This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Slow Ligand Induced Conformational Switch Increases Catalytic Rate in *Plasmodium falciparum* Hypoxanthine Guanine Xanthine Phosphoribosyltransferase

Sourav Roy\(^a\)\(^b\), Tarak Karmakar\(^b\)\(^c\), Vasudeva S Prahlada Rao\(^a\)\(^d\), Lakshmeesa K Nagappa\(^a\), Sundaram Balasubramanian\(^c\)^r, Hemalatha Balaram \(^a\)^r

\(^a\)Molecular Biology and Genetics Unit, \(^c\)Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.

\(^d\)Novozymes South Asia Pvt. Ltd., Whitefield, Bangalore-560066, India

\(^b\)Both authors have contributed equally to this work

\(^r\)Joint corresponding authors

Correspondence may be addressed to Sundaram Balasubramanian (e-mail: bala@jncasr.ac.in, Tel: 91-80-22082808, Fax: 91-80-22082766), Hemalatha Balaram (e-mail: hb@jncasr.ac.in, Tel: 91-80-22082812, Fax: 91-80-22082877)

Keywords

Hysteresis, enzyme activation, trans/cis isomerization, non X-Pro cis peptide bond, free energy calculations
Abstract

P. falciparum (Pf) hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT) exhibits a unique mechanism of activation where the enzyme switches from a low activity (unactivated) to a high activity (activated) state upon pre-incubation with substrate/products. Xanthine phosphoribosylation by unactivated PfHGXPRT exhibits a lag phase, the duration of which reduced with increase in concentration of the enzyme or substrate, PRPP.Mg$^{2+}$. Activated PfHGXPRT did not display the lag phase and exhibited a ten-fold drop in K_m value for PRPP.Mg$^{2+}$. These observations suggested the involvement of ligand mediated oligomerization and conformational changes in the process of activation. The dipeptide, Leu-Lys in the PPi binding site of human and *T. gondii* HG(X)PRT that facilitates PRPP.Mg$^{2+}$ binding by isomerization from trans to cis conformation is conserved in PfHGXPRT. Free energy calculations using the well-tempered metadynamics technique show the ligand-free enzyme to be more stable when this dipeptide is in the trans conformation than in the cis. The high rotational energy barrier observed for the conformational change from experimental and computational studies permits delineation of the activation mechanism.
1 Introduction

Hypoxanthine guanine (xanthine) phosphoribosyltransferase (HG(X)PRT) (E.C. 2.4.2.8) catalyses Mg$^{2+}$ dependent reversible transfer of phosphoribosyl group from 5-phospho-α-D-ribosyl-1- pyrophosphate (PRPP) to the nitrogen atom N-9 of 6-oxopurines (hypoxanthine, guanine or xanthine), resulting in the formation of corresponding mononucleotides, inosine 5'-monophosphate (IMP), guanosine 5'-monophosphate (GMP), or xanthosine 5'-monophosphate (XMP) and inorganic pyrophosphate (PPi). The three dimensional structures of HG(X)PRT from diverse prokaryotes and eukaryotes are largely similar with the protomer consisting of two domains - the hood and the core, and an active site present in the crevice between the two domains (Figure 1).1-7 Examination of the structures of HG(X)PRT shows that the active site is comprised of five loops from a single subunit that are numbered as I, II, III, III' and IV (Figure 1), the residues of which play important roles in the processes of substrate binding, catalysis and product release.8-13 Kinetic mechanism of human14,15 and Schistosoma mansoni16 HGPTases revealed ordered substrate binding wherein the binding of PRPP precedes the binding of hypoxanthine/guanine. The release of products is also sequential and involves the leaving of PPI prior to IMP/GMP/XMP.12-16 The processes of substrate binding, catalysis and product release involve a large number of conformational changes in the active site loops that have been elaborated in the case of Toxoplasma gondii HGXPRT12 and human HGPT.13 These changes are largely similar in the two enzymes with the first event being the isomerization of Leu78-Lys79 (T. gondii numbering) peptide bond (in loop I) that creates a cavity for PRPP binding. This is followed by a sequence of events which involves ordering of loop III, reorientation of Asp150 to function as a catalytic base,
binding of the 6-oxopurine through stacking on Trp199 of loop IV, formation of salt bridges by Arg182 of loop III’ with the side chain carboxyl groups of Asp150 and Asp197 and finally, the closure of loop II that serves to sequester the unstable reaction intermediates from the bulk solvent. After product formation, the sequential release of PPi followed by the nucleoside monophosphate is facilitated by the weakening of hydrogen bonds and salt bridge network. All the conformational changes are now reverted, and the enzyme attains the original state for another cycle of catalysis.

HGXPRT in the protozoan parasite, *Plasmodium falciparum* is an essential enzyme as it provides the only route for the synthesis of IMP through the salvage of host hypoxanthine. Like the *T. gondii* homolog and unlike the human, the *P. falciparum* enzyme has an additional specificity for xanthine. Although the overall structure of *P. falciparum* HGXPRT (PfHGXPRT) is similar to *T. gondii* HGXPRT and human HGPRT, the enzyme in solution displays kinetic features that are distinct. The crystal structures of human HGPRT, *T. gondii* and *P. falciparum* HGXPRT indicate that the biologically relevant oligomeric state is a tetramer. In solution, the human enzyme is a tetramer while the *P. falciparum* enzyme exhibits an equilibrium between dimer and tetramer, whose populations are modulated by PRPP binding and buffer composition. Earlier studies have shown that PfHGXPRT exhibits weak activity that increases significantly upon pre-incubation with the product IMP. The objective of this study is to characterize the activated (pre-incubated with ligand/s) and unactivated (without pre-incubation) states of PfHGXPRT and elucidate the mechanism of switching to the activated state. Large values of energy barriers obtained from the rate constants of activation suggest the possibility of isomerization of Leu-Lys peptide bond to mediate the
activation process. Molecular dynamics simulations of the ligand-bound and the free enzyme reveal dynamical information about this protein in two different states. The opening of a gate (distance between Cα of Asn206 in loop IV and Cα of Asn118 in loop II) of the free enzyme was observed during unbiased molecular dynamics simulations. Furthermore, free energy calculations were performed focusing mainly on the dipeptide present at the reaction center. The flipping of the dipeptide from trans to cis creates space to accommodate the substrate in the active site cavity. The barrier height for this bond rotation, obtained from free energy calculations, agrees with the experimental value estimated from reaction rates, suggesting the isomerization of the dipeptide as a critical component of enzyme activation.

2 Materials and Methods

2.1 Materials

Resins for ion exchange and size-exclusion chromatography were obtained from GE Life Sciences Ltd., Uppsala, Sweden. 6-oxopurines, nucleotides (IMP, GMP, XMP), PRPP, D2O, Sephadex G-25 and all other chemicals were procured from Sigma Aldrich Inc., USA. *Escherichia coli* strain SФ609 (ara, Δpro-hpt-lac, thi, hpt, pup, purH, J, strA), a knockout strain for hypoxanthine phosphoribosyltransferase (HPRT) and xanthine guanine phosphoribosyltransferase (XGPT), was a kind gift from Dr. Per Nygaard, Copenhagen, Denmark.
2.2 Construction of PfHGXPRT mutants F197W and W181S/F197W and purification of enzymes

The mutant F197W was generated by a two-step PCR method that involved mega primer generation26 and full length gene amplification using pTrc99A-PfHGXPRT as the template and 5' CCTGATCACTGGGTTGGT3' as the mutagenic primer. The positive clones were verified by DNA sequencing and checked for expression after transformation of pTrc99A-F197W construct into E.coli strain Sφ609. The mutants, W181S and W181S/F197W were generated by quick change PCR method which is described in section S1 of Supporting Information. The protocol for purification of the enzymes is provided in section S2 of Supporting Information.

2.3 Activity measurements

Phosphoribosylation activity by both unactivated and activated states of PfHGXPRT was monitored at 296 K using Hitachi U-2810 or U-2010 UV-Visible spectrophotometers (Tokyo, Japan). A standard assay mix for unactivated PfHGXPRT consisted of 50 µM hypoxanthine or guanine or 200 µM xanthine, 3 mM PRPP in 100 mM Tris HCl, pH 7.4 unless otherwise specified. The concentration of free MgCl\textsubscript{2} was maintained at 12 mM. A \(K_d \) value of 0.59 mM for PRPP-Mg2+ complex27 was used to calculate the concentration of free MgCl\textsubscript{2} at every concentration of PRPP. For achieving the activated state, the enzyme was pre-incubated at a concentration of 30 µM with different ligand/s in the presence of 5mM dithiothreitol (DTT). Assay conditions for activated PfHGXPRT were same as those for the unactivated state except for PRPP concentration, which was maintained at 1 mM. Reactions were initiated with 1 µM enzyme in case of unactivated
PfHGXPRT and 0.2 µM in case of activated PfHGXPRT. The activated enzyme was directly added to the reaction mixture without prior dilution. A difference in extinction coefficient of 1900 M⁻¹cm⁻¹ at 245 nm was used to monitor hypoxanthine phosphoribosylation, 5600 M⁻¹cm⁻¹ at 257.5 nm for guanine phosphoribosylation and 3794 M⁻¹cm⁻¹ at 255 nm for xanthine phosphoribosylation. Assay protocols were same for the mutants F197W and W181S/F197W.

Xanthine phosphoribosylation was also monitored with unactivated PfHGXPRT using a spectrophotometer attached to a stopped-flow module (SFM-300, Biologic, France). 5 µM unactivated PfHGXPRT was mixed with assay mix containing 200 µM xanthine, 2 mM PRPP and 26 mM MgCl₂ in 1:1 ratio by volume. Total volume of each reaction mix was 126 µl. Total flow rate for mixing was 7 ml/sec with a dead time of 4.3 milliseconds. Duration of the assay was 160 seconds where each data point was acquired every 20 milliseconds, resulting in a total of 8000 data points for the entire trace. The reaction was carried out in both 100 mM Tris HCl and 10 mM potassium phosphate, pH 7.4 at 296 K. All measurements have been performed at least 3-5 times.

2.4 Measurement of rate constants for IMP association and dissociation using PfHGXPRT mutants by stopped-flow fluorescence studies

The mutants F197W and W181S/F197W were used to measure overall rate constants \((k_{obs}) \) for relaxation to equilibrium upon IMP binding, using a spectrofluorimeter attached to a stopped-flow module (SFM 300, Biologic, France). Time courses of change in fluorescence emission were acquired after excitation at 295 nm using a 320 nm cut-off
filter. The total duration of each scan was 4 seconds with 500 µseconds for each data point resulting in a total of 8000 data points. Dead time was fixed at 4.3 milliseconds, and total flow rate was 7ml/sec. Concentration of F197W was fixed at 5 µM with varied IMP concentrations of 1, 2, 3, 4 and 5 µM. In case of W181S/F197W, enzyme concentration was fixed at 3 µM with the varied IMP concentrations being 0.5, 1, 2, 3 and 4 µM. Values of k_{obs} were plotted against IMP concentrations and fitted to equation,

$$k_{obs} = k_{on}[L] + k_{off} \ldots \ldots (i)$$

where, k_{on} and k_{off} represent second order and first order rate constants for binding and dissociation, respectively. k_{obs} represents the overall rate constant for relaxation to equilibrium upon binding with IMP. Values of k_{obs} at every IMP concentration were estimated by fitting the time courses of fluorescence emission to equation (ii) that represents a second order process.

$$Y (t) = at + b + \{c/(1 + k_{obs}t)\} \ldots \ldots (ii)$$

In the equation; $Y (t)$ indicates fluorescence emission (in Volts) at any time t, a indicates slope of the time course, b represents offset, c is the amplitude of fluorescence change (in volts) and t represents time. Dissociation constant (K_d) for F197W.IMP and W181S/F197W.IMP complexes were estimated from the ratio k_{off}/k_{on} and also by monitoring steady state fluorescence emission properties using a Hitachi F-2500 spectrofluorimeter (Tokyo, Japan) at IMP concentrations ranging from 0.5 µM - 20 µM with concentration of both mutants fixed at 5 µM. Excitation wavelength was set at 295 nm. Equation (iii) for one site binding was used to estimate the dissociation constant K_d for [enzyme.IMP] complexes.

$$\% \text{ quenching} = \{B_{max} * [IMP]\} / (K_d + [IMP]) \ldots \ldots (iii)$$
where, B_{max} represents quenching at the highest concentration of IMP used, $[\text{IMP}]$ represents IMP concentration and % quenching was calculated by the relation;

\[
\left\{ \frac{(I_{\text{em}[\text{IMP}]} - I_{\text{em}0})}{I_{\text{em}0}} \right\} \times 100
\]

where $I_{\text{em}[\text{IMP}]}$ indicates emission intensity of the proteins F197W or W181S/F197W at any particular concentration of IMP, $I_{\text{em}0}$ indicates emission intensity of the proteins F197W or W181S/F197W in absence of IMP. Fitting of data to all the above equations was done using Graph Pad Prism, version 5 (Graph Pad Software Inc., San Diego, California). These experiments were repeated at least twice.

2.5 Estimation of kinetic parameters of unactivated and activated states of PfHGXPRT

Kinetic parameters for both unactivated and IMP activated PfHGXPRT were estimated at varied 6-oxopurine and PRPP concentrations with 100 mM Tris HCl and 10 mM potassium phosphate as the assay buffers containing 12 mM MgCl$_2$, both maintained at pH 7.4.

The experimental details for estimation of kinetic parameters in 100 mM Tris HCl, pH 7.4 are as follows. For estimation of K_m value for PRPP for unactivated PfHGXPRT, the concentration of PRPP was varied from 0.1 mM - 3 mM in case of hypoxanthine phosphoribosylation, 0.1 mM - 3.5 mM in case of guanine phosphoribosylation and 0.1 mM - 6 mM in case of xanthine phosphoribosylation. Hypoxanthine/guanine concentrations were fixed at 50 µM, and xanthine concentration was fixed at 200 µM. When concentrations of 6-oxopurines were varied, hypoxanthine and guanine were varied from 2 µM - 50 µM and xanthine concentration was varied from 5 µM - 200 µM. PRPP concentration was fixed at 3 mM in these cases. With IMP
activated PfHGXPRT, PRPP concentration was varied between 0.025 mM - 1.5 mM in case of hypoxanthine, guanine, and xanthine phosphoribosylations. The ranges for 6-oxopurine concentrations were the same as those followed for unactivated PfHGXPRT. Concentration of free MgCl₂ was maintained at 12 mM for all the assays.

The experimental details for estimation of kinetic parameters in 10 mM potassium phosphate, pH 7.4 are as follows. PRPP concentration was varied between 0.1 mM - 2 mM, 0.1 mM - 3 mM and 0.1 mM - 5 mM in case of hypoxanthine, guanine and xanthine phosphoribosylations, respectively with hypoxanthine/guanine at 50 µM and xanthine at 100 µM. When the 6-oxopurines were varied; they were maintained between 7.5 µM - 50 µM and 2.5 µM - 50 µM respectively in case of hypoxanthine and guanine. In case of xanthine, it was maintained between 5 µM - 100 µM. PRPP concentrations were fixed at 2 mM in all cases. The same range was maintained for both unactivated and IMP activated states. Concentration of free MgCl₂ was maintained at 12 mM for all the assays. \(v_0 \) versus 6-oxopurine or PRPP concentrations were fit to Michaelis-Menten equation (iv), equation (v) representing two \(K_m \) values for two different quaternary forms of the enzyme (double hyperbolic equation) and also to Hill’s equation (vi) representing cooperativity, using Graph Pad Prism, version 5, (Graph Pad Software Inc. San Diego, California).

\[
v_0 = \frac{(V_{max}*[S])}{(K_m+[S])}.........(iv)
\]

\[
v_0 = V_{max1}[S]/(K_{m1}+[S]) + V_{max2}[S]/(K_{m2}+[S]).........(v)
\]

\[
v_0 = V_{max}*[S]^b/(K' + [S]^b).........(vi)
\]

In all the equations, \(v_0 \) is the initial velocity at any particular substrate concentration \([S]\). In case of unactivated PfHGXPRT, the \(v_0 \) values were estimated from the initial steady
state phase of the progress curves after excluding the lag. The duration of the lag phase in each progress curve had been estimated by drawing a tangent from the steady state phase to the X-axis. In Michaelis-Menten equation (iv), K_m is the Michaelis-Menten constant and V_{max} is the initial velocity at saturating substrate concentration. In equation (v), K_{m1} and K_{m2} represent the Michaelis-Menten constants for the two different enzyme populations, $V_{\text{max}1}$ and $V_{\text{max}2}$ are the maximum values of initial velocities of the two quaternary forms of the enzyme. In equation (vi), ‘h’ represents Hill’s coefficient and $K’$ is the modified Michaelis-Menten constant which is a function of several interaction parameters. It is given by $K_m^h(a^{h-1}.b^{h-2}.c^{h-3} \ldots \ldots \ldots z^1)$, wherein a, b, c……z indicate interaction factors that represent the magnitude by which the K_m value gets modified as a result of cooperativity in enzyme behavior. The statistical parameters that were evaluated in order to determine the best fit values were standard errors, 95% confidence intervals and values of regression coefficients (R^2). These experiments have been repeated 2-3 times.

2.6 Computational methods

The enzyme PDB structure [1CJB, *Plasmodium falciparum*] with a resolution of 1.99 Å, was taken from RCSB Protein Data Bank. Missing residues and atoms were added by the help of GaussView software. The protein was then protonated at neutral pH. Crystal water molecules were deleted from the coordinate file and the protein was solvated by 23412 SPC/E water molecules in a cubic box of edge length 90.34 Å. Two Na$^+$ ions were added to neutralize the system. The total energy of the system was then minimized with respect to the coordinates using the steepest descent method. Subsequently, the
temperature was increased gradually from 0 K to 300 K over a 50 ps time span in the constant-NVT ensemble with a time step of 0.5 fs. This thermalized configuration was utilized to perform long simulation runs in the constant NPT ensemble. A Noé-Hoover thermostat with a coupling constant of 0.1 ps was employed to maintain the temperature of the system at 300 K, while a Parrinello-Rahman barostat with a coupling constant of 2 ps was utilized to maintain the system at 1 bar pressure. LINCS algorithm\(^{31}\) was utilized to keep all the covalent bonds involving hydrogen atoms (C-H, N-H, and O-H) as rigid. A time step of 1 fs was used to integrate the equations of motion for all the production runs. However, simulations to obtain the free energy profiles were carried out with a time step of 2 fs constraining all covalent bond lengths (see later). Amber94 force field\(^{32}\) parameters were used for the protein as well as for the ligands. Interaction potential was cutoff at a distance of 12 Å. Particle Mesh Ewald method was employed to calculate the long range electrostatic interactions. Restrained electrostatic potential (RESP) charges for the ligands were calculated using RED-vIII server\(^{33,34}\) following the protocol described by Bayly \textit{et al.}\(^{35}\) All simulations were carried out in GROMACS-4.5.5 software\(^{36-40}\). Visual Molecular Dynamics (VMD)\(^{41}\) was used to visualize simulation trajectories. Both VMD and PYMOL\(^{42}\) software were used to generate the figures.

Given that the barrier for conformational transition is quite large and is unsurmountable with the thermal energy available at ambient conditions within time scales of MD simulations, biased MD simulations were performed on the protein to calculate the free energy profile as a function of the Leu-Lys dihedral angle. These were performed using the well-tempered metadynamics (WTM), starting from the loop opened, ligand-free structures, which itself was obtained from the equilibrium simulation
run described earlier. PLUMED-2.0.1 patched with GROMACS-4.5.5 was used to perform the WTM simulations.43,44 Many biasing techniques exist through which one can calculate the free energy change associated with a rare event of interest. The method of Well-Tempered Metadynamics (WTM)45 is one of them. Metadynamics46 and the WTM method have been reviewed well in the literature47 and have been applied to several problems in biology as well.48

3 Results

Earlier studies have shown that purified recombinant PfHGXPRT exhibits weak activity after isolation that increases significantly upon pre-incubation with the product IMP while GMP and XMP have no effect.24 We refer to the enzyme that has not been pre-incubated with ligand/s as the unactivated form and that pre-incubated with the ligand/s as the activated form. The enzyme also exhibits different oligomeric states - dimer and tetramer whose populations are modulated by PRPP binding and buffer composition.25 PfHGXPRT is a tetramer in 10 mM potassium phosphate, pH 7.0 and a dimer in 100 mM Tris HCl, pH 7.4 that switches to the catalytically active tetramer upon binding PRPP in presence of MgCl\textsubscript{2}.25

3.1 Catalysis by unactivated PfHGXPRT

PfHGXPRT was purified as described earlier and stored at 253K (-20\textdegree C) in 10 mM potassium phosphate, pH 7.0, 2 mM DTT and 10% glycerol at a protein concentration of 200 µM. Xanthine phosphoribosylation assays with unactivated PfHGXPRT were performed under two buffer conditions; 100 mM Tris HCl and 10 mM potassium
phosphate both maintained at pH 7.4. In both buffers, progress curves exhibited a lag phase followed by a steady state phase accompanied by an increase in product concentration with time (Figure 2a, Figure S1a of Supporting Information). Under both buffer conditions, at fixed xanthine and PRPP concentrations, the duration of the lag phase decreased with increase in enzyme concentration. However, even a ten-fold increase (0.2 - 2 μM) in concentration of PfHGXPRT did not abolish the lag phase. The lag at enzyme concentration of 2.5 μM (at which PfHGXPRT is a tetramer in phosphate buffer as shown in Figure S2 of Supporting Information) was also confirmed, and the magnitude estimated using a stopped-flow instrument (Figures S1d, e of Supporting Information). The lag phase was also found to decrease with increase in PRPP concentration (Figure 2c) when assays were performed at fixed xanthine and PfHGXPRT concentrations. A plot of the duration of lag phase (τ) versus concentration of PfHGXPRT or PRPP showed an inverse relationship in both 100 mM Tris HCl, pH 7.4 and 10 mM potassium phosphate, pH 7.4 (Figures 2b, 2d and Figure S1b of Supporting Information) which is a characteristic of hysteretic behavior. This resulted in a positive correlation between the value of the rate constant for approach to steady state phase from lag phase, and the concentration of PfHGXPRT or PRPP (Figure S1c and Figure S3 of Supporting Information). The reciprocal of lag duration is the rate constant for the approach from lag to steady state phase and it represents the process of switching to the active state. However, it should be noted that though the lag reduced, the specific activity values determined from the steady state phase of the progress curves remained unchanged with increase in enzyme concentration.
In order to rule out the possibility that the lag is an artifact of the temperature at which the assays were conducted, xanthine phosphoribosylation by unactivated PfHGXPRT was monitored at different higher temperatures. It was observed that the lag phase persisted even at higher temperatures, but with a reduced duration (Figure S4 of Supporting Information).

Xanthine phosphoribosylation assay with unactivated PfHGXPRT was carried out in D$_2$O and H$_2$O to examine solvent kinetic isotope effect on the duration of the lag phase. The lag durations estimated in D$_2$O and H$_2$O were 48.3 seconds and 47.7 seconds, respectively (Section S3 and Figure S5 of Supporting Information) which yielded a rate constant of 120 hr$^{-1}$ in both cases.

3.2 Activation of PfHGXPRT

Earlier studies have shown that the initial velocity (and thereby, specific activity) of PfHGXPRT increases when an aliquot of the enzyme pre-incubated with IMP at 273 K for three hours in 10 mM potassium phosphate, pH 7.0 was used to initiate the phosphoribosylation reaction.24 We extended this study to examine the effect of pre-incubating the enzyme with other substrates or products alone or substrate-product combinations on enzyme activity. The details of the different pre-incubation and assay conditions are provided in the legends to Figure 3 and Figure S6 of Supporting Information. The enzyme concentration used in all pre-incubations at 273 K was 30 µM and at this concentration, the enzyme is a tetramer in potassium phosphate while tetramer formation in Tris HCl is conditional to the presence of PRPP. Under all conditions, activation of PfHGXPRT was seen when enzyme aliquots pre-incubated with either
PRPP.Mg$^{2+}$ or the ligand combinations IMP.PPi.Mg$^{2+}$/GMP.PPi.Mg$^{2+}$/hypoxanthine.PPi.Mg$^{2+}$/guanine.PPi.Mg$^{2+}$ were used for initiation of phosphoribosylation reaction. The lower level of activation seen with substrate-product combinations of hypoxanthine/guanine.PPi.Mg$^{2+}$ (Figure 3b and Figures S6c, d of Supporting Information) could be due to the tight nature of association of PfHGXPRTHypoxanthine (guanine).PPi dead-end complexes. GMP, XMP, PPI.Mg$^{2+}$ or hypoxanthine alone did not activate the enzyme.

Two important features of PfHGXPR activation at 273 K, 30 µM enzyme by all the above ligand/s were the disappearance of the lag phase and the time dependence for attaining complete activation (Figures 3a, 4a and Figures S6a, S6b, S7a of Supporting Information). Right at ‘zero-time’, the progress curve showed disappearance of lag, though the activity was low and comparable to the value shown by the unactivated enzyme (Figure S7b of Supporting Information). It should be noted that the ‘zero-time’ represents the earliest time point at which activity could be measured after initiation of pre-incubation. The progress curves recorded at various time durations of activation reflect the population that is activated. The time dependence of increase in specific activity upon pre-incubation at 273 K in potassium phosphate buffered solution enabled the estimation of rate constants and free energy barriers for the activation process. As the enzyme at 30 µM in potassium phosphate buffer is a tetramer and the process of activation involves the conversion of unactivated tetramers to activated tetramers in presence of excess PRPP.Mg$^{2+}$, a first order assumption was applied to estimate the rate constant. The rate constant was estimated by plotting [E'A] / [EA] against the time of incubation. Here, [E'A] represents the concentration of the completely
activated PfHGXPRT which is directly proportional to the initial velocity measured after complete activation of the enzyme. Similarly, [EA] is directly proportional to the initial velocity that is measured at different durations of incubation. ‘A’ represents the ligand/s used for activation. The data points were fitted to equation (vii) for one-phase exponential decay in order to estimate the rate constants that are representative of a first order process, with the dimension of time\(^{-1}\).

\[
\frac{[E'\text{A}]/[EA]|_t}{[EA]} = ((\frac{[E'\text{A}]/[EA]|_t=0}{[EA]} - \text{Plateau}) e^{-kt}) + \text{Plateau} \ldots \ldots (vii)
\]

where, k represents the rate constant, t represents duration of pre-incubation in minutes and Plateau is the minimum value of the ratio [E’A] / [EA]. [E’A]/[EA]|\(_t\) is the value of the ratio after a particular duration of pre-incubation and [E’A]/[EA]|\(_t=0\) is the value of the ratio at time 0. One such representative plot that shows first order conversion from [EA] to [E’A] with time is given in Figure 4b. From these experiments, we find that the rate constant for activation in presence of PRPP.Mg\(^{2+}\) at 273K is 2.8 hr\(^{-1}\). The rate constant can be further converted to free energy barrier for the activation process using the equation of Eyring and Polanyi:

\[
k = \left(\frac{k_B T}{h}\right) e^{(-\Delta G/RT)} \ldots \ldots (viii)^{51,52}
\]

where, k is the rate constant for activation obtained from equation (viii), k\(_B\) is Boltzmann constant, T represents absolute temperature in K, h is Planck’s constant, \(\Delta G\) is the free energy barrier and R is the universal gas constant. The free energy barrier (\(\Delta G\)) for activation with PRPP.Mg\(^{2+}\) was 19.7 kcal/mol which is comparable to the value of 19.4 kcal/mol obtained from the rate constant of approach from lag to steady state phase (97 hr\(^{-1}\)) in xanthine phosphoribosylation assay in phosphate buffer monitored using
unactivated enzyme in a stopped flow spectrophotometer (Figure S1d of Supporting Information).

The time dependence of activation with PRPP_Mg$^{2+}$ in phosphate buffer was also examined at a higher temperature of 296K and at protein concentrations of 0.4 and 30 μM. At both enzyme concentrations, the lag disappeared at ‘zero-time’ and complete activation was achieved much faster than at 273 K. While the time taken for complete activation was 3 hours at 30 μM enzyme and 273 K, complete activation was achieved in 15 minutes at 0.4 μM and 296 K (Figure S8 of Supporting Information). Activation at 30 μM, 296 K was fairly rapid and under our experimental conditions, an exact time course could not be measured. As expected, this represents a faster switch to the activated state with increase in temperature.

3.3 Probing the mechanism of IMP binding using the PfHGXPRT mutant W181S/F197W

PfHGXPRT possesses one tryptophan residue, W181 that does not exhibit any change in fluorescence emission properties upon binding IMP. However, F197 in PfHGXPRT interacts with the nucleobase through π - π stacking and hydrophobic interactions and hence, the single tryptophan mutant W181S/F197W was generated to monitor, exclusively the report from IMP binding. WT and F197W were included as controls. Upon excitation at 295 nm, the fluorescence spectra at protein concentration of 5 μM exhibited emission maximum at 340.5 nm for WT and 341.5 nm for F197W and W181S/F197W. (Figure S9a of Supporting Information). As expected, the emission intensity of F197W was greater than that of PfHGXPRT due to the presence of two
tryptophan residues whereas in the case of W181S/F197W, though there is one tryptophan as in PfHGXPRT, the emission intensity was lower by approximately sevenfold. Like the wild type enzyme, the mutants in the unactivated state exhibited a lag followed by a steady state phase (Figure S9b, c of Supporting Information). IMP activation was observed in both F197W and W181S/F197W, which was characterized by an increase in k_{cat} for xanthine phosphoribosylation activity and drop in K_m for PRPP.Mg$^{2+}$ (Table S1 of Supporting Information). These mutants were further used for binding studies.

Upon titration of IMP at a fixed concentration of W181S/F197W, the emission intensity was found to decrease (Figure S10a of Supporting Information). The concentration range of IMP used did not exhibit inner filter effect. From this titration, a K_d value of $3.0 \pm 0.6 \, \mu\text{M}$ for the W181S/F197W-IMP complex was estimated (Figure 5a). Values of rate constants for relaxation to equilibrium upon IMP binding (k_{obs}) measured using a stopped-flow spectrophotometer (Figure 5b, Figure S10b of Supporting Information) indicated a positive correlation with IMP concentration. Thus, both induced fit and conformational selection mechanisms are likely to be operative in IMP binding. Values of k_{on} and k_{off} were $8 \times 10^6 \, \text{M}^{-1}\text{sec}^{-1}$ and $33 \pm 4 \, \text{sec}^{-1}$, respectively. The dissociation constant estimated from the ratio $k_{\text{off}}/k_{\text{on}}$ was $4 \, \mu\text{M}$ and similar to the value obtained from equilibrium measurements. Also, similar values were obtained for the dissociation constant and rate constants of binding and dissociation of IMP in the case of the single mutant F197W (Table S2 of Supporting Information). The K_d value for PfHGXPRT-IMP complex estimated by ITC was $20 \, \mu\text{M}$ (Section S4 and Figure S11 of Supporting Information).
3.4 Kinetic characterization of unactivated and activated states of PfHGXPRT

The kinetic parameters of unactivated and IMP activated PfHGXPRT estimated in 100 mM Tris HCl, and in 10 mM potassium phosphate are provided in Table 1. Under unactivated conditions in Tris HCl, the $K_{m(\text{app})}$ value for PRPP was in the mM range that dropped by 10-20-fold after activation with IMP which indicates that IMP activation brings about conformational changes that facilitate PRPP binding. However, K_m value for the 6-oxopurines remained similar under both conditions. The k_{cat} values, on the other hand, increased by different magnitudes upon IMP activation. In hypoxanthine phosphoribosylation, there was no change in k_{cat}, while in guanine and xanthine phosphoribosylation activities, increase in k_{cat} was observed, which were 3 and 5-fold, respectively over the unactivated. On the other hand, in 10 mM potassium phosphate, pH 7.4, activation with IMP resulted in primarily an increase in k_{cat} which was 3-5-fold in case of hypoxanthine and xanthine phosphoribosylation and more than 10-fold in case of guanine phosphoribosylation. Taken together, the kinetic parameters show that the increase in catalytic efficiency (k_{cat}/K_m) upon activation is of greater magnitude when assayed in Tris HCl buffer than in phosphate buffer (Table 1).
Table 1. Kinetic parameters of the unactivated and IMP activated states of PfHGXPRT.\(^a\)

<table>
<thead>
<tr>
<th>Reaction monitored</th>
<th>100 mM Tris HCl, pH 7.4</th>
<th>10 mM potassium phosphate, pH 7.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Varied substrate</td>
<td>Unactivated(^b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(K_{m(app)}) (µM)</td>
</tr>
<tr>
<td>HPRT</td>
<td>Hypoxanthine</td>
<td><5</td>
</tr>
<tr>
<td></td>
<td>PRPP</td>
<td>972 ± 166</td>
</tr>
<tr>
<td>GPRT</td>
<td>Guanine</td>
<td><4.8</td>
</tr>
<tr>
<td></td>
<td>PRPP</td>
<td>1548 ± 359</td>
</tr>
<tr>
<td>XPRT</td>
<td>Xanthine</td>
<td>78 ± 16</td>
</tr>
<tr>
<td></td>
<td>PRPP</td>
<td>1084 ± 202</td>
</tr>
<tr>
<td>HPRT</td>
<td>Hypoxanthine</td>
<td><5</td>
</tr>
<tr>
<td></td>
<td>PRPP</td>
<td>183 ± 42</td>
</tr>
<tr>
<td>GPRT</td>
<td>Guanine</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td>PRPP</td>
<td>263 ± 65</td>
</tr>
<tr>
<td>XPRT</td>
<td>Xanthine</td>
<td>45 ± 10</td>
</tr>
<tr>
<td></td>
<td>PRPP</td>
<td>277 ± 70</td>
</tr>
</tbody>
</table>

\(^a\) Enzyme concentrations were fixed at 1 and 0.2 µM for unactivated and IMP activated PfHGXPRT, respectively. All the kinetic parameters were estimated by fitting the initial velocity data to Michaelis-Menten equation. \(K_m\) values for hypoxanthine and guanine under all conditions have been given as approximations as activity could not be measured reliably at very low substrate concentrations. Data fitting to rate equation representing a double hyperbola (equation v) resulted in poor statistical parameters with negative values for one or more kinetic parameters. Fitting of data points to Hill’s equation (equation vi) yielded a value of 1 for the Hill’s coefficient that indicates absence of cooperativity.

\(^b\) The \(v_0\) values in case of unactivated PfHGXPRT were taken from the initial steady state phase of the progress curves after excluding the lag and the kinetic parameters are apparent values. The duration of the lag phase in each progress curve was estimated by drawing a tangent from the steady state phase to the X-axis. The \(K_{m(app)}\) values for PRPP being different for unactivated PfHGXPRT in Tris HCl and phosphate buffered solutions indicates that the initial slopes do report on the different states.

\(^c\) \(K_{m1}\) and \(K_{m2}\) refer to the Michaelis-Menten constants for PRPP, Mg\(^{2+}\) and 6-oxopurine, respectively. The values of \(K_{m2}\) that have been considered for hypoxanthine and guanine were the minimum concentrations up to which the \(v_0\) values could be measured reliably.

\(^d\) The ratio is given by; (catalytic efficiency of activated PfHGXPRT)/(catalytic efficiency of unactivated PfHGXPRT).

The magnitude of the duration of the lag is related to the affinity for PRPP for the inactive state of the enzyme. Use of the relationship

\[
\tau = 1 / \left\{ k_1 ([PRPP] + K_m) \right\}^{50} \]

..................................(ix)
permits the estimation of the K_m value for PRPP in the lag phase. τ is the duration of the lag and k_1 is k_{cat}/K_m of the enzyme in the lag phase. This yielded K_m value of 4.8 ± 0.9 mM for PRPP for the xanthine phosphoribosylation reaction in 100 mM Tris HCl, pH 7.4 as the assay buffer. The value of k_1 which corresponds to k_{cat}/K_m of the inactive state of PfHGXPRT with respect to PRPP was $2.8 \times 10^{-6} \, \muM^{-1}sec^{-1}$ (Figure S12 of Supporting Information). The value of k_{cat}/K_{mPRPP} (with respect to PRPP) obtained from the steady state phase of xanthine phosphoribosylation activity was $1.8 \times 10^{-4} \, \muM^{-1}sec^{-1}$ which is 60-fold greater than the corresponding value in the inactive state. After complete activation in presence of IMP, the catalytic efficiency (k_{cat}/K_{mPRPP}) increases further by 167-fold to $3 \times 10^{-2} \, \mu$M$^{-1}$sec$^{-1}$. This result clearly shows that PRPP has weaker affinity for the dimer and the increase in affinity arises from ligand induced conformational change associated with tetramerization. This observation is further supported by the high K_m value for PRPP for the PfHGXPRT interface mutant, Y96C that is impaired in tetramer formation.25

3.5 Unbiased MD Simulations

The above experimental studies suggest a high energy barrier for the transition from the unactivated to the activated state. A unique feature of HGXPRTs is the presence of a non X-Pro cis peptide bond that in some cases is populated only in the ligand bound state.2,5,12,13,19,22,23 The interconversion between the cis and trans conformations is associated with high energy barriers. This observation prompted us to examine the energetics of the trans to cis isomerisation of the Leu76 – Lys77 peptide bond in PfHGXPRT.
Prior to the investigation of the trans-cis conformational change of the dipeptide, unbiased molecular dynamics simulations of the ligand-bound and the ligand-free PfHGXPRT were performed. After converting immucillin-HP (in 1CJB) to IMP, the resulting system along with 2Mg$^{2+}$-PPi was simulated in water for 120 ns in the NPT ensemble to check the stability of ligands and of the flexible loop. The ligand-free (apo) PfHGXPRT was generated by the removal of the ligand molecules from the active site and simulated for the same time span.

3.5.1 Interactions of PfHGXPRT with IMP.PPi.Mg$^{2+}$

The MD simulation of ligand-bound PfHGXPRT provides valuable information on the active site region. The active site cavity occupied by the ligand molecules is shown in Figure 6a. There are three main interaction motifs through which IMP interacts with the protein. The nucleobase is stabilized by (i) π- stacking with Phe197 and hydrogen bonding of N1H with backbone -CO of Val198 and C6 oxo with ξ NH$_3^+$ of Lys176 (ii) the hydroxyl groups in the sugar ring satisfy the coordination shell of one of the two Mg$^{2+}$ ions present in the pocket. 5' phosphate is stabilized by the backbone residues through strong hydrogen bonding interactions with the phosphate oxygens. (iii) Tyr116, present in loop II stays close to the sugar ring of IMP (Figure 6b). The last feature is similar to that seen in Toxoplasma gondii HGXPRT wherein the corresponding residue (Tyr118) stabilizes the carbocation which is generated during the catalysis. These interactions maintain the structural features of the otherwise flexible loop by preventing it from opening within the time scale of our simulation. PPi forms a complex with the two Mg$^{2+}$ ions and its O2 and O3 atoms interact with the -NH group of the cis conformation
of the Leu-Lys dipeptide (Figure 6c). The puckered ribose structure, earlier reported by Borhani and coworkers53, was also observed in the simulation trajectory. The octahedral coordination of one Mg2+ ion is satisfied by three water molecules, a carboxylate oxygen of Asp204 and two oxygens from PPI while the second ion is coordinated to two water molecules, two oxygens each from hydroxyl of ribose and PPI (Figure 6c). The number of water molecules within 3 Å of any atom of IMP.PPI.2Mg2+ is plotted as a function of simulation time in Figure 6d. 1CJB contains 10 water molecules within the same criterion and thus the result shown in Figure 6d shows that the crystal waters are intact during the MD trajectory.

3.5.2 Free Enzyme

During the simulation of the ligand-free enzyme, a significant movement of Loop-II was observed between 25-30 ns and it opened spontaneously during this MD trajectory. Its state was quantified through the gate width (defined as the distance between the two C-\(\alpha\) atoms of residues Asn206 and Asn118, located on either end of the gate, which attained a maximum value of \(\sim\)25 Å after 100 to 110 ns (Figure 7a, movie 1 is provided in Supporting Information). Overlay of the structures with loop II closed and opened is shown in Figure 7b. We have additionally carried out MD simulations of the ligand-free protein dimer in water for a 100 ns time span in the NPT ensemble. Loop II from each of the monomers is seen to open up within \(\sim\)20-40 ns time span. Thus the loop opening event reported here appears robust.

The behavior evolution of the Leu-Lys dihedral angle for the ligand-free and the ligand-bound protein (depicted in Figure S13 of Supporting
Information) indicate that they are more or less identical, fluctuating around the mean value. Thus as expected, direct, unconstrained MD simulations do not sample slow processes such as the conformational change, within the simulation time scales. Hence, smart methods to sample the rare event so as to obtain the free energy difference between the cis and the trans states of the Leu-Lys dipeptide were employed. As initial investigations, the conformational transition of just the Leu-Lys dipeptide was studied in gas phase and in water using quantum chemical and free energy calculations respectively. Results of these calculations can be found in Section S5 and Figure S14 of Supporting Information.

3.6 Free Energy Calculations on PfHGXPR

The dihedral angle (ω) comprising of backbone Cα-C-N-Cα of the Leu-Lys dipeptide was chosen to be the collective variable (COLVAR) to calculate the Potential of Mean Force (PMF). The instantaneous change in the collective variable (dihedral angle) with time was captured over the trajectory. An initial bias potential of 0.1 kcal/mol was applied with a bias factor of 15. Coordinates and parameters of the added Gaussians were saved every 2 ps for further analyses. Four arbitrary configurations from the MD trajectory of the ligand-free enzyme in its loop opened state were chosen, and WTM runs were initiated from each of them. These are named as FES1, FES2, FES3 and FES4 (Figure S15 of Supporting Information). Each of these runs was carried out for a duration of 200 ns. The ω Values ranging from -180° to 180° via the cis (0°) conformation were explored. The potential of mean force (PMF) along this COLVAR was calculated by using the sum_hills code.43
Free energy profiles obtained from the four runs were averaged and are displayed in Figure 8 while the individual data are provided in Figure S15 of Supporting Information. The trans conformation of the dipeptide in the protein is more stable than the cis by 12 kcal/mol, indicating that in the free structure of the protein, the dipeptide is likely to exist in the trans conformation. The cis to trans rotational energy barrier is 13 kcal/mol while that in the reverse direction i.e., from trans to cis, is around 25 kcal/mol. This high energy barrier for the conformational change of the dipeptide implies that the conformational switching event is indeed a slow process. PMF calculations of the solvated dipeptide too indicated the stability of the trans conformation (Figure S14b). The magnitude of the cis-trans free energy difference is larger in the WTM simulations of the full enzyme compared to that for just the dipeptide in water – as in the latter, the configuration in which the dipeptide is in trans conformation is additionally stabilized by the interactions with the residues, Glu144 and Ile146 (see later).

The ligand-free structure with the dipeptide present in cis conformation obtained from the unbiased simulation was compared with one of the structures extracted from the WTM simulation wherein the dipeptide is in trans state. An overlay of these two structures is provided in Figure 9. Significant differences in the orientation of the Lys77 side chain were observed between the two structures. Additional discussions on this comparison are provided in Section S6 of Supporting Information. Further, the ligand-free enzyme with the dipeptide present in trans conformation obtained from our WTM simulation was compared with the experimentally determined crystal structure of the human apo enzyme (1Z7G).13 Reassuringly, the computed ligand-free Pf enzyme has many structural similarities with the human apo enzyme. Thus, the ligand-
free Pf enzyme obtained from our simulations can serve as a model structure for further studies. Ligand-free PfHGXPRT with the dipeptide in trans conformation and the loop II in opened state closely resembles the ligand-free human homolog. Details of the analyses and outcomes are provided in Section S6 and Figure S18 of Supporting Information.

4 Discussion
There are two features associated with PfHGXPRT activity - a lag phase with the unactivated enzyme and activation to an ‘increased-activity’ state upon pre-incubation with ligand. The duration of the lag in the progress curves of unactivated PfHGXPRT, in both phosphate and Tris buffered solutions, is a function of enzyme and PRPP concentration. This suggests that a ligand mediated change in equilibrium between dimer and tetramer populations modulated the rate of switch from lag to steady state phase. However, the limiting lag in enzyme titrations, seen even at concentrations of 1-2 μM in phosphate buffer where the enzyme is a tetramer, suggested the involvement of a (an additional) slower conformational change apart from quaternary dynamics in the process of switch from lag to steady state phase. Although the reaction progress curves of unactivated enzyme showed a switch from the lag to the steady state phase, it was not ‘activated’ to the fully active state during the time course of the assay. Initiation of the reaction with enzyme pre-incubated with substrates/products abolished the lag in the progress curves and the time dependence of the conversion to the high activity state enabled the estimation of the rate constant and associated free energy barriers for the switch to the activated state. The value of 19-20 kcal/mol thus obtained corresponds to a conformational change associated with high energy barrier.54-57 Human and \textit{T. gondii} HG(X)PRTs exhibit a non-X-Pro
(Leu67-Lys68, human numbering) peptide bond isomerization upon PRPP binding; a conformational change needed to create a cavity for accommodating PPI. The rotational energy barrier for Leu76-Lys77 peptide bond rotation in PfHGXPRRT estimated from WTM MD simulations is 25.0 kcal mol\(^{-1}\) and agrees with the experimental value.

Isomerization of the peptide bond not only creates a cavity for substrate binding but also introduces new inter-subunit interactions. Superposition of the apo, trans structure (obtained from the simulation trajectory) (Figure S19a of Supporting Information) and the ligand-bound cis structure of PfHGXPRRT demonstrates that the isomerization of Leu76-Lys77 peptide bond in loop I triggers conformational changes in the interface loop (from residues 96-106) at the tetramer (AD) junction (Figures S19a and S20 of Supporting Information) and in the interactions of Lys 77. In the trans state, the side chain of Lys77 forms a salt-bridge with Glu144 within the subunit and upon isomerization, flips across the dimer (AB) interface with its N\(\xi\) establishing a hydrogen bond with the backbone carbonyl of Glu108 of the neighboring subunit (Figure S19b of Supporting Information). It is also interesting to note that the side chain amino group of Lys68 in human HGPRT interacts with side chain carbonyl groups of Asp97\(^{22,58}\) and Asp119\(^{58}\) of the neighboring subunit, in the cis conformation of Leu67-Lys68 peptide bond.

We propose that the absence of lag subsequent to activation, is associated with the formation of ligand stabilized cis-tetramer. During activation in phosphate buffer, the enzyme at the concentration of 30\(\mu\)M is in the tetrameric form. In the absence of the ligand, the tetramer has the trans conformation of the Leu76-Lys77 peptide bond. Dilution of this enzyme to 0.2 \(\mu\)M in the assay mix (Tris/phosphate), yields a progress curve with a lag and a steady state phase. In the assay mix, the enzyme dissociates
to dimers and the hysteretic behavior is a function of the $[\text{PfHGXPRT}]$ and $[\text{PRPP.Mg}^{2+}]$. During pre-incubation with the ligand in phosphate buffer at 273 K, the enzyme, through a first order process switches to the \textit{cis-tetramer} state over a period of time. The activated enzyme upon dilution to 0.2 μM in the assay mix does not break up into dimers and hence the absence of lag in the progress curves. The progress curves at various time durations of activation reflect the population that is activated (trans tetramer that has switched to the \textit{cis-tetramer} in presence of ligand/s). Activation of PfHGXPRT at the concentration of 30 μM, 273 K in phosphate buffer has slowed down the process of isomerization and thus permitted its monitoring over time. When PfHGXPRT is activated at the same concentration, but at 296K, the process of isomerization and therefore, also activation is faster. However, at 0.4 μM PfHGXPRT, (at which the oligomeric state could not be determined), the process of activation could involve both oligomerization and isomerization. Hence, it may not be a simple first order process.

In general, the rotational energy barrier about an amide bond is very high (~15-30 kcal/mol)59,60 because of its partial double bond character. The close correlation between the values from theory and experiment reveals the robustness of accelerated molecular dynamics simulations for such processes with high energy barrier. The free energy difference between the cis and trans conformations of the Leu-Lys dipeptide in the ligand-free protein is 12 kcal/mol. This high magnitude of energy difference is due to the destabilization of the cis conformation of the dipeptide in the free enzyme. Based on the structural similarities between the human and the parasite proteins, it can be concluded that the activation process (substrate binding), which is the initial stage
of the protein catalytic activity, is associated with the flipping event of the dipeptide from the trans (unactivated) to the cis (activated) form.

There are three possible mechanisms of isomerization of a peptide bond and these have been discussed in the case of *T. gondii* HGXPRT. A nucleophilic attack on the carbonyl carbon, protonation of the backbone -NH and ligand mediated conformational twisting about the peptide bond are possible mechanisms of Leu76-Lys77 isomerization in PfHGXPRT. We have evaluated the probable mechanism of isomerization of the peptide bond in PfHGXPRT. Absence of both electron rich groups in the vicinity of the carbonyl carbon atom and a proton donor in the vicinity of backbone –NH of Lys77 do not support intramolecular nucleophilic attack and protonation mediated mechanisms for isomerization. Further, the similar values for the rate constants for the switch from the lag to the steady state phase in D2O and H2O obtained from Solvent Kinetic Isotope Effects (SKIE) suggest that protonation of the peptide NH does not catalyze the isomerization. However, under the conditions of the assay (Section S3 and Figure S5 of Supporting Information), we would expect oligomerization and isomerization to be coordinated.

PfHGXPRT activation by isomerization of Leu76-Lys77 peptide bond and tetramerization, is also reflected in the kinetic data. The trans-dimer of PfHGXPRT (in Tris HCl) has low affinity for PRPP (with K_m values in the mM range) and upon activation to cis-tetramer, the affinity increases with K_m values dropping to the μM range. In the kinetic measurements on unactivated PfHGXPRT in phosphate buffer, the lag corresponds to activation to cis-tetramers and the steady state phase corresponds to the activated form. The trans tetramer of PfHGXPRT (in potassium phosphate) has higher
affinity for PRPP and the increase in k_{cat} upon activation is due to the complete conversion from trans-tetramers to cis-tetramers. Under conditions of multiple turnovers, in the presence of substrates/products, the enzyme does not flip back to trans conformation. In support of this mechanism is the absence of a burst phase (data not shown) in progress curves of phosphoribosylation using the activated enzyme recorded with a stopped-flow system, a feature unlike the human protein. Further, the rate constants for IMP binding and IMP dissociation were respectively 40 -fold and 165 -fold greater than k_{cat} of hypoxanthine phosphoribosylation by unactivated PfHGXPRT which consolidates the fact that catalysis is slower than IMP release. It is interesting to note that the activity of IMP pyrophosphorolysis increased over that of the uninhibited control, when complex of PfHGXPRT.immucillin-GP.PPi.Mg$^{2+}$ was diluted in the reaction mixture.62 This observation suggests that a conformational feature that is associated with increased activity and induced by the binding of the transition state analog is retained upon inhibitor removal by dilution, highlighting a long timescale for switch to the less active form. IMP binding to PfHGXPRT was found to follow both conformational selection and induced fit mechanisms as evident from the positive correlation between the overall rate constants for relaxation to equilibrium upon IMP binding (k_{obs}) and ligand concentration. This is also true in the case of PRPP binding as the rate constants for approach from lag phase to steady state phase are dependent on concentrations of unactivated PfHGXPRT and PRPP.

In *T. gondii* HGXPRT, a thermodynamic framework for the role of isomerization in PRPP binding and release of PPi has been put forth wherein the geometric change serves to avoid low energy kinetic traps. However, the examples where the corresponding dipeptides, Leu46-Arg47 in *E. coli* HPRT6, Ser36-Arg37 in *E. coli*
XGPRT3, are present in the cis conformation in the apo form suggest that in these enzymes the processes of substrate binding and product release occur without any peptide bond inter-conversion. In some cases, the cis conformation of the dipeptide is also retained under conditions of partial occupancy of the active site19,63-66. Fungal HGPRTases are exceptions to all the examples mentioned thus far. *Saccharomyces cerevisiae* HGPRT contains the Gly37-Gly38 peptide bond in the trans conformation, the backbone –NH of which hydrogen bonds with the PPI oxygen atoms.67 The process of isomerization of the dipeptide which is a slow event, is overcome in *S. cerevisiae* HGPRT by a 13 membered hydrogen bonded turn in the active site loop I of the enzyme.67 The role of the dipeptide residues have been extensively investigated by site-directed mutagenesis in different HG(X)PRTs. These mutations resulted in reduced affinity for PRPP, reduced k_{cat} and changes in inter-subunit interactions at the dimer interfaces of the enzymes.68-72 Diverse phosphoribosyltransferases such as uracil phosphoribosyltransferase from *Sulfolobus solfataricus* and orotate phosphoribosyltransferase from *Salmonella typhimurium* also possess a non X-Pro dipeptide(Leu79-Arg8073 and Leu73-Gly7474, respectively) that switches from trans to cis conformation upon PRPP-Mg2+ binding. Examples of enzymes other that PRTases that have non X-Pro cis peptide bonds are human cellular factor XIII and *E. coli* glutamine-PRPP amidotransferase. The former has two non X-Pro cis peptide bonds which are Arg310-Tyr 311 at the active site and Gln425-Phe426 at the dimerization interface75 while in the latter, a Pro302-Glu303 dipeptide achieves cis conformation on PRPP binding.76

Substrate induced modulation of oligomeric states has been demonstrated in *Bacillus subtilis* XGPRT.77 The enzyme exhibited a switch from monomer
to a dimer in presence of the substrate; PRPP and product XMP. The enzyme without activation showed an initial lag phase followed by a slow linear increase in activity with time, which was attributed to hysteretic behavior of the enzyme in presence of PRPP. *E. coli* uracil phosphoribosyltransferase also exhibits a dynamic equilibrium between dimers, trimers, pentamers and hexamers. Dimers and trimers had lesser activity whereas the activity shown by the higher oligomeric states was greater. The high activity state could be achieved by GTP, PRPP and guanosine 3', 5' bis(diphosphate). 78

Structural dynamics of proteins regulate their function and these conformational switches primarily involve loop movements and global domain movements over hinge regions. Though extremely rare, inter-conversion of non X-Pro peptide bonds between trans and cis conformations, play important roles in the processes of substrate binding and protein oligomerization. Our investigations lead us to conclude that PfHGXPRT presents a unique process of slow activation, modulated by conformational switch of the non X-Pro Leu76–Lys77 dipeptide. A complete understanding of the function of PfHGXPRT could be of added value to the ongoing efforts 22, 23, 58, 79, 80 in the development of inhibitors to the enzyme.

Acknowledgements:

T. K. and S. B. acknowledge Department of Science and Technology for support. S. B. thanks Sheikh Saqr Laboratory, ICMS for a fellowship. VSPR acknowledges DBT for post-doctoral fellowship, LKN acknowledges Council of Scientific and Industrial Research for Junior Research Fellowship, HB acknowledges Department of Science and
Technology and Department of Biotechnology for funding. DNA sequencing facility at MBGU, JNCASR is acknowledged for providing DNA sequence of the mutants.

Supporting Information: The supporting information contains sections describing the methods and outcomes of construction of W181S and W181S/F197W, purification of PfHGXPRT and mutants (Sections S1 and S2), solvent kinetic isotope effects (Section S3), isothermal titration calorimetry (Section S4) and conformational changes (Section S5) in the dipeptide in gas phase and in water. A comparison between the cis and trans apo structure has been included in Section S6. Additionally, data on hysteretic behavior of PfHGXPRT in potassium phosphate, oligomeric state of PfHGXPRT in Tris HCl and potassium phosphate buffers, increase of rate constants with increasing concentration of PfHGXPRT and PRPP, temperature dependence of lag duration, relative magnitudes of activation in potassium phosphate and Tris HCl, comparison of biochemical properties of PfHGXPRT mutants, change of fluorescence emission properties of W181S/F197W with increase in IMP concentration, estimation of dissociation constant of PfHGXPRT.IMP complex using isothermal titration calorimetry and dependence of the lag duration on PRPP concentration observed using a stopped flow spectrophotometer, dihedral angle change of the Leu-Lys dipeptide in unbiased MD simulations, gas phase and solvent phase energy barrier calculations, Free energy profiles obtained from four different WTM simulations for the rotation about the Leu-Lys peptide bond in the ligand-free PfHGXPRT enzyme, Lys 77 side chain interaction with Glu 144 and Ile 146, distance between the nitrogen atom (NΞ) of Lys 77 side chain and the carbon atom (Cδ) of Glu 144 side chain versus the dipeptide omega dihedral angle (Cα-C-N-Cα),
comparison of Ramachandran plots of free PfHGXpRT and free human HGPRT enzymes, conformational changes of PfHGXpRT during isomerization of Leu76-Lys77 peptide bond and tetramer structure of PfHGXpRT with assignment of the individual subunits are provided.

Web Enhanced:

Two web enhanced objects are available in the HTML version of the paper. This includes two movies in .mpeg format that highlight, 1. opening of loop II and 2. conformational change of the Leu76-Lys77 peptide bond.

References

Figure legends

Figure 1. Structure of PfHXGPRT (1CJB). The hood domain, the core domain and the active site are indicated. The active site loops are loop I (residues 76-81, red), loop II (residues 112-133, chocolate), loop III (residues 146-152, yellow), loop III′ (residues 177-182, magenta) and loop IV (residues 199-214, blue).

Figure 2. Hysteretic behavior of unactivated PfHXGPRT in 100 mM Tris HCl, pH 7.4. a) Representative progress curves of xanthine phosphoribosylation showing decrease in duration of lag phase upon increase in concentration of PfHXGPRT. b) Inverse relation between lag duration and concentration of PfHXGPRT. c) Representative progress curves of xanthine phosphoribosylation showing decrease in duration of lag phase upon increase in concentration of PRPP. d) Inverse relation between lag duration and PRPP concentration. Xanthine concentration was fixed at 200 µM. The duration of the lag phase (τ) was taken as the point of intersection on the X-axis of the line extrapolated from the steady state phase to y=0. When enzyme
concentration was varied, PRPP concentration was fixed at 3 mM. When concentration of PRPP was varied, PfHGXPRT concentration was fixed at 1 µM. Concentration of free MgCl₂ was maintained at 12 mM in all assays. The plots are representative of 3-5 replicate experiments.

Figure 3. Activation of PfHGXPRT with different ligand/s. a) Representative progress curves of xanthine phosphoribosylation by unactivated and activated PfHGXPRT. The inset to this panel represents a progress curve of phosphoribosylation reaction by activated PfHGXPRT that was obtained using a stopped-flow spectrophotometer. It shows complete absence of the lag phase. For the stopped-flow assay with activated PfHGXPRT, 5 µM activated enzyme in 10 mM potassium phosphate, pH 7.0 was mixed with assay mix containing 200 µM xanthine, 2 mM PRPP and 26 mM MgCl₂ in 1:1 ratio by volume. Total volume of the reaction mix was 126 µl. Total flow rate for mixing was 7 ml/sec with a dead time of 4.3 milliseconds. Duration of the assay was 8 seconds where each data point was acquired every 1 millisecond, resulting in a total of 8000 data points for the entire trace. b) Comparison of magnitudes of activation in presence of different ligand/s with respect to the unactivated state. For both panels a and b, the following experimental conditions were maintained. Activation was performed by pre-incubation of 30 µM PfHGXPRT in 10 mM potassium phosphate, pH 7.0 with the different ligand/s for 3 hours at 273 K. The activated enzyme was directly added to the reaction mixture without prior dilution. The ligand/s are indicated below each bar in the graph. Xanthine phosphoribosylation was monitored in 100 mM Tris HCl, pH 7.4. Xanthine concentration was maintained at 100 µM and PRPP at 1 mM in all the assays. [IMP]/[GMP] carried over to the reaction mix was 0.48 µM. In case of hypoxanthine and guanine, the concentration carried over was 0.08 µM. Final concentration of PfHGXPRT in the assay mix was 0.2 µM. The plots are representative of 3-5 replicate experiments.
Figure 4. Effect of duration of pre-incubation on a) PfHGXPRT activity and b) concentration of activated species. Initial velocity of the unactivated enzyme remains unchanged with time (panel a). [EA] is directly proportional to the initial velocities measured at different time durations of activation and [E’A] represents the concentration of completely activated PfHGXPRT that is directly proportional to the initial velocity estimated after complete activation. E represents PfHGXPRT and A indicates the ligand/s used during activation. Definitions of [EA] and [E’A] are provided in the section 3.2. As [EA] is gradually converted to [E’A] with time, the ratio of [E’A]/[EA] achieves the value of 1 in the plateau, i.e. after complete activation of PfHGXPRT. The plots are representative of 3-5 replicate experiments.

Figure 5. Mechanism of IMP binding elucidated using the PfHGXPRT mutant W181S/F197W in 10 mM potassium phosphate, pH 7.0. a) % quenching plotted against IMP concentration using one-site binding equation (equation iii) to estimate dissociation constant for [W181S/F197W.IMP] complex. Excitation wavelength was fixed at 295 nm. IMP concentration was varied from 0.5 µM to 20 µM and concentration of W181S/F197W was fixed at 5 µM. b) Positive correlation between k_{obs} and IMP concentration showing the role of both conformational selection and induced fit mechanisms in IMP binding to W181S/F197W. Data points of k_{obs} versus [IMP] were fit to a linear equation which is given as $k_{obs} = k_{on}[IMP] + k_{off}$ in order to estimate the rate constants for IMP binding (k_{on}) and IMP dissociation (k_{off}). Dissociation constant for W181S/F197W.IMP complex was estimated from the ratio k_{off}/k_{on}. Concentration of W181S/F197W was fixed at 3 µM. IMP concentration was varied from 0.5 µM to 4 µM.

Figure 6. Ligand interactions and dynamics in PfHGXPRT. a) Active site cavity occupied by ligands, b) Interactions of Tyr116 and Phe197 with IMP c) Coordination of Mg$^{2+}$, interaction of PPI with residues. d) Number of water molecules within 3Å distance cut-off of any atom of IMP.PPI.Mg$^{2+}$ plotted as a function of simulation time.
Figure 7. (a) Gate width (defined as the distance between the two C-α atoms of residues Asn206 and Asn118, located on either end of the gate) vs time during the MD simulations of the ligand-bound (black) and ligand-free (red) enzymes. (b) Overlay of the loop closed (initial, green) and loop opened (red) structures obtained during the MD run of the ligand-free enzyme.

Figure 8. Free energy profile for the conformational change of the Leu76-Lys77 dipeptide in PfHGXPRT obtained from Well-Tempered Metadynamics simulations at 300 K.

Figure 9. Overlaid structures of PfHGXPRT with the Leu76-Lys77 present in the cis (green) conformation (unbiased MD run) and one obtained from the WTM simulation run where the dipeptide is present in trans (red) conformation.
Figure 1.

![Molecular structure](image)

Figure 2.

(a) Plot of [XMP] (μM) vs. Time (second) for different [PfHXPRP] (μM) concentrations: 0.3, 0.6, 0.9, 1.2.

(b) Plot of τ (lag duration, second) vs. [PfHXPRP] (μM) with error bars.

(c) Plot of [XMP] (μM) vs. Time (second) for different [PRPP·Mg²⁺] (mM) concentrations: 0.4, 0.8, 2.0, 6.0.

(d) Plot of τ (lag duration, second) vs. [PRPP·Mg²⁺] (mM) with error bars.
Figure 3.

[Graph showing the concentration of [XMP] (µM) over time (second) for PfHXPRT activated and unactivated.

Figure 4.

[a] Graph showing the reaction rate (µmole mg⁻¹ min⁻¹) for unactivated and activated PfHXPRT with duration of pre-incubation.

[b] Graph showing the fold increase in initial velocity with different substrates.

Figure 5.

[a] Graph showing the percentage quenching vs [IMP] (µM).

[b] Graph showing the rate constant (kobs) vs [IMP] (µM).
Figure 6.

Figure 7.
Figure 8.

![Graph showing potential of mean force vs. dihedral angle.]

Figure 9.

![Image of a molecular structure with red and green ribbons.]

45
Figure for table of contents (TOC)

Coupled events of ligand induced isomerization and oligomerization in catalysis by PfHXGXPRT