analysis with a set of 70 features which were subsequently subjected to further 

selection steps. In general, these features can be classified into four categories: (i) sequence features, 

(ii) position-based features, (iii) structural as well as (iv) thermodynamic features. In order to estimate 

the thermodynamic stability of a miRNA:mRNA hybrid we computed their minimum free energy 

(MFE) structure using RNAcofold which is part of the Vienna package.32 Structural features account 

for the number of matches, mismatches, G:U wobble pairs, bulges, and the stem in a miRNA:mRNA 

hybrid. Regarding position-based features, we assigned nominal values of 1 to 4 for each G:C match, 

A:U match, G:U wobble pair and mismatch in each position of seed region. Sequence features refer to 

the base composition of the miRNA as well as target site. Additionally we considered as a feature the 

miRNA-mRNAs paired expression profiles. To this end, we extracted tumor-specific miRNA and 

mRNA expression profiles from the NCI60 panel via the CellMiner™ database 

(http://discover.nci.nih.gov/cellminer/). All features are listed in Supplementary Table S2.                                                                                                                                                                          

In order to find the features that have a dominant role in discriminating positive and negative samples, 

two feature selection methods were considered: (i) Correlation-based Feature Selection (CFS)
33

 and 

(ii) ReliefF.34 While CFS is evaluating subsets of features for the correlation of individual features 

with the class attribute and the redundancy among the features in one set, ReliefF evaluates the 

goodness of a feature by repeatedly choosing a random instance and considering the value of the same 

feature in the nearest instance of the same and different class. The key difference between CFS and 

ReliefF is that CFS selects an approximately optimal subset of features, whereas ReliefF only 

provides a ranked list of features. The list of ranked features in CRC-specific miRNA-target 

interactions can be found in Supplementary Table S2. We used the Weka 3 data mining software35 for 

implementation of CFS and ReliefF. 

Patient derived miRNA-mRNA expression data for CRC 

We retrieved a list of differentially expressed miRNAs and mRNAs from a transcriptomics and 

miRNAomics study in patient-derived CRC tissue samples with similar clinical and pathological 

features.
36

 Microarray expression profiles from eight CRC tissues and their corresponding adjacent 

normal tissues revealed 14 upregulated miRNAs and 43 downregulated mRNAs in CRC. In order to 
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predict potential miRNA binding sites, we extracted the 3′ UTR of the upregulated mRNAs from the 

Ensembl database and miRNA sequences from the miRBase database31 and aligned the sequences 

using again the Smith-Waterman algorithm. We kept putative target sites with an alignment score 

� ≥ 60 for classification with CRCmiRTar. 

Conclusion 

Many reports describe the association of miRNAs with diseases. Today, with the use of computational 

methods one can perform miRNA target analyses in a high-throughput manner. However, these 

methods often result in a large number of false positive predictions, which may not represent 

functional miRNA-mRNA interactions, especially in a specific disease. In fact, due to the multi-

faceted nature of miRNA targeting the existing prediction algorithms cannot make perfectly reliable 

predictions for every pathological condition.
12

 Thus, it makes sense to develop a disease-specific 

algorithm to minimize false predictions. 

Although a number of studies have shown that miRNA function is tissue specific (see for example
12, 

37
) so far no study has offered an algorithm to predict miRNA targets for a specific disease. 

In this study, we proposed a novel miRNA target-prediction approach specific for CRC which is 

based on a NB classifier and uses cancer-specific training data. In the proposed model, the use of 

high-quality training data in which exact binding sites are experimentally verified ensures the 

executing efficiency of this model, because data driven algorithms can uncover the important and real 

targeting characteristics from this data. Most of the existing target prediction algorithms try to provide 

high sensitivity with respect to the identification of true positive interactions, however, these 

algorithms are not designed to make out disease-specific interactions and therefore result in a high 

false-positive prediction rate and a low overall specificity. They are thus unreliable for the purpose of 

identifying disease-specific miRNA-target interactions. ML-based algorithms are data-driven, i.e. the 

dataset has straight impact on their performance. A careful selection of relevant features for the 

purpose of training is a very important determinant the performance of a machine learning algorithm. 

It has been shown previously that by including or discarding certain groups of features the 

performance of an algorithm can change drastically. For example, in Kim et al. (2005) according to 
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the authors the sensitivity of the miTarget algorithm decreased when position-specific features where 

excluded. Therefore, we applied two filters in the step of preparing the training dataset: (i) we chose 

CRC-specific miRNA-target interactions for the positive training set, and (ii) these interaction had to 

be validated with luciferase assays and site-directed mutagenesis experiments. Thereby we ensured an 

increased specificity of our classifier. However, regarding the negative dataset we were lacking a gold 

standard set of negative samples. For reasons of comparability we chose a negative dataset, presented 

in Mitra and Bandyopadhyay (2009) that was already used in other studies.16, 18 We are aware that 

although these data are tissue specific they may be functional in CRC as well. Therefore, as another 

part of our negative dataset, we used the functional data for the other cancers which are not reported 

to be functional in CRC. 

According to the results in
11

, most tissue specific miRNA-mRNA interactions carry a non-canonical 

seed region. Therefore, in order to be able of predicting tissue specific and 3′-compensatory target 

sites, our model does not filter out miRNA-target site pairs with non-perfect seed matches. 

Additionally, some studies showed the advantage of integrating gene expression data with miRNA-

target predictions. For example, Wang  et al. developed a network propagation based method to infer 

the perturbed miRNAs and their key target genes by integrating gene expressions and global gene 

regulatory network information.
38

 Therefore, we also used miRNA-mRNAs paired expression profiles 

to improve the accuracy of sequence-based miRNA-target predictions. However, in the feature 

selection step the expression profiles were not select as part of the best performing subset of features 

(both using CFS and ReliefF methods). 

The aim of this study was to investigate whether using CRC specific training data can help to 

outperform previous non tissue-specific algorithms and if so, which features are most relevant for 

CRC. 

For the first part, our results demonstrate that compared with previous methods, CRCmiRTar could 

predict experimentally validated miRNA target genes with higher accuracy. Regarding the features, 

our results show that the sequence/ base composition features have the highest contribution to the 

specificity of the model. Previous studies have shown that the binding sites of miRNAs have specific 
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nucleotide and dinucleotide compositions which are significantly different between targets that are 

downregulated upon miRNA transfection and those that are stably expressed.19, 39  

Another issue regarding tissue-specific miRNA target predictions is the impact of alternative 3' UTR 

isoforms, because of alternative cleavage and polyadenylation (APA). APA can lead to the potential 

loss of miRNA binding sites by shortening the 3' UTR sequence of target genes.40 However, for our 

study no suitable data was available for deriving CRC-specific 3' UTR isoforms. Therefore, we 

always considered the longest 3' UTR annotated for each gene. 

Although, the present study and some other studies demonstrate that tissue-specific miRNAs are often 

implicated in diseases related to a specific tissue, it remains largely unknown whether there are tissue-

specific features for miRNA function. We have developed this model to serve as a useful method to 

obtain higher-confidence predictions for targets of miRNAs involved in CRC. 
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Tables 

Table 1: Selected features by correlation-based feature selection 

Features Description Feature Type 

UU_seed UU’s frequency in seed matching site Sequence 

CG_seed CG’s frequency in seed matching site Sequence 

AU_match Frequency of AU base pair in seed region Structural 

UA_match Frequency of UA base pair in seed region Structural 

GC_target GC’s frequency in target site Sequence 

GC_match Frequency of GC base pair in seed region Structural 

CG_match Frequency of CG base pair in seed region Structural 

Seed Number of base pairings to the miRNA 8-mer seed Structural 

Tail Number of base parings to the first 8 nucleotides of the miRNA 3′ end Structural 

Cons_bp_mir_5p Number of consecutive base-pairings to the miRNA 5′ end with two allowed 

non-pairing positions 

Structural 

Binding asymmetry the ratio between the number of paired bases in the 3p versus the 5p region of 

the microRNA (considering 8 nucleotides on each side) 

Structural 

B_tagt_s6 bulges in target sequences of size 6nt and more Structural 

Pos_3 Position 3 Position 

Pos_7 Position 7 Position 
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Table 2: Performance evaluation of the CRCmiRTar based on different types of features 

 Sensitivity Specificity F-measure AUC 

All selected Features 0.93 0.861 0.883 0.956 

Structural Features 0.94 0.813 0.853 0.936 

Sequence Features 0.27 0.912 0.68 0.675 

Position-based Features 0.50 0.70 0.67 0.684 

Structural+Sequence 0.92 0.84 0.86 0.938 

Structural+Position 0.94 0.83 0.872 0.954 

Sequence+Position 0.58 0.81 0.756 0.803 

 

Table 3: Performance of CRCmiRTar and existing target prediction methods on the same training data set 

 Sensitivity Specificity MCC AUC 

CRCmiRTar 0.93 0.86 0.726 0.957 

MultiMiTar 0.77 0.965 0.77 0.943 

miTarget 0.63 0.922 0.581 0.884 

RFMirTarget 0.69 0.942 0.666 0.92 
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Table 4: Predicted results of seven methods by employing validated samples published recently for CRC. 

miRNA Target PMID TargetMiner MirTarget2 TargetSpy SVMicro TargetScan PicTar CRCmiRTar 

miR-17-5p PTEN 24912422 � − − � � � � 

miR-139-5p NOTCH1 25149074 − � � − � � � 

miR-455-5p RAF1 25355599 − − − − � − � 

miR-18a-5p CDC42 25379703 � − − − − � � 

miR-29c-3p GNA13 25193986 − − − − � � � 

miR-133b TBPL1 24870791 − � � � � � � 

miR-182-5p SATB2 24884732 � � − � − � � 

miR-185 STIM1 25531324 − − − − − − � 

miR-301a SOCS6 25591765 � − � � � � � 

miR-150 MYB 25230975 − � � � � − � 

miR-143-3p TLR2 23866094 − � − − � − � 

miR-150-5p MUC4 25124610 − − − − � − � 

miR-133a FSCN1 25621061 − − � � � − � 

miR-16-5p BIRC5 23380758 − − − � − − � 

miR-21-5p TGFBR2 22072622 � − − � � − − 

miR-145-5p PAK4 22766504 − − − − − � � 

miR-137 PXN 23275153 − − − − � � � 

miR-126-3p IRS1 24312276 − − − − � � � 

miR-135b-5p MTSS1 24343340 − − − � � � − 

miR-154-5p TLR2 24242044 − − − � � − � 

miR-137 FMNL2 20473940 � � − � � � � 

miR-137 CDC42 20473940 − − − � � � � 

miR-139-5p RAP1B 22642900 � − − - � � � 

miR-146a-5p MMP16 22348245 � � − � � - � 

miR-148b-3p CCKBR 22020560 � − − � � � � 

miR-149-5p SP1 22821729 � − − - � - � 

miR-185-5p RHOA 21186079 � � − � − � � 

miR-185-5p CDC42 21186079 � � − � � � � 

miR-186-5p CSNK2A1 23137536 − − − � − � � 

miR-20a-5p BNIP2 21242194 � � − � � � � 

miR-21-5p RHOB 21872591 − − − � � � � 

miR-216b-5p CSNK2A1 23137536 − − − � � − � 

miR-30e-3p HELZ 21963845 � � − � � − � 

miR-30e-3p PIK3C2A 21963845 � − − − − − � 

miR-31-5p RASA1 23322774 � � − 
− � � � 

miR-320a NRP1 22134529 − � − � � � � 

miR-320a NRP1 22134529 − � − � - � � 

miR-337-3p CSNK2A1 23137536 − − − � � − − 

miR-342-3p DNMT1 21565830 − − − − − − � 

miR-345-5p BAG3 21665895 − − − − − − � 

miR-491-5p BCL2L1 20039318 − � − � − − � 

miR-502-5p RAB1B 22580605 − � − � � − � 

miR-650 NDRG2 21352815 − − − − � − � 

miR-7-5p YY1 23208495 − − − � − − − 

miR-760 CSNK2A1 23137536 − − − − � − � 

miR-93-5p CCNB1 22581829 − − − − − − − 

miR-93-5p ERBB2 22581829 − − − − − − − 
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Figure Legends 

Figure 1: Implementation of the CRCmiRTar workflow. The positive dataset (miRNA-mRNA 

interactions in CRC) contains literature-based experimentally validated interactions. The negative 

dataset consists of the tissue-specific negative data which was peviously used in training the 

TargetMiner algorithm [21] and validated miRNA-target interactions from other cancers based on the 

miR2Disease database. In the negative dataset, for uncharacterised binding sites, we used the Smith-

Waterman algorithm to localize the binding sites. In the next step, those interactions which were 

common between CRC and other cancers were deliminated from the negative training data. In order 

to establish a classifier, first, 70 features which are used in previous studies were extracted from all 

positive and negative interactions. Next, two different feature selection methods were used to select 

the most informative features. We assessed the performance of the different classifiers based on 10-

fold cross-validation and an independent test dataset. 

 

Figure 2: Evaluation of different classifiers on two categories of selected features using CFS and 

ReliefF. These plots illustrate the performances of the different classifiers in the 10-fold cross 

validation: (a) AUC; (b) Sensitivity values. Results of the re-evaluation step with a separate test 

dataset can be found in Supplementary Figure S1. RBF: radial basis function kernel. 

 

Figure 3: ROC curves for CRCmiRTar based on different types of features. 

 

Figure 4: ROC curves for CRCmiRTar and existing methods on the same dataset. 
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