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PredcircRNA present computational classification of 

circularRNA from other lncRNA using hybrid features 

based on multiple kernel learning. 

 

 

Page 1 of 10 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



PredcircRNA: computational classification of circular RNA from
other long non-coding RNA using hybrid features

Xiaoyong Pana,∗ and Kai Xionga

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

Recently circular RNA (circularRNA) has been discovered as a growing important type of long non-coding RNA (lncRNA),
playing an important role in gene regulation, such as functioning as miRNA sponges. So it is very promising to identify circular-
RNA transcripts from de novo assembled transcripts obtained by high-throughput sequencing, such as RNA-seq data.
In this study, we presented a machine learning approach, named as PredcircRNA, focused on distinguishing circularRNA from
other lncRNAs using multiple kernel learning. Firstly we extracted different sources of discriminative features, including graph
feature, conservation information and sequence compositions, ALU and tandem repeat, SNP density and open reading frame
(ORF) from transcripts. Secondly, to better integrate features from different sources, we proposed a computational approach
based on multiple kernel learning framework to fuse those heterogeneous features. Our preliminary 5-fold cross-validation result
showed that our proposed method can classify circularRNA from other types of lncRNAs with an accuracy of 0.778, sensitivity of
0.781, specificity of 0.770, precision of 0.784 and MCC of 0.554 on our constructed gold-standard dataset, respectively. Our fea-
ture importance analysis based on random forest illustrated some discriminative features, such as conservation features and GTAG
sequence motif. Our PredcircRNA tool is available for download at https://github.com/xypan1232/PredcircRNA.
Keywords: circularRNA, lncRNA, multiple kernel learning, graph feature, conservation information, sequence composition

1 INTRODUCTION

Non-coding RNA accounts for 98.8% of transcribed genome
estimated as 70% of human genes1,2. Although it cannot en-
code for proteins, non-conding RNA plays a very crucial role
in many cellular processes, such as gene regulation and RNA
splicing. Long non-coding RNA is ncRNA with size longer
than 200 nt, which is previously considered to be experimen-
tal noises and artefact. Now more and more evidence indicates
that lncRNA plays a range of biological functions3, whose
dysfunction is closely related to epigenetic and post transcrip-
tional control in diseases4,5.
With next-generation-sequencing developing, a huge volume
of sequencing data is generated, and lncRNAs are expanding
to be discovered. While experimental identification and anno-
tation of these new sequences with enormous information is
time-consuming and high-cost. So it is necessary to find alter-
native computational methods for analysing them, which can
complement with experimental techniques to identify new pu-
tative lncRNA candidates in genome.
Currently there are many excellent computational approaches
to distinguish lncRNA6–10 from protein coding RNA with
high accuracy for assembled transcripts from next-generation-
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sequencing. For example, iSeeRNA7 used SVM to detect
lncRNAs via integrating multiple features. lncRNA-MFDL10

applied deep learning11 framwork to enhance prediction ac-
curacy. Previous methods were only focused on classifying
lncRNAs from protein coding RNAs, but there exists multiple
types of lncRNAs in genome. In GENCODE1, lncRNA can be
roughly catalogued into lincRNA, antisense, processed tran-
script, sense intronic and sense overlapping. Recently a new
type of lncRNAs (circularRNA) get more and more attention,
although it has been discovered at least 20 years ago. Emerg-
ing evidence demonstrates that some circularRNAs may regu-
late miRNA function, such as miRNA sponge effect12,13 and
transcription regulation14,15. And thousand of circularRNAs
are reported in recent works, which are collected in circu-
larRNA database circbase12. For different lncRNAs, they
have very different characteristics and functions, so it is very
promising to identify more exact lncRNA subgroups. There
are some computational approaches to further classify small
ncRNAs to subgroups, while still no method is available to
further classify lncRNAs, and thus facilitates annotation effec-
tively. For example, CoRAL16, it trained a machine learning
model to identify class of small non-coding RNAs, such as
microRNAs, tRNAs, snRNAs and snoRNAs.
The identification of circularRNAs is very useful for further
understanding regulatory mechanisms, furthermore for poten-
tial implications for therapeutic applications, such as function-
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ing as miRNA sponges for oncogenic miRNAs. lncRNA is
easily distinguished from other small ncRNA, such as miRNA,
siRNA and snoRNA, by using simple property transcript size.
However, for circularRNA identification from other lncRNAs,
it is almost not possible to detect them only based on sim-
ple features. While circularRNA has demonstrated some dif-
ferent sequence characteristics from other lncRNAs, such as
GT-AG pair of canonical splice sites, paired Alu repeat and
backsplice17. On the other hand, sequence features combin-
ing with machine learning is reported to be powerful to predict
gene regulation, splicing sites and chromatin18. They promote
that sequence-based method maybe utilized to identify circu-
larRNA from other lncRNAs effectively.
In this study, we are focused on cataloguing circularRNA
from other lncRNAs and proposed a computational method
from transcript sequence, which can be assembled from RNA-
seq using Cufflinks19, to distinguish circularRNA from other
lncRNAs. The proposed method trained a classifier based on
experimentally verified circularRNAs and other lncRNAs us-
ing machine learning. We firstly extracted different sources
of discriminative features from transcript sequence, such as
graph feature, conservation, sequence composition, ALU and
tandem repeat, SNP density and open reading frame (ORF),
which cope with the potential problem that single feature can-
not perfectly characterize circularRNA from other lncRNAs.
Considering the heterogeneity of those extracted features, we
applied lp-norm multiple kernel learning20 to integrate differ-
ent sources of data representations, which can fuse them with
greater flexibility, and weight relative contribution for every
view of features to final predictions.

2 METHOD AND MATERIALS

Data source

We used human circularRNA data from circbase database21.
This dataset collects more than 90000 experimentally verified
circularRNA transcripts along with their genomic coordinates.
After removing transcripts shorter than 200 nt and overlapped
transcripts from the same gene, we got 14084 circularRNAs as
positive data. circbase collected genome-wide circularRNAs,
and GENCODE1 also provides genome-wide experimentally
verified and high-quality gene annotation including protein
coding RNA and non-coding RNA, and it’s widely used for
gene annotation in public data source, such as Ensembl22. So
GENCODE is used to construct corresponding genome-wide
gold-standard negative dataset. For constructing high-quality
gold-standard negative dataset, we extracted another types of
lncRNA defined in GENCODE, such as lincRNA, antisense,
processed transcript, sense intronic and sense overlapping, as
negative dataset with strong experimental evidence. The an-
notated lncRNAs in GENCODE have three confidence levels

for RNA annotation (level 1:validated; level 2: manual anno-
tation; level 3: automated annotation), we only selected anno-
tated transcripts with level 1 and level 2, which are experimen-
tally verified by RT-PCR and sequencing or HAVANA manual
annotation. After removing overlapped transcripts existing in
circbase and other preprocessing steps for circularRNAs, we
obtained 19722 lncRNAs as negative dataset. we generated
the training and independent testing datasets from above con-
structed gold-standard dataset, 10000 circularRNAs and the
same number of other lncRNAs are randomly selected for
model training, the remaining 4084 circularRNAs and 9722
lncRNAs were constructed to be independent testing dataset.

Feature extraction

Extracting discriminative features is a very crucial step in
building machine learning classifiers. As shown in Figure
1, simple featues, such as GC content and transcript size,
cannot obviously distinguish circularRNA from other lncR-
NAs. In order to achieve more obvious discrimination, we ex-
tracted different sources of features from transcript sequences
to build machine learning model, including graph feature from
sequence, conservation, component composition, ALU and
tandem repeat, and ORF features. Besides, as reported in23,
circularRNA has significant decrease in SNPs at its miRNA
binding sites, so SNP density is also included in our extracted
features. Taken together, 188 features are extracted for our
model training and testing.

Fig. 1 GC content and transcript size comparison between
circularRNAs and other lncRNAs.

Graph features from RNA structure and sequence. RNA
structure plays crucial roles in gene regulation, polyadenyla-
tion and splicing24,25, especially different lncRNA are spliced
differently, such as exon scrambling for circularRNA. A graph
can represent the sequence and structure of an RNA molecule
and express two levels of relations: one is between nu-
cleotides, the other is abstract structure annotations predicted
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from RNAshapes26, such as multi-loops, hairpins, bulges and
stems. RNA graph uses node to represent the nucleotides and
edge to represent the backbone or bond relationships between
the nucleotides. More details can be seen in27.
Graph feature is very high-dimensional, more than 30000 di-
mension from GraphProt27. To reduce computational cost and
possible dimension curse, Here we also applied Random For-
est28 to rank feature importance for graph features based on
small random selected subset, and only the top 101 features
are kept for following experiments.
Conservation score features. Firstly per-base phyloP (phylo-
genetic p-values)29 conservation score track are downloaded
from UCSC. The conserved features are extracted as follows:
1) calculate the mean, max and variance of conservation score
within the genomic region of each transcript; 2) Count the fre-
quencies of bases whose conservation score is greater than 0.3,
0.6 and 0.9 respectively, the frequencies of bases smaller than
0.9; 3) Most of circularRNAs have very similar conserved mo-
tif sequences, which correspond to large number of conserved
docking sites for miRNA30, such as ciRS-7 has about 63 con-
served binding sites for miR-712. So we count the frequencies
of consecutive bases (such as 4, 5, 6, 7, 8) whose score are
greater than 0.3. Total 12 conservation score features are in-
cluded in this study.
Component composition features. As shown in paper7, tri-
nucleotides composition has very strong discriminating abil-
ity for detecting lincRNAs from protein coding RNAs, which
is one type of lncRNAs collected as golden negative dataset.
Beside the tri-nucleotide feature, other sequence component
composition features are also extracted, such as GC con-
tent, sequence length, frequencies of GT, AG, GTAG and
AGGT (GT/AG sequence motifs were closely related to back-
splice14).
ALU and tandem repeat, ORF, SNP. Base pairing ALU
repeats may enable the splice sites to recognize each other,
thus promoting circularization17. Annotated ALU repeat sites
were downloaded from the UCSC Genome Browser’s Repeat-
Masker track using the table viewer December 2011, which
gives the coordinates of the ALU repeat on genomes. We
count the number of ALU repeat for each transcript. Besides,
circularRNAs are formed by head-to-tail splicing of exons,
and tandem duplications14 generating duplicated exons within
a gene can promote apparent backsplice. In this study, Tan-
dem Repeats Finder31 was employed to detect tandem repeats,
and the frequency of tandem repeat was extracted. txCd-
sPredict from UCSC genome browser was used to obtain the
ORF for each transcript, ORF length and proportion are ex-
tracted, which is reported useful for lincRNA classification7.
Splice variants may produce circularRNAs32 and significant
decrease in SNPs at miRNA targets23, therefore SNP density
was also considered in this study. SNP data with coordinates
in genome is download from the 1000 Genomes Project, and

SNP density was calculated on the genomic region of each
transcript.

Random Forest

Random Forest (RF)28 is an aggregation of multiple unpruned
decision trees grown from separate bootstrap samples of the
training data and a feature subset sampled independently from
the original feature space, and it is applied widely in bioinfor-
matics33–35.It has very few parameters to tune and have bet-
ter expandability when compared to other algorithms, such as
support vector machine (SVM)36.

In this study, RF is applied to analyse the importance of
extracted features. During the RF training process, bootstrap
sampling will take out about 1/3 training data as the out-of-
bag data points, whose averaged error is calculated over the
constructed forest by other 2/3 data points. Then the out-of-
bag error is calculated based on new trained forest again after
the values of the each feature are exchanged among the 2/3
training data points. The importance score for each feature is
the mean of difference of out-of-bag error before and after the
permutation over forest.

lp-norm Multiple kernel Learning

Kernel learning is firstly applied in SVM, which used kernel
matrix to encode similarity between samples in their respec-
tive space instead of original feature space, and it can transfer
non-linear model in original feature space to a linear model
in kernel space. Considering multiple feature representations
of the same data, how to combine them together to get bet-
ter feature representations is very useful for machine learning
algorithms. One traditional way to combine heterogeneous
features from different sources is directly to concatenate them
into a single high-dimensional feature, which easily lead to not
only curse of dimensionality problem, but also feature hetero-
geneity disappearance. On the contrary, multiple kernel learn-
ing can decouple the original data by combining kernel simi-
larity matrix in respective space, so it is an appealing strategy
in this study. A simple way for combining different kernels is
linearly weighted kernels, while it is often sensitive to noisy
kernels, so lp-norm multiple kernel learning20 is applied to
robustly integrate individual kernel.

In lp-norm Multiple kernel learning, kernel mixing coef-
ficients are optimized through a regularized loss minimiza-
tion with additional norm constraints when integrating mul-
tiple kernels. Given M different reproducing kernel km from
different sources of features, it formulate the problem into a
weighted linear combination of base kernels under some reg-
ularization constraints:

kθ = ∑{θmkm, θm ≥ 0} (1)
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To get kθ , it can be formulated as optimization problem of
p-norm MKL as follows20

min
θ

max
α
{1T

α− 1
2 ∑

i, j
αiα jyiy j ∑

m
θmkm}

subject to‖θ‖p ≤ 1,θ ≥ 0,YT
α = 0,α ≥ 0,α ≤C

(2)

where i, j is training data index, p is Norm of vector controlling
kernel weights regularization, p = 1 promote sparse combina-
tion of kernels. The above optimization can be solved itera-
tively using optimizing α and θ alternately. More details and
its implementation we refer to20 and SHOGUN package37

In this study, the extracted 4 views of features are incor-
porated into Gaussian base kernel respectively, then lp-norm
multiple kernel learning is used to calculate optimized weights
to fuse them together.

Experimental setting

In this study, we compared 5-fold cross-validation perfor-
mance of 3 different models MKL, SVM and RF on our con-
structed Golden dataset. Here SVM and RF implementation
from Scikit-learn38 are used. For SVM, we used grid search
best regularization parameter C and Gaussian kernel width
g using 5-fold cross-validation, we obtained best C=3 and
g=0.75. For RF, we set parameter number of tree as 100 and
other parameters as default value. For MKL, we used imple-
mentation from SHOGUN package37, and kernel width 0.5
for Gaussian kernel and p norm 3.5 are used. Our method
accept BED file as input format, which should give the coor-
dinate of transcripts on genome.

To provide an intuitive picture, a flowchart diagram about
gold-standard dataset generation and applied pipeline is given
in Figure 2.

Evaluation Criteria

In order to compare with previous proposed methods, 5-fold
cross-validation test was used to evaluate predicted perfor-
mance. We follow their evaluation measure by means of
the classification accuracy, precision, sensitivity, specificity
and the Matthews correlation coefficient (MCC) as defined
respectively by:

Accuracy =
T P+T N

T P+T N +FP+FN
(3)

Sensitivity =
T P

T P+FN
(4)

Speci f icity =
T N

T N +FP
(5)

Precision =
T P

T P+FP
(6)

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(7)

Where TP, TN, FP, and FN represents true positive, true nega-
tive, false positive, and false negative, respectively.

3 Results

Analyzing feature importance

For verifying the importance of extracted features in distin-
guishing circularRNAs, we applied random forest feature se-
lection to rank the importance of them, the top 50 features
is shown in Figure 3. The top 5 features are all conserva-
tion features ( conservation score variance of each transcript,
mean conservation score, frequencies of 8 consecutive bases
greater than 0.3, max conservation score and frequencies of
conservation score greater than 0.9 respectively.). This anal-
ysis indicated that conservation features have very powerful
discriminative ability. Besides, GTAG sequence motif has the
highest importance score among sequence composition fea-
tures, which is demonstrated to play a key role in backsplice14.
However only 6 of 64 tri-nucleotide frequencies features are
in the top 50 features, which shows no obvious difference be-
tween circularRNA and other lncRNAs. RNAcon39 also in-
dicates tri-nucleotide frequencies is unable to classify differ-
ent classes of ncRNA. In addition, extracted ORF length and
proportion, ALU repeat, SNP density are all ranked in top 50
features among the extracted 188 features (all features’ impor-
tance score is given in supplement file 1).

Comparison between MKL, SVM and RF.

Here we classified circularRNA from other type of lncRNAs
using all sources of biological features, three classifiers(MKL,
SVM and RF) were implemented and compared. We concate-
nated all different sources of features into a single high dimen-
sional features for RF and SVM when model training and test-
ing. As indicated in Table 1, MKL achieved the best accuracy
of 0.778, sensitivity of 0.781, specificity of 0.770, precision
of 0.784 and MCC of 0.554, which indicated MKL can better
integrate different sources of features, likely due to the feature
heterogeneity. And SVM and RF classifiers yield comparable
performance, which also indicated that our extracted features
and training dataset is very robust. Although the model per-
formance is acceptable, it still need to be improved from fol-
lowing factors: 1) The features currently extracted are insuf-
ficient for perfectly distinguishing circularRNAs from other
lncRNAs; 2) Only one isoform is used for every gene, other
isoforms need be integrated into training data with more data
without leading model over-fitting.

To further demonstrate the robustness of our proposed
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Fig. 2 Flowchart of proposed method. Gold-standard datasets were split into training and independent testing datasets, training data consists
of 10000 circularRNAs, 3500 lincRNAs, 3500 processed transcripts, 2700 antisense, 200 sense intronic and 100 sense overlapping. The
remaining are independent testing dataset, which were then used for independent data evaluation.

Fig. 3 Top 50 features from Random Forest importance ranking. For X-axis label, cons: conservation score feature; graph:graph feature; freq:
tri-nucleotides frequencies feature, followed by index for each group feature.
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Table 1 5-fold cross-validation preformance comparison between
MKL, SVM and RF on training dataset.

Classifier Accuracy Sensitivity Specificity Precision MCC
SVC 0.773 0.780 0.767 0.784 0.551
RF 0.767 0.769 0.773 0.768 0.541
MKL 0.778 0.781 0.770 0.784 0.554

methods, we applied our trained model on independent testing
dataset, the result is shown in Table 2. Similarly, MKL also
achieved the best performance of accuracy 0.866, which per-
formed better than 5-fold cross-validation, demonstrating the
robust of our approaches. It is because that training dataset
size is larger than dataset in doing 5-fold cross-validation,
whose model can be trained with better generalization and per-
formance. To achieve better performance, another promising
direction is to fuse different models together using ensemble
learning, but it will be much more time-consuming40,41.

Table 2 Performance evaluation on independent testing dataset.

Classifier Accuracy Sensitivity Specificity Precision MCC
SVC 0.862 0.864 0.859 0.865 0.724
RF 0.844 0.849 0.837 0.852 0.689
MKL 0.866 0.870 0.861 0.872 0.734

We also trained MKL model on all collected dataset con-
sisting of 14084 circularRNA transcripts with another 19722
lncRNA transcripts, 5-fold cross-validation result achieved ac-
curacy of 0.806, sensitivity of 0.811, specificity of 0.798, pre-
cision of 0.814 and MCC of 0.613. It is better than on our con-
structed gold-standard dataset. One reason is also that more
training data is used during the 5-fold cross-validation, and the
trained models have better generalization power. The same
situation also happens to RF (accuracy of 0.793, sensitivity
of 0.795, specificity of 0.790, precision of 0.797 and MCC
of 0.587) and SVM (accuracy of 0.801, sensitivity of 0.807,
specificity of 0.792, precision of 0.813 and MCC of 0.607).
RF performed a little worse than other classifiers, but it runs
faster than SVM and MKL.

Meanwhile we randomly selected 10000 negative tran-
scripts from GENCODE, including protein coding RNA, lin-
cRNA, antisense, processed transcript, sense intronic and
sense overlapping. The new random negative dataset not only
contains other lncRNAs, it also includes protein coding tran-
scripts. Our method achieved accuracy of 0.759, sensitivity
of 0.780, specificity of 0.720, precision of 0.797 and MCC of
0.519. The model performance is a little worse than negative
data only from other lncRNAs. It is because that our goal is to
classify circularRNA from other lncRNAs using specifically
curated features. On the other hand, our method can be easily
integrated with other genome-wide lncRNA prediction tools,

such as iSeeRNA, which aims to discriminate lncRNAs from
protein coding RNAs with high accuracy.

Discriminative power between different lncRNAs

Here we performed multi-class classification for various types
of lncRNAs, such as lincRNA, circularRNA and antisense,
processed transcripts, using one-vs-other strategy for multi-
class classification. A balanced subset randomly selected from
original data is constructed, which consists of 2700 antisense,
2700 lincRNAs, 2700 circularRNAs and 2700 processed tran-
scripts respectively. They were used to train a MKL multiclass
model to evaluate how well separately classify between dif-
ferent types of lncRNAs using our extracted features. We did
not include sense overlapping and sense intronic because of
their quantity limit compared to other lncRNAs. Our method
achieved overall accuracy of 0.604. As seen in following con-
fusion matrix (Figure 4), circularRNA is almost equally mis-
classified as other lncRNAs, and lincRNAs is misclassified as
circularRNA with the largest number. On the other hand, the
result indicated that circularRNA is to the same extent dif-
ferent from other lncRNAs. In order to cover more negative
samples, golden negative samples are constructed based on
combination of various lncRNAs in our final model.

Fig. 4 Confusion matrix for 4 different lncRNAs, circularRNA,
lincRNA, antisense and processed transcript using MKL multiclass
classification.

Performance on fusing different views of features.

We also compared performance between combining differ-
ent sources of features using MKL. Firstly, we compared the
performance for each of extracted 4 types of features, which
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simply used SVM with Gaussian kernel. And also evaluate
the classification performance of combining different types of
group features using MKL. As indicated in Table 3, all fea-
tures combination can achieve best performance. Individual
group of features are associated with circularRNA to different
extents. For individual view of features, component compo-
sition achieve the best performance. While when four views
of features are concatenated into one single high-dimensional
feature, conservation features have higher feature importance
indicated in Figure 3, showing conservation feature may over-
ride some sequence composition features when they are fused.
The above result demonstrated that different views of features
have some interrelationship. It is also observed that different
types of features has different preference to circularRNA and
other lncRNAs. ATOS can achieve best precision (TP/(TP +
FP)), which means it does not misclassify other lncRNAs as
circularRNAs, CF achieve best specificity, CC yield best sen-
sitivity. Therefore, fusing them together can take complemen-
tary information of individual group features into considera-
tion when training model.

4 Discussions

In this study, we presented a novel machine learning method
predcircRNA to distinguish circularRNA from other lncRNA
using different sources of features, which is the first method
to further classify circularRNAs from other lncRNAs. pred-
circRNA can achieve accuracy of 0.778, sensitivity of 0.781,
specificity of 0.770, precision of 0.784 and MCC of 0.554
on our gold-standard dataset, respectively. And it also show
similar performance on independent testing data. We also
investigated contribution of different sources of features to
model performance. As result showed, conservation feature,
GATG motif and component composition feature has strong
discriminating power for circularRNA classification. In addi-
tion, classifiers can achieve better performance using all the
available features than only one type of features, which indi-
cated their complementary property between different sources
of features. PredcircRNA has the following advantages over
existing lncRNA prediction tools: 1) To best of our knowl-
edge, it is for the first study to further distinguish circular-
RNA from other lncRNAs using machine learning; 2) It ex-
tracted new sources of discriminative features for model train-
ing, such as conservation features and graph features 3) It ap-
plied multiple kernel learning to better fuse different sources
of extracted features.

predcircRNA demonstrated good performance on identify-
ing circularRNAs from other lncRNAs. Nevertheless, com-
pared to other machine learning based models to identify
lncRNAs from protein coding RNA, which achieve high ac-
curacy of more than 90%, such as iSeeRNA7, it is still to
some extent diffcult to discriminate different lncRNAs. That’s

because circularRNA and other lncRNA have much smaller
difference than between lncRNA and protein coding RNA.
On the other hand, circularRNA is expressed in specific tis-
sue and developmental manner12, which is ignored in our
model training. Hence in future work, the proposed model
will be expected to further improve circularRNA predictions
by introducing other sources of features instead of only se-
quences, such as expression data in different tissues or cell
lines. Meanwhile, instead of training models for whole circu-
larRNA from different tissues or cell lines, tissue-wise clas-
sifier can be trained on circularRNA subset from individual
tissue or cell line, which is better to align with tissue-specific
characteristics of circularRNAs.

Recently there are also a growing number of circularRNAs
discovered in other specifies, but currently our classifier is
only trained on human transcripts. In future work, it should be
extended to other specifies. predcircRNA accept BED format
input, so it can also be smoothly integrated with genome-wide
tool for identification of lncRNAs and protein coding gene
transcripts, such as PhyloCSF42, CPC43 and iSeeRNA. For
instance, iSeeRNA can be firstly applied to check if candidate
transcripts are lncRNAs or not, then it can be feed into our
tool predcircRNA to further predict it is circularRNA or not.
And it also can be considered as filtering tool for other cir-
cularRNA prediction tools, such as circbase21, which can be
firstly used to screen whole genome, then applied our predcir-
cRNA to filter out false positives. This integrated pipeline can
be used to find genome-wide circularRNA candidates, which
can be further experimentally verified.

5 CONCLUSION

In this study, we presented a computational method for clas-
sifying circularRNAs from other lncRNAs based on multi-
ple kernel learning framework integrating hybrid features.
Our experimental results indicated its efficiency both on con-
structed gold-standard dataset and independent dataset. We
also compared the performance of model with only one source
of feature and the different combinations of features, demon-
strating different sources of features can complement with
each other to improve model performance. and we also anal-
ysed the importance of extracted features, which indicated
conservation feature and GTAG sequence motif have strong
discriminative power on circularRNA from other lncRNAs.
python implementation of PredcircRNA can be available at
https://github.com/xypan1232/PredcircRNA.
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Table 3 Performance comparison between combining different types of features using MKL classification. Abbreviation, CF: conservation
feature; GF: graph feature; CC: component composition; ATOS: ALU and tandem repeat, ORF, SNP.

Feature Accuracy Sensitivity Specificity Precision MCC
CF 0.703 0.696 0.721 0.685 0.406
GF 0.688 0.687 0.692 0.684 0.377
CC 0.720 0.726 0.719 0.728 0.447
ATOS 0.554 0.668 0.215 0.893 0.147
CF + GF 0.760 0.761 0.762 0.761 0.524
CF + GF + CC 0.769 0.775 0.765 0.778 0.549
CF + GF + ATOS 0.763 0.764 0.760 0.766 0.526
CF + GF + ATOS + CC 0.778 0.781 0.770 0.784 0.554

versity of Copenhagen and China Scholarship Council.
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